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Abstract 
In this paper, we present a new approach to the detection of Sea Breeze Fronts 
(SBF) in the Gulf of Guinea using automated methods. The study focuses on 
southern West Africa, where SBFs play a crucial role in local weather. The re-
search demonstrates that the dynamic of SBFs exerts a significant influence on 
local weather conditions and acts as a favourable mechanism for convection. 
The aim of this study is to improve the effectiveness of conventional SBF de-
tection techniques by applying an automated methodology through the analy-
sis of images obtained by the second generation Meteosat (MSG) satellite. Our 
method, based on an active contour technique called morphological snake, is 
capable of automatically detecting the cumulus lines that are associated with 
SBF in a relatively short period of time using a substantial number of MSG 
images taken every 15 min. To delineate the SBFs and to model their inland 
propagation by isochrones, several regression methods were employed. Among 
these, the kernel-weighted local polynomial regression (kwLPR) provided the 
greatest accuracy in modeling the SBF propagation, with an average spatial root 
mean square error (RMSE) of only 0.0034˚. The SBF penetrated as far as 100 to 
146.3 km inland at certain longitudes. Its average penetration along the coast is 
103.17 km. The algorithm is highly robust and has a wide range of practical ap-
plications, including automatic pattern recognition and dynamic imaging. Fur-
thermore, it has significant potential for future research into other complex phe-
nomena, such as the propagation of pollutants and other atmospheric particles. 
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1. Introduction 

Due to the thermal contrast as a consequence of different heat capacities between 
ocean and land, coastal regions are favorable areas for the occurrence of land-sea 
breeze (LSB) circulations [1] [2]. As the land-sea thermal contrast increases dur-
ing daytime, a pressure gradient occurs in the lower atmosphere, triggering Sea 
Breeze (SB) near the land surface. The SB circulation (SBC) is a vertically rotating 
mesoscale cell, with a shoreward flow near the land surface, upward air currents 
inland, downward currents that spread several kilometers out to sea, and (gener-
ally) a return flow to sea near 900 hPa [3]. Detailed descriptions and reviews of 
earlier works on LSB circulations are documented in [4]-[6]. Simpson et al. (1995) 
analyzed the classic sea breeze, its variations, and the mechanisms of the breeze 
front, examining their effects on air quality using observational techniques and 
physical and mathematical models. Planchon et al. (1997) explored the impact of 
sea breezes on precipitation through numerical simulations using a three-dimen-
sional mesoscale model. The limit of penetration of this SB inland is called the sea 
breeze front (SBF). The SBF is the landward of the leading edge of the SBC, often 
associated with sudden changes in temperature, humidity and wind. Its approach 
can be marked by the development of fair-weather cumulus clouds (Cu). The spa-
tial organization of this cloud line and its progressive movement make it possible 
to locate the SBF and calculate its penetration inland. The cool onshore breeze 
during the day, when air is rising over the heated land surface, has a direct influ-
ence on the formation of convective clouds and thus, the weather conditions such 
as daytime temperature, humidity and precipitation. These systems can also re-
lieve oppressive hot weather, trigger thunderstorms, provide moisture for fog and 
improve or reduce air quality near the land surface. The SB circulation plays a key 
role in coastal regions, not only in convection and precipitation, but also in air 
quality, which affects the health of the coastal population [7]-[9]. SB circulation 
also plays an important role in urban pollution management, as shown by studies 
in areas such as Boston, where SB circulation affects the distribution of pollutants 
such as NO₂ and O3 [10]. By influencing air quality, these breezes have an indirect 
impact on public health and urban planning efforts [10]. While these phenomena 
have been studied extensively in regions such as Boston, their role in fast-growing 
areas such as West Africa deserves special attention, especially in light of the grow-
ing challenges associated with rapid urbanisation and the effects of climate change. 
In addition to their influence on air quality, SBs play a crucial role in atmospheric 
dynamics, as illustrated by the ESCAPE (Experiment of SB Convection, Aerosols, 
Precipitation, and Environment) initiative. Funded by the National Science Foun-
dation, this program has carried out in-depth studies of the interactions between 
SBs, aerosols and meteorological systems, in order to better understand and pre-
dict the formation of convective clouds and precipitation, particularly in tropical 
and subtropical environments [11]. [12] [13] showed that convection associated 
with the SBF acts as a favorable mechanism for triggering convection and induc-
ing precipitation over coastal and inland areas. At present, there are almost no 
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studies of convection induced by sea breeze and land breeze fronts (SBF/LBF) 
during extreme events in West Africa. It is therefore of the utmost importance to 
improve our knowledge of SBF/LBF characteristics in the densely populated 
Guinean coastal region of West Africa. Therefore, it is of utmost importance to 
improve our knowledge of SBF/LBF characteristics over the densely populated 
Guinean coastal region of West Africa. 

In tropical climates with seasonal alternation of the rainy and dry seasons, the 
dry season is the most favorable to the development of the SB circulation (e.g., 
Guedje-et al. 2019) because of the strong insolation and thus strong heating of 
land masses [14]. In addition, in these tropical areas, the Gulf of Guinea region 
offers a flat coastal plain that allows the SB to penetrate far inland. In some regions 
(Sergipe in Brazil, for example), the front resulting from this inland breeze extends 
over the continent by up to 100 km [15]. The extent of inland sea breeze penetra-
tion (or the horizontal scale of the sea breeze circulation cell) in mid-latitude re-
gions is less than 100 km in some areas [16] and up to 500 km in others as in the 
case of northern Australia [17]. In addition to its inland extension, several other 
characteristics (location, rotation, initiation and cessation) based on observations 
have been examined by [18] [19]. Moisseeva and Steyn [20] also examined the 
diurnal evolution of SB rotation over an island in Sardinia, using observation-
based hodographs. The dynamics of the SBF and its inland penetration have also 
been studied by Simpson et al. [21], who used the Froude number to simulate 
certain characteristics (deceleration around midday and acceleration later in the 
day) and frontogenesis by Miller et al. [3] as an increase in the amplitude of the 
translittoral potential temperature gradient with different factors controlling its 
inland penetration. To map and predict SBFs in southern Australia, Simpson et al. 
[21] used radar, lidar and satellite images in their studies. The updrafts of the SBF 
can lead to cloud formation, induce convection and influence the diffusion of pol-
lutants and insects [22] [23]. Rainfall associated with mesoscale convective sys-
tems is a priority concern for researchers and scientists, with the aim of reducing 
vulnerability to hydrometeorological risks and improving early warning systems 
[24]-[26]. In West Africa, the rainy season can begin several weeks before the first 
rains, and the early rainfall during the rainy season can have a strong influence on 
local hydrological processes [27] [28]. Among the factors influencing these pro-
cesses, where temperature sensitive SBs dominate, and where rapidly urbanizing 
populations are vulnerable to the risk of flooding, deforestation appears to be one 
effective way of triggering storms near the coast [29]. In addition, the southern 
part of West Africa (a region dependent on rain-fed agriculture and vulnerable to 
droughts and floods) has experienced significant deforestation since the 1950s 
[30]. In areas of coastal deforestation (e.g., Côte d’Ivoire), increased winds lead to 
convection of SBs inland, resulting in reduced evening rainfall over deforested 
areas [30]. In order to make a meaningful contribution to the existing body of 
knowledge, the present study focuses on the determination of SBF, which is a par-
ticularly important phenomenon in coastal areas such as the West African mon-
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soon. According to Maranan et al. [31], sea breezes and overland convection fa-
vour isolated warm precipitation (ISE), particularly in the humid southern zones 
of West Africa. 

Satellite images, particularly in the visible spectrum, are crucial for monitoring 
convective clouds and precipitation associated with SBFs, providing a better un-
derstanding of their dynamics and spatio-temporal variations. In this channel, 
visible light is efficiently reflected by the clouds, making them very bright and 
distinct in the visible images. On the other hand, in infrared images, the distinc-
tion between thin clouds and other atmospheric structures may be less marked, 
particularly if the temperature of these clouds is close to that of the ambient envi-
ronment. Visible Meteosat images were used by Cautenet et al. [26] to validate 
numerical simulations during the dry season, while [32] highlighted their ad-
vantage in detecting clouds and contours, despite problems such as ground heat 
reflection which sometimes complicates infrared detection. Meteosat infrared 
thermal data and field measurements were used by Lensky et al. [33] to character-
ize the SBC under clear summer skies and assess the impacts of synoptic circula-
tion. Several authors [15] [32] [34] [35] have used visible satellite imagery, with 
methods ranging from manual geographic information systems (GIS) approaches 
combined with in-situ observations to automated computer vision techniques. 

Although conventional methods are capable of highlighting certain limits, these 
techniques still suffer from a lack of precision and the design of approaches based 
on limits (edges) is of paramount importance [36]. Existing popular techniques 
can be classified into two families: a) local techniques such as edge detectors which 
use image filtering and local information and b) active edge techniques such as 
“snakes” or “balloons” based on information along boundaries [37] [38]. Corpetti 
et al. [35] developed a method for detecting SBFs on Meteosat images based on 
wavelet coefficients using generalised Gaussian density (GGD). However, calcu-
lations based on GGD are very time-consuming. In addition, the method was not 
tested—with a wide data time series. The same methods from the computer vision 
community were recently adopted by Ferdiansyah et al. [34] [39], who applied a 
morphological snake algorithm (active contour method) for the detection of SBF 
clouds in Himawari-8 visible band images. Subsequently, they performed a man-
ual selection of days with SB on the basis of observations made prior to the detec-
tion of contours by morphological applications. Similarly, Papolu et al. [40] im-
plemented an SBF detection framework based on the morphological snake algo-
rithm using a growing region approach with an area threshold set at 3500 pixel 
units. Corpetti et al. [35] previously demonstrated that this approach had limita-
tions when applied to MSG images. However, their method allowed the imple-
mentation of a graphical user interface. In order to address these shortcomings 
and improve existing classical methods, we implemented an automatic snake al-
gorithm applied to MSG images for the first time in the Gulf of Guinea. 

We used an automatic method based on active contours (morphological snake 
algorithm) to identify SBFs, a robust approach applied for the first time to MSG 
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satellite images in the Gulf of Guinea, in order to study these characteristics. This 
work uses this method to analyse the characteristics of SBFs by exploring some 
dynamic aspects of particular cases and to initiate a climatology of their occur-
rence from February 2013 to 2018 (the last dry month before the first rainy season) 
in the Gulf of Guinea (this period covers the operational period of METEOSAT-
10). Section 2 details the study area, data and methods, Section 3 presents the re-
sults and discussions, and Section 4 concludes with an outlook. 

2. Study Area, Data and Methods 
2.1. Study Area 

The study focuses on the West African coastline along the Gulf of Guinea, which 
ranges from 2˚S to 10˚N and 8˚W to 10˚E. The seasonal cycle of rainfall in the 
Guinea Coast region is characterized by distinct dry and rainy seasons, subdivided 
into the main dry season from December to February (DJF), the start of the main 
rainy season in March-April, the main rainy season in May-June, the minor dry 
season from end of June to September (JAS) and the minor rainy season in Octo-
ber according to Guedje et al. [41]. This area has a relatively flat topography (Fig-
ure 1) with coastal plains that favor the penetration of the SB. 
 

 
Figure 1. Topography of the study area. ETOPO2 (Earth TOPOgraphy data version 2) is a trans-
parent, full-coverage topographic, bathymetric and bare-earth elevation dataset used in coastal 
hazard modeling. It is generated from digital seabed and land elevation databases on a 2-minute 
latitude/longitude grid [42]. Coloured areas indicate topography (in meters of elevation), coastal 
countries are named in black and stations in red stars. The dotted red line delimiting the Region 
of Interest (ROI) in shadow is the interpolated coastline at a distance of 1.8˚ (longitude/latitude). 
Elevation data are provided by the National Centers for Environmental Information website 
https://www.ncei.noaa.gov/products/etopo-global-relief-model of the National Oceanic and At-
mospheric Administration (NOAA). 
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2.2. Satellite Data 

Satellite imagery, with its high temporal, spectral and spatial resolution, such as 
SEVIRI on the MSG satellites (multispectral with a resolution of 3 km at nadir, 
HRV of 1 km) transmits images every 15 minutes and enables regular, high-reso-
lution detection of localised phenomena such as convective clouds and thunder-
storms, thus surpassing in-situ observations [43]. (See Table 1) 
 
Table 1. Spectral, spatial and temporal characteristics of SEVIRI channels relevant in this 
study. 

 
The data can be accessed via the EUMETSAT Earth Observation Portal at 

https://eoportal.eumetsat.int/. We use MSG greyscale images (JPG format) for the 
DJF 2013-2018 period, which is favourable to SB development, applying morpho-
logical transformations to them for analysis. To illustrate the synoptic weather 
conditions during the case studies used to demonstrate the capability of the algo-
rithm we exploited ERA5 data for two days (12 January 2017 and 7 February 2018). 
The cases of convection linked to the SB during these days are studied for their 
presence of well-developed cumulus clouds and favourable observation condi-
tions with Meteosat. 

2.3. Methodology 

On satellite images, the SBF is generally detected inland by an alignment of cu-
mulus clouds approximately parallel to the coast. However, not all SBF episodes 
are easily visible, for example, when humidity is low, or may be masked on satellite 
images by larger cloud formations at higher levels [44]. The active contour method, 
as proposed by Chan and Vese [45], represents a promising approach to detecting 
the SBF by converging a morphological curve to the convective clouds. Building 
on the work of [46] and [34] [40], this study uses an automated technique based 
on a snake morphological algorithm to identify SBF clouds in visible band images. 
This technique is highly efficient, robust and offers superior computational per-
formance than classical techniques listed above. The implementation of the meth-
odology of our study is described below. 

2.3.1. Snake Algorithm Model 
To automatically identify cloud lines associated with SBF without first diagnosing 
SBF days, as in the example of [34], we use a morphological snake algorithm on 
satellite images. Active contours or snakes are curves that are developed from an 
image for the identification of objects in that image [45]. Using a level set ap-
proach, [37] [47] used the snake contour which changes gradually by reducing the 

Channel name Spectral band Spatial resolution Pixels pl 

Visible (VIS0.8) 0.74 - 0.88 (μm) 3 km 3712 

Visible (HRV) 0.5 - 0.9 (μm) 1 km 5568 

Temporal resolution 15 minutes 
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functional energy of the snake (Equation (1)). 

 snake inside outsideE E E= +  (1) 

where insideE  and outsideE  are the inside and outside energy of the snake, respec-
tively. Let the contour of the snake be parametrized in a level set as: 

 ( ) ( ) ( )( ),u s x s y s=  and [ ]0,1s∈  (2) 

The speed of curve evolution is defined by an operator, with the curve ulti-
mately evolving towards a local minimum that corresponds to the object’s con-
tours. The energy that needs to be minimized is found by the following formula: 

 ( )( ) ( ) ( ) ( )( )0 0

1 1
2

2
1 d d
2

u s u s
E u s s I u s s

s s
α β
 ∂ ∂

= + +  ∂ ∂ 
∫ ∫  (3) 

To minimize this energy, apart from the classical methods based on Euler’s 
equations, there are two models for dealing with the temporal evolution of the 
snake contour using Level-set approaches: 

Geodetic Active Contour (GAC) 

 ( ) ( ) ( )
u

u u ug I
u

u g I div g I
t

υ
 ∇∂

= ⋅ ∇ ⋅ + ⋅ ∇ ⋅ +∇ ⋅∇  ∂ ∇ 
 (4) 

In this model, ( )g I  is an edge detector to obtain information about the 

boundaries of the target object defined by ( ) 1
1 ˆg I

I p
=

+ ∇
, where Î  is a 

smoothed version calculated using a Gaussian filter and 1p =  or 2. The three 

terms of the GAC model depend on ( )g I . 

Active Contour Without Edge (ACWE) 
[45] use the Euler-Lagrange equation of the implicit version of the functional 

differential equation (FDE). 

 ( ) ( )2 2
1 1 2 2

u
u

u

u div I C I C
t

µ υ λ λ
  ∇∂

= ∇ ⋅ − − − + −   ∂ ∇   
 (5) 
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and ( )H z  is the Heaviside function: ( )
1, if 0

 
0, if 0

z
H z

z
≥

=  <
 

In the ACWE model (Equation (5)), I  is the pixel value of the images; µ , υ , 

1λ  and 2λ  are positive constants and are respectively the interior 1C  and exte-
rior 2C  contours of the object. As ( )g I  does not appear in the ACWE model, 
then the evolution of contours with ACWE would be less dependent on the inten-
sity of the image. To deal with topological changes such as merging and splitting, 
the Osher-Setian level set method allows the snake curve to be represented im-
plicitly as a level set of an integrating function. 

https://doi.org/10.4236/acs.2025.152017


T. D. Allagbe et al. 
 

 

DOI: 10.4236/acs.2025.152017 337 Atmospheric and Climate Sciences 
 

2.3.2. Level Set Function u Based on Active Contours 
The level set approach is used to capture the contours of objects of interest in an 
image. The fundamental principle of this method is based on an Eulerian repre-
sentation of the evolving curve, as outlined in Equation (5). In the field of mathe-
matical morphology, this is regarded as the initial contour, or level 0 line, of a 
Level Set Function (LSF) [48]. An LSF is a scalar function u of the space variable 
that is sufficiently regular. In the classical approach, the inner region, denoted 

intΩ , corresponds to positive levels, while the outer region, extΩ , receives nega-
tive values (Figure 2). The curve evolution algorithm comprises the construction 
of the LSF function from the initial curve ( ) , 0u s t = , followed by its evolution in 
accordance with Equation (6) until convergence is reached [49]. Thereafter, the 
n-level curve is extracted. The majority of segmentation methods employ this con-
cept, with the primary objective being to commence with an initial curve that may 
(or may not) encompass the objects of interest and subsequently evolve it towards 
a series of levels characterized by a high gradient, thereby delineating distinct re-
gions. 
 

 
Figure 2. Evolution of the level set function u based on the active contours. (a) Surface representation of the evolution of the initial 
contours of the snake. (b) The five level sets show that the snake curve follows an outward movement (divergence) with positive 
values and the interior points take on negative values (convergence) with values close to zero for the boundary curves. 

 
The evolution of the function of all u levels depends on the active contours. 

Figure 2 illustrates the initialisation of the snake curve, which progresses out-
wards with positive values. The sets of five levels shown in Figure 2(b) show that 
the boundary curves are close to zero, while the interior points take on negative 
values. When this initialization is used with u = 0, the conventional meanings of 
“inside” and “outside” become arbitrary. Furthermore, any C contour can be spec-
ified for initialization and it can be observed that initializing the set of levels with 
a special divergence function (Equation (7)) over a specific area of the image al-
lows stability towards high gradients that characterize the clouds of interest (Fig-
ure 4). The functional energy of the snake can therefore be represented by a for-
mulation of the level set, and the problem of minimizing this energy can then be 
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transformed into the solution of an evolution equation for the level set. By ap-
proximating these solutions with morphological operators (contraction and dila-
tion) and by defining the time step, the number of iterations and initializing the 
Level Set Function (LSF), it is possible to obtain an appropriate smoothing of the 
curvature. 

2.3.3. SBF Detection Criteria 
To detect clouds associated with SBFs in a grayscale image, we exploit the varia-
tions in reflectance (or brightness) that mark the presence of clouds. In this ap-
proach, the snake algorithm identifies the brightest regions likely to be associated 
with clouds by applying the filtering and segmentation techniques described 
above. The criterion is performed in four steps (Figure 3): 

1) Define an active contour containing the LSF surface levels to which we assign 
negative values at snake initialisation. 

2) Evolve the contour on a grayscale image towards convective clouds using 
morphological operators (dilation and erosion) (Figure 4). 

3) Define a specific region of interest (ROI) inland and parallel to the coastline 
to facilitate the expansion of the snake towards SBF clouds. 

4) Define the convergence (or stopping) criterion based on minimizing the 
functional energies of the snake 
 

 
Figure 3. Flowchart of the Snake algorithm. It explains the steps of the detection algorithm based on the Snake (or Level Set) ap-
proach. Inputs are grayscale images from the MSG sensor. The snake is initialized with morphological operators based on reflectance 
variation in the ROI. 

 
Morphological operators, such as dilation and erosion, are fundamental tools 

in image processing, particularly for binary (black and white) images and appli-
cations where the shape and structure of objects in an image are important. In a 
discrete binary function u, the dSI  and hSI  operators perform the same oper-
ation; however, the dSI  operator only operates on white (or active) pixels, while 
the hSI  operator only operates on black (or inactive) pixels (Figure 4(a)). For 
each active pixel, 1x , in a binary image, the dSI  operator searches for small 
straight lines (three pixels long) of active pixels that contain 1x . The search is 
performed in the four potential orientations corresponding to the four segments 
of the structuring element. If there are no straight lines, the pixel is rendered in-
active (see Figure 4(b)). The d hSI SI°  composition first eliminates the net inac-
tive pixels with hSI , then repeats the procedure for the active pixels with dSI . 
The result is a global smoothing of u, as shown in the first row of Figure 4 and 
Figure 5. Note that these morphological operators are fundamental to image pro-
cessing because they provide powerful means of analysing, modifying and extract-
ing important structural information from images. Their conceptual simplicity 
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and effectiveness make them basic tools in almost all modern image processing 
applications. 
 

 
Figure 4. Morphological operators. Examples of the action of the dSI  and hSI  operators on individual pixels of binary images. 
(a) Cases where a straight line is found (marked in red), the central pixel remains active (in green). (b) When the central pixel does 
not belong to a straight line of active pixels, it is rendered inactive. 

 
SBF’s detection logic is based on the values of the pixels in the image and on 

dynamic adaptive thresholds based on the values of the pixels in the image itself, 
making it adaptable to different lighting or contrast conditions. The specific re-
flectance dispersion of clouds associated with SBF is calculated in the literature to 
quantify local reflectance variations in a region of interest (ROI) and defined by: 

 max minRef Ref
SpecfRef Scaling Factor

Nonzero pixels
−

= ∗  (6) 

where maxRef  and minRef  have the maximum and minimum reflectance in the 
ROI respectively. 

Here the scaling factor is chosen on the assumption that the clouds associated 
with the SBF would be the brightest (i.e., a value of 255 on the 256-level grayscale 
pixel intensity). The method is commonly used in image analysis to standardize 
reflectance values according to the dynamics of the pixels in the ROI. Depending 
on the visible band chosen (0.8 μm) with the solar zenith angle criterion below 
80˚, we set the brightest pixel limit at 1.8˚ longitude/latitude in the ROI from the 
coastline due to the low topography of the region. This is the limit of the ROI 
points in relation to the coastline. Here 1.8˚ latitude, or around 200 km from the 
equator, is chosen to ensure that the analysis zone includes enough points inland 
while remaining close to the coast. This distance corresponds to a value where the 
SBF effect is still significant. It is adapted according to the specific characteristics 
of the region studied (such as the Gulf of Guinea). In this region, SBs can penetrate 
significantly inland depending on topography (Figure 1), temperature gradients 
and daytime weather conditions. 
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2.3.4. Regression Methods for Modeling Sea-Breeze Front Isochrones 
In order to track the inland propagation of the SBF and investigate its speed, dif-
ferent regression methods approximating the cloud lines are tested. Regressions 
are used to refine and model the centroid connection curves of the cloud leading 
edge (i.e., the southern edge), which are used to represent the SBFs, because we’re 
interested in the leading edge of the SB, which is often influenced by south-west-
erly winds coming off the sea and laden with moisture. The initial approach is a 
piecewise interpolation method, which connects each pair of points with a straight 
line. In this way, the central points of the cloud associated with the SBF are iden-
tified as individual pixels in a binary image obtained as a result of the segmenta-
tion process.  

The clouds have been transformed into a set of spatial coordinates, generating 
a list of the positions ( ix , iy  coordinates) of the constituent points of the leading 
edge of the SBF. The clouds have been transformed into this particular coordinate 
system, and the regressions are applied in this space. The image is then trans-
formed back to lat/lon. However, unlike higher degree splines, such as cubic and 
polynomial splines, they are unable to capture curvature and can cause angular 
transitions at interpolation points. 

For context, several other regression methods were analyzed, including cubic 
polynomial regression, moving average regression and kernel-weighted Local Pol-
ynomial Regression (kwLPR). The moving average (MA) method involves aver-
aging subsets of adjacent data points, which facilitates data smoothing. This 
method reduces rapid fluctuations, although it cannot accurately reflect large var-
iations in the reference curve (linear spline calculated by piecewise fitting) and 
requires a number of data points for calculation. kwLPR is better able to account 
for local variations in the data, which can be very beneficial in cases where the 
relationship between variables undergoes changes at different levels within the 
data set. It is more effective at modeling local variations than global regression 
methods. Cubic polynomial regression (PolyCubic), which involves fitting a third-
degree polynomial curve to the data, is effective in capturing non-linear variations, 
although it can introduce undesirable oscillations. In contrast, linear regression 
attempts to fit a straight line to the data, but is unable to capture nonlinear curves 
or variations. 

The following section presents an overview of the concepts associated with 
kwLPR, nonparametric curve-fitting method. kwLPR and moving weighted aver-
ages (local regression, kernel, spline, etc.) are local estimates in which, for each 
point x where an approximation is desired, a polynomial model is fitted using the 
points close to x . Points close to x  have greater influence on the model fit than 
points further away. This is achieved by applying a weighted error minimisation 
function, defined by Gajewicz-Skretna et al. [50]:  
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This function is applied locally to each point of interest using the weighted least 
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squares method (also known as kwLPR), which minimizes the number of points 
of interest. These methods are particularly useful for data sets where the relation-
ship between variables is not adequately represented by a simple global functional 
form, such as a straight line or a polynomial curve of a fixed degree. 

The mean absolute distance error (MAE) is calculated by taking the average of 
the differences in the absolute distances between the detected reference line and 
the curves fitted to evaluate the deviation of the regressions from a reference that 
represents the cloud leading edge centroids. The objective of the regression anal-
ysis was to create a model for the centroid connection that would ensure its align-
ment with the coastline. The centroid reference point is calculated using morpho-
logical operators (Figure 4). The MAE is calculated as follows:   

 1

1MAE ˆi
n

ii y y
n =

= −∑  (8) 

The total number of points in the sample is denoted by n . The actual value for 
sample i  is represented by iy , while the fitted value for sample i  is denoted 
by ˆiy . A lower mean absolute error (MAE) indicates a better approximation of 
the model, as it implies that the fitted points are, on average, closer to the true 
points. 

3. Results 

In this session, we present the results of the algorithm implementation in two 
main parts. The first part consists of identifying appropriate test cases (12 January 
2017 and 7 February 2018) among the detected days to demonstrate the capability 
of the algorithm. In this part, we show the different steps of the algorithm as de-
scribed in the method section, and then we describe the different regression meth-
ods used to implement the optimal approach (kwLPR). The second part includes 
a diurnal climatological analysis from the period of February (the last dry month 
before the first rainy season) of the long dry period DJF of 2013-2018 (covering 
the operational period of METEOSAT-10) in the Gulf of Guinea. The dynamic 
meteorological characteristics and conditions involved are then assessed. 

3.1. Workflow of the Snake Algorithm: A Case Study 
3.1.1. Description of the SBF Case 
MSG satellite images are used to detect clouds associated with the SBF among the 
cumulus clouds using automatic detection techniques based on active contours 
(snake). These automatic techniques use morphological curves that evolve on these 
gray level images to capture the clouds of interest. 

Figure 5 shows the evolution of the SBF clouds during 12 January 2017, from 
their initial development to their dissipation. The SBF clouds become visible from 
13 UTC (Figure 5(b)) and begin to dissipate in the visible images at 17 UTC (Fig-
ure 5(f)). The images show clear skies over the sea and the development of SBF 
convective clouds inland along the Guinea coasts. The largely unobscured, cloud-
free landscape along the coast on that day helps to locate the SBF and its penetra-
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tion inland. In order to assess the characteristics (spatial structure, boundary, 
shape, etc.) of these detected clouds, the automatic thresholding method based on 
the evolution of contour lines, which is described in the following, is applied to 
capture the contours. 

 

 
Figure 5. Raw MSG images on 12 January 2017 (12-17 UTC) showing SBF evolution from the first clouds development until their 
dissipation ((a) to (f)). The SBF cloud line is most visible from 13 UTC to 16 UTC ((b), (e)) and dissipates at 17 UTC (f). 

3.1.2. Automatic Segmentation of MSG Images for Convectives and SBF 
Clouds Detection 

In image segmentation, active contours are dynamic curves that move towards the 
boundaries of the object. To capture the contours, we explicitly defined external 
forces (morphologic operators) that can move the zero-level set curve towards the 
cloud boundaries. 

The snake curve moves and slowly follows the contours of the clouds as a func-
tion of various parameters such as elasticity, noise tolerance and regularity. The 
curve evolves iteratively until it is positioned in the image, more precisely in the 
vicinity of the shape to be detected, with an initial contour that undergoes defor-
mation under the effect of several forces (energies). The spatial propagation of the 
curve over time is carried out using the level set numerical method used to mini-
mize these energies. (See Figure 6) 
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Figure 6. Evolution of the Active Contour Without Edge (ACWE) on the MSG image. Results after 10 iterations. The snake is often 
initialized near the objects of interest and evolves towards the bright clouds thanks to the balloon forces (dilation and erosion) from 
the 10th iteration and then encircles the edges of the clouds. 

 
The functional energy of the snake can therefore be represented by a level set 

formulation, and the problem of minimizing this energy can then be transformed 
into the solution of a level set evolution equation. By approximating these solu-
tions with morphological operators with an optimal initial parameterisation of the 
snake, an appropriate smoothing and convergence of the curvature is performed. 
Subsequently, the above approach was automatically applied to gray-scale MSG 
images in order to detect cumulus clouds parallel to the coast and associated 
with the SBF along the Gulf of Guinea (Figure 7). To accurately detect convective 
clouds from these images, we first initialize an active contour (or snake) in the 
vicinity of the objects by defining LSF surface levels to which binary values are 
assigned to promote the expansion of the snake. The contour then evolves pro-
gressively on the grayscale image, approximating the SBF clouds with morpholog-
ical operators such as dilation and erosion (see the operators in Figure 4 and Ap-
pendix). 

To improve detection accuracy, we define a specific region of interest (ROI), 
located inland and parallel to the coast (red band of the coastal zone on Figure 1), 
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Figure 7. SBF detected after 25 iterations during the evolution of the snake on 12 January 2017 (a), (b) and 7 February 2018 at 15 
UTC (c), (d). The initial blue contour should be in the ROI and close to the clouds (a), (c). Its evolution over time is based on the 
level set function (LSF), red contour (b), (d) and automatically adjusts to capture SBF clouds. 

 
which restricts the analysis to relevant areas. Finally, we optimize the detection 
conditions by taking into account the acquisition time of each image, thus ensur-
ing better adaptation to temporal variations in the SBF. Next, the segmented im-
ages are binarised using the LSF function, which is based on dynamic adaptive 
thresholds for an image as a function of the percentile of pixel values in the image 
itself. This process enables the image to be adapted to different lighting or contrast 
conditions. SBF detection is therefore based on the evolution of a parametric curve 
towards strong image gradients from a specific dispersion function, which is used 
to quantify reflectance variations in the ROI. 

3.1.3. Automatic Detection of the Cloud Line Associated with the SBF 
Automatic detection of SBF clouds among low cumulus clouds can be difficult 
due to their similar characteristics. To achieve this, the automatic morphological 
snake algorithm used is well suited to capturing the spatial structure and temporal 
evolution of these clouds. Identifying these cloud patterns in MSG images would 
be interesting for determining how far the SBF propagates inland without the need 
for local probes, as in the case of Ferdiansyah et al. [34]. In addition, almost all 

https://doi.org/10.4236/acs.2025.152017


T. D. Allagbe et al. 
 

 

DOI: 10.4236/acs.2025.152017 345 Atmospheric and Climate Sciences 
 

existing methods for detecting sea-breeze front systems have been carried out 
manually. It is therefore obvious that an automatic approach would facilitate this 
tedious manual task of extracting SBF structures. In order to achieve this, we have 
employed morphological snake techniques to identify clouds associated with SBFs 
in greyscale MSG images, using the variations in reflectance (or brightness) that 
are characteristic of cloud presence. The algorithm identifies the brightest regions, 
which are likely to be associated with SBF clouds, through the application of fil-
tering and segmentation techniques as previously described. 
 

 
(a)                                                   (b) 

Figure 8. Convectives clouds detected by the algorithm on 12 January 2017 and 7 February 2018. Convective clouds are detected 
from the segmented level set function via a binary criterion where 0 (green color) indicates the outside with any other non-cloud 
object and 1 (white color) indicates the inside of the snake contours that represent the convective clouds of interest. The red stars 
are the coastal and interior stations of the ROI zone over which we will later assess SBF propagation. 

 
Figure 8 illustrates the algorithm’s capacity to accurately identify the convective 

clouds detected on 12 January 2017 by the snake algorithm based on a segmented 
level function and a binary criterion. The segmentation performed by the algo-
rithm effectively isolates the cloudy areas in white, which correspond to potential 
convective clouds, while those in green represent the outside of the contours de-
fined by the model. Binary detection simplifies interpretation: everything that is 1 
is considered to be convective clouds, while 0 represents everything that is not, 
allowing us to focus only on regions that are relevant to the study of convective 
clouds associated with SBF in the area of interest. These results form an essential 
basis for assessing the interaction between these clouds and the propagation of 
SBFs. The arrangement of red star stations makes it possible to distinguish be-
tween the effects of SBFs on coastal areas and more inland areas. 

In these areas, the difference in temperature between the ocean surface and the 
continental coast creates a thermal gradient that facilitates the formation of SBF 
on land. As illustrated in the raw MSG image (Figure 9(b)), the absence of clouds 
is indicated by the black areas in the satellite images. To the southwest, a vast area 
of clear sky can be observed along the Guinean mainland coast, extending over 
several kilometers. This area is subject to the influence of the SB, or maritime in-
flux. Figure 9(b) illustrates the formation of SBF clouds (blue) in conjunction with 
the predominance of south-westerly winds and the presence of clear skies along 
the Gulf of Guinea. 
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Figure 9. SBF detected by the algorithm on 12 January 2017 and 7 February2018. SBF clouds are automatically detected in the ROI 
using filters based on the reflectance values of the MSG images. The coordinates of each detected pixel are adjusted to obtain the 
pixel center points. The centroids are then filtered to retain only those located within 1.8˚ (longitude/latitude) of the coastline with 
specific geographical conditions. SBF clouds begin to form at 12 UTC and move parallel to the coast gradually moving away in the 
afternoon from 13 UTC, dissipating at 17 UTC. 

 
Figure 9(b) and Figure 9(d) show the SBF clouds detected on 12 January 2017 

and 7 February 2018, respectively. Cloud alignment is more pronounced in this 
area, where SB winds influence SBF formation. The clouds associated with SBFs 
are detected on the basis of the reflectances that indicate the presence of clouds. 
In this approach, the snake algorithm identifies the brightest regions likely to be 
associated with SBF clouds by applying filtering and binarisation techniques. To 
identify the coordinates of the pixels in the binary image, filtering is performed. 
The coordinates of each pixel detected are adjusted to obtain the central points of 
the pixels. The central points are then filtered to retain only those located within 
1.8˚ (longitude/latitude) of the coastline SB influence zone). The aim of this selec-
tion is to focus on the geographical ROI, excluding points located over the ocean 
which are not relevant to the SBF clouds. Finally, a binary mask is applied to retain 
only the points located inland above the coastline. These techniques help to work 
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with a precise location of the clouds associated with SBF by selecting the relevant 
pixels and applying strict geographical conditions to retain only points above the 
coast and in the ROI. 

3.2. Evaluation of Different Interpolation Methods for SBF  
Isochrones 

3.2.1. Comparative Analysis of Different Regression Methods for the  
Fitting of SBF Isochrones 

The SBF is defined by the appearance of a line of cloud which roughly follows the 
shape of the coastline. To model this line and find the one that is subjectively clos-
est to reality, we carried out a comparative analysis of several regression methods 
(linear, cubic polynomial, moving average and kernel-weighted local polynomial) 
for spline fitting. 
 

 
Figure 10. Regression method for spline fitting. The blue curve with blue dots represents 
the reference positions of the SBF clouds. The reference curve serves as a point of compar-
ison for the other regression methods, which are represented by the dotted line. The red 
curve represents kernel-weighted local polynomial regression (kwLPR), the yellow curve is 
weighted moving average, the green curve is linear regression and magenta is cubic poly-
nomial regression. 

 
The idea here is to present a fit of the points connecting the centroids of the 

leading edges of clouds associated with SBFs. This avoids unwanted curvatures 
and oscillations and gives an idea of the extension and organization of the points. 
The connection of the points indicated by the blue color (centroid of the leading 
edge of SBF clouds) is determined using a simple piecewise linear fit, based on line 
segments (Figure 10). Linear splines enable these points to be connected in a sim-
ple way. By connecting the points with line segments, we obtain an approximation 
of the front line, while retaining the necessary simplicity and accuracy. This ad-
justment establishes a link between the central points of the cloud leading edges, 
reflecting local variations. It should be noted that the points in question are subject 
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to variations that we will try to improve by means of other more robust than linear 
regressions. Table 2 shows the mean absolute distance error values calculated 
from these different methods. 
 
Table 2. Mean absolute distance error values for each time step for the different regression 
methods. 

 Mean Absolute Distance Error (MAE in degree) 

Time (UTC) 12 13 14 15 16 17 

PolyCubic 0.056 0.056 0.056 0.056 0.056 0.056 

MA 0.021 0.021 0.021 0.021 0.021 0.21 

KwLPR 0.0021 0.0026 0.0041 0.0054 0.0032 0.0032 

 
The kernel-weighted local polynomial regression (kwLPR) method was found 

to offer the most accurate results of the evaluated methods, with a mean absolute 
distance error (MAE) of 0.0034˚ on average. This is a superior result to the other 
models, which offer 0.056˚ and 0.021˚ respectively for the cubic polynomial re-
gression (PolyCubic) and moving average (MA) methods (Table 2). This value 
for kwLPR indicates that the kernel-weighted local polynomial regression method 
is a well-balanced approach, capable of reducing errors while tracking variations 
in the reference curve. 

3.2.2. Inland Propagation of SBF on 12 January 2017 
The propagation of the SBF in time and space provides a better understanding of 
the processes involved in its evolution and its interaction with the coastal envi-
ronment. The kwLPR curve proved to be the best regression method, enabling us 
to carry out this study using hourly isochrones (Figure 11(a)). 

The Gulf of Guinea has an essentially flat west-east coastline. This favours 
perpendicular propagation of the SBF along the coast, penetrating deeper inland 
than in regions where the coast is more irregular. Figure 11 illustrates the spatio-
temporal propagation of the SBF along the Gulf of Guinea. The isochron curves 
smoothed by the kwLPR technique show that the horizontal trajectory of the SBF 
follows the coastline with moderate variations in distance from the coast depend-
ing on the time of day. From 13 UTC in the afternoon, as the land surface warms, 
the SBFs advance and penetrate inland under the influence of south-westerly 
winds. The isochrones show different positions in relation to the coast, indicating 
that the speed of propagation of the SBF varies from one region to another. In 
some regions, such as Ghana, the presence of Lake Volta has an influence on the 
propagation of the SBF, as shown in Figure 11(a) (where ripples can still be seen 
opposing the movement of the isochron curves in the region). The black isochro-
nous line marks the start of SBF formation at 13 UTC and the yellow line its dissi-
pation at 17 UTC. In order to assess the inland propagation of the SBF line, we 
employed the maximum penetration distance of the isochrone lines from the coast 
(Figure 11(b)). The maximum penetration is calculated using the points furthest 
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Figure 11. Spatial and temporal evolution of SBF along the Gulf of Guinea. Propagation 
occurs northwards from the coast in SB wind conditions (wind rose on the left) (a). The 
black isochrone line delineates the start of SBF formation at 13 UTC, when wind speed was 
minimal (2 m∙s−1), and its subsequent progression across the continent as wind speed in-
creased (6 m∙s−1) until dissipation at 17 UTC. The shading between the coastline and the 
black isochrone is a zone of SBF influence (maritime inflow) at 13 UTC that extends be-
tween 4˚W and 0˚E. (b) Maximum SBF penetration is observed in the prevailing SW wind 
direction, with a maximum of 146.3 km at 17 UTC. Average penetration along the coast 
from 13 UTC to 17 UTC is 103.17 km. 

 
from the coast from the start of SBF development until its dissipation at 17 UTC. 
Figure 10(b) illustrates the maximum distance between the SBF and the coast at 
varying times of day (from 13 UTC to 17 UTC). The curve demonstrates a gradual 
increase in the maximum distance between the SBF and the coast over time. This 
suggests that the SBF propagates continuously inland throughout the day. There 
is a relatively modest increase in distance, followed by a marked acceleration be-
tween 15 UTC and 16 UTC. SBF penetration also varies according to local topog-
raphy (Figure 1). In high-altitude areas, the progression of the front is often 
slowed down, as hills and reliefs form physical obstacles that dissipate the energy 
of the maritime air flow. On the other hand, in flat or low-lying areas, the SBF can 
penetrate more deeply and at greater speed, reaching greater maximum distances. 
The maximum SBF penetration is observed in the prevailing SW wind direction, 
with a maximum of 146.3 km at 17 UTC. Average penetration along the coast 
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from 13 UTC to 17 UTC is 103.17 km. 
This area (Gulf of Guinea), which is subject to marine inputs, is also character-

ised by inland convective activity which keeps cloud formations close to the coast. 
It is characterised by a humid tropical climate with high humidity. These condi-
tions can modulate the speed and vertical propagation of the SBF, increasing its 
capacity to trigger convective thunderstorms in the late afternoon. By favouring 
convection, the SBF contributes to increasing local rainfall, which in one way or 
another impacts tropical ecosystems and agriculture. 

3.3. Analysis of SBF Characteristics over the February 2013-2018 
Period 

The snake algorithm implemented is capable of automatically scanning all the im-
ages from the DJF 2013-2018 period (i.e., 6 years) to automatically detect several 
SBF events. To do this, we are able to conduct a quantitative study based on sta-
tistics to obtain time intervals, frequency and duration of SBF events detected dur-
ing the month of February of the entire period that represents the month of tran-
sition to the first rainy season. 

3.3.1. Frequency of Occurrence by Time Class of SBF Events 
In February, the climatological analysis of the cases studied examined the charac-
teristics of the SBF events detected. The frequency of occurrence corresponds to 
the total number of SBF events observed during the period 2013-2018. The start 
time refers to the time when SBF events are first detected by the algorithm, while 
the end time indicates the time when they disappear, generally far from the coast. 
The duration corresponds to the time between the appearance and disappearance 
of the SBFs, all expressed in UTC hours. Finally, a statistical table of all the cases 
during the period will be presented. 
 

 
Figure 12. The numbers marked on (a) represent the number of occurrences (or frequency) of the different duration classes for 
each year. Each bar indicates how many times an SBF event was detected in a specific duration range (<2 h, 2 - 4 h, 4 - 6 h, 6 - 8 
h, >8 h). (b) shows the frequency of SBF onset and cessation times by each time class and the yellow dotted curve indicates the 
average duration of SBF events for each duration class. (c) indicates the average duration of SBF events for each duration class. 
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Of the 95 SBF events, 3 class intervals of onset and cessation times were deter-
mined, namely 09 - 12 UTC, 12 - 15 UTC and 15 - 18 UTC, and are presented 
graphically in Figure 12(b). SBF onset on the Gulf of Guinea coast was dominant 
at 09 - 12 UTC, with a frequency of about 80%, and cessation at 15 - 18 UTC with 
a frequency of about 67.5%. The dotted yellow curve shows that the average du-
ration varies from one duration class to another, with the “2 - 4 h” class having a 
lower average duration than the “6 - 8 h” class in Figure 12(c). This gives a general 
idea of the trend in durations for SBF events in each class. It should be noted that 
these times may be related to the fact that we have only used visible images, as the 
cessation may extend beyond 18 UTC, but is not captured by visible images at the 
beginning of the night. 
 

 
Figure 13. Pareto diagram. The diagram shows the frequencies of the categories (duration 
classes) ordered in descending order. The cumulative percentage of frequencies shows the 
accumulation of category contributions to the total, and the red curve indicates the cumu-
lative percentage on a scale from 0% to 100%. 

 
Figure 13 highlights the frequencies of the duration class categories, combining 

two levels of information (frequency and cumulative percentage). The Pareto 
chart is based on the Pareto principle or 80/20 rule, which states that 80% of the 
effects come from 20% of the causes. We use it here to identify the most significant 
events. In Figure 13, the 4 - 6 h and 6 - 8 h duration classes represent the majority 
of occurrences, and 80% of cases come from these categories. It also shows the 
low-contribution categories, which are often less relevant for analysis, and pro-
vides a powerful visualisation for prioritising and deciding where to focus our 
analyses. In our case, it allows us to distinguish the critical durations when SBF 
convective clouds form. As we plan to explore the impact of SBF events on con-
vective precipitation, the diagram shows where to focus our analyses in further 
research. In general, SBF over the Gulf of Guinea coast from February 2013 to 
2018 occurred between 15 UTC and 18 UTC. The earliest SBF occurs at 09 UTC 
and the latest at 18 UTC. The SBF can last from 3 h to 7 h, with the longest dura-
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tion being around 8.25 hours. 

3.3.2. Statistics of Automatic Detection of SBF Days from DJF 2013 to 2018 
The algorithm is used to analyse the period from December, January to February 
(i.e., the main dry season) of each year over the period 2013-2018. The statistical 
results are presented in the table and diagrams below: 
 
Table 3. Statistics of SBF scenes in the MSG satellite images in December-January-February 
(DJF) from 2013 to 2018. 

Months 
MSG images  

analyzed 
Nb. of cloud 

cover images V 
Nb. of SBF 

images 
Nb. SBF days 

Dec 17825 1768 759 41 

Jan 17262 1991 657 34 

Feb 16118 2389 1625 95 

Summary 51205 6148 3041 170 

 
A summary of the statistical data relating to days with cloud cover and days 

with SBFs, which were automatically detected by the algorithm during the De-
cember-January-February (DJF) period between 2013 and 2018 is presented in 
Table 3. The data demonstrate that of the 170 days with SBFs identified during 
the December-January-February period, 95 were observed in February, in com-
parison to 41 and 34 days in December and January, respectively. Furthermore, 
on days with cloud cover, 68% of SBF images were detected in February, compared 
with 43% and 33% in December and January, respectively. This discrepancy indi-
cates that February is a considerably more conducive month for the formation of 
SBF convective systems, with a greater prevalence of regular cloud cover along the 
coastline. 
 

 
Figure 14. Statistics of SBF days by months for the period 2013-2018. February recorded 
more SBF days with a higher score between 2015 and 2017. January and December recorded 
the lowest number with a peak in January 2014. 
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The algorithm is capable of automatically detecting a certain number of SBF 
days during the DJF months of each year. These days are more frequent in Febru-
ary than in the other two months (December-January) (Figure 14). The relevant 
statistics are shown in Table 3, which illustrates the number of SBF days per 
month of each year. In January, the discrepancy observed would be due to a large 
number of images detected in which large-scale convective clouds with irregular 
shapes masking the SBF are very sensitive to the algorithm. 

The algorithm used in this study effectively captures the structure and evolution 
of SBF clouds, offering a robust and faster alternative to manual detection meth-
ods such as those used in [15]. Its flexibility allows it to be applicable in different 
domains using images as input and to detect textured patterns in grayscale images 
in a shorter time compared to the work of [35]. It is therefore a promising avenue 
of research, as it is a fast and robust computational approach with flexible appli-
cation. 

4. Conclusions 

This paper presents an automatic method for detecting sea breeze fronts (SBFs) 
from Meteosat satellite imagery in the Gulf of Guinea, West Africa. Currently, the 
techniques used to analyse sea and land breeze systems in this region are based on 
observational data and require improvement. The aim is to develop an automatic 
method that is more robust than traditional manual methods. The method is 
based on the identification of convective cloud lines as SBF indicators. To do this, 
the morphological snake algorithm is applied to visible-band MSG satellite images 
taken every 15 minutes of DJF over the period 2013-2018. This algorithm uses a 
level set approach and morphological operators to track the evolution of cloud 
lines as a function of local reflectance variations. The inland propagation lines are 
adjusted using regression techniques, specifically modelling the connection of the 
leading edge of the clouds (southern edge), which are influenced by the moist ma-
rine winds from the southwest. The effectiveness of the algorithm was tested on 
two events characterised by well-defined cloud lines and optimal observation con-
ditions. The algorithm successfully detected all clouds associated with SBFs and 
excluded those over the sea. The results show that the kwLPR approach provided 
the most accurate approximation, with a mean absolute distance error of 0.0034˚. 
The SBF penetrated as far as 100 to 146.3 km inland at certain longitudes. Its av-
erage penetration along the coast is 103.17 km, leaving a clear zone between the 
SBF clouds and the coast. This zone favours the appearance of specific conver-
gence zones, conducive to the development of convective thunderstorms. 

The automatic method used in this study signifies a promising avenue for future 
research, as it is a rapid and robust approach that is versatile in its application and 
has the potential to be adapted to numerous other domains. The algorithm has 
the capacity to identify additional textured patterns in diverse image types. It has 
demonstrated the capability to automatically detect numerous SBF days in a short 
time from a substantial number of MSG images. However, the method is limited 
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to cases where SBFs are accompanied by visible cumulus lines, excluding clear-
sky situations where SBFs could also occur. A future analysis could include LBF 
and clear sky cases to overcome this limitation. Given the prevalence of SBFs in 
mid-latitude tropical coastal regions with flat topography and seasonal variations, 
the method could be applied globally in regions with similar characteristics. The 
subsequent objective is to assess the contribution of SBFs to convective precipita-
tion, with a view to improving regional climate models.  
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Appendix A. Implementation of the Morphological Snake  
Algorithm 

Monotonic contrast and translation invariant operators are called morphological 
operators. The most common are the dilation and erosion operators. 

A hD  dilatation of h  of the function u  is defined as follows: 

 ( ) ( ) ( )0,1suph y hBD u x u x y∈= +  (A1) 

and an hE  Erosion defined by: 

 ( ) ( ) ( )0,1infh y hBE u x u x y∈= +  (A2) 

In both definitions, ( )0,1B  is the ball of radius 1 centered on 0 and the hB  
term is the set B  scaled by h , i.e., { }:xhB h x B= ∈ . 

An interesting result in mathematical morphology is that each Τ morphological 
operator admits a sup-inf representation in the form: 

 ( ) ( )supinfh B By x hBT u x u x∈ ∈ +=  (A3) 

Or a double representation inf-sup 
 ( ) ( )inf suph B By x hBu x u x∈ ∈ +Τ =  (A4) 

In both cases, T  is a set of structuring elements that uniquely defines the op-
erator, and h  is the size of the operator B . For example, by choosing an eigen-
basis, one can express dilatations and erosions in a form sup-inf or inf-sup. The 
dilation of radius h  admits an inf-sup form when B  consists of the unique 
structuring element, ( ){ }0,1B . Also, erosion admits a sup-inf shape using the 
same basis. 

Finally, the composition order of dSI  and dIS  operators could be either 

d dSI IS°  or d dIS SI°  since the addition is commutative. Here we have chosen 
the first order. However, in practice, to balance the contribution dSI  of the two 
choices of operator composition, we alternate them by iterations. The operator 

d dSI IS°  is calculated in two steps: first, dIS  step, which in 2D is: 

 ( )
( )

( )1

,
min max ,

i j

n n
i i

P B B
u x u i j+

∈ ∇ ∇ ∈
= +∇ +∇  (A5) 

And then the dSI  step in 2D is: 

 ( )
( )

( )1

,
max min ,

i j

n n
i i

P B B
u x u i j+

∈ ∇ ∇ ∈
= +∇ +∇  (A6) 

Finally, the successive application of the morphological curvature operator 

d dSI IS° , of 2B  basic is equivalent to the solution of PDE (Equation (4)) and 
(Equation (5)). 

Since we now have a group of basic morphological tools (Dilation, Erosion and 
Curvature) that act like FDEs (Equation (4)) and (Equation (5)), which are essen-
tial for various computer vision applications, and contour evolution, we can com-
bine these tools to obtain an approximate solution (i.e. use mathematical mor-
phology to improve contours). 

Let 2:u N RΩ ⊂ →  
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( ) ( ), ,x y u x y→  A Levels-set function set on a domain Ω  of an image. 
The fronts, noted C  are represented by the zero Level-set defined implicitly 

via a function of Lipschitz by  

( ) ( ) ( )( ){ }, ; , , 0C t x y u t x y= =  

and the evolution of the curve is given by the zero-level curve at the time t  of 
the function ( ), ,u t x y . 

Making the curve evolve in the normal direction with the speed amounts to 
solving the differential equation: Osher and Sethian [47] 

 u F u
t

∂
= ⋅ ∇

∂
, ( ) ( )0, , ,u t x y u x y=  (A7) 

where the set ( ) ( ){ }0, ; , 0x y u x y =  defines the initial contour. 

A special case is motion by mean curvature when 

u

u

F div
 ∇

=   ∇ 
 is the curvature of the contour line passing through ( ),u x y . 

The equation thus becomes: 

 
( )

( ) ( )

2

2
0

, 0, ,

, , , ,

u
u

u

u div t x
t

u t x y u x y x

  ∇∂
= ⋅ ∇ ∈ ∞ ∈    ∂ ∇  


= ∈





 (A8) 

Let us apply this idea to solve the FDE contour evolution ACWE (Equation (5)) 
and GAC (Equation (4)). For the implementation we choose the first one (i.e., 
ACWE). The d dSI IS°  operator approximates the smoothing term, erosion and 
dilation approximate the curvature. The term image attraction is new, but it is not 
difficult to derive its morphological approximation. 

When ( ) ( )2 2
1 1 2 2u uI C I Cλ λ∇ − < ∇ −  at X , X  belongs to the interior of 

the curve; if the inequality is reversed, belongs to the outside of the curve; if not, 
stay where it was. 

As before, the hypersurface should be defined as the set of levels of a binary 
integration function. 

{ }: 0,1du Z →  

The ACWE morphological algorithm is given by the following three steps: 

( )
( )( )

( )( )
( )

1
3

, if 0

, if 0

, Moreover

n

n
n

n

Du x

u x Eu x

u x

υ

υ
+

 >
= <



 

The ACWE morphological algorithm is given by the following three steps: 

( )

( )( ( ) ( )

( )( ( ) ( )

1
2 23

1 1 2 2

2
13 2 23

1 1 2 2

1
3

1, if 0

0, if 0

, Furthermore

n

n
n

n

u I C I C x

u x u I C I C x

u

λ λ

λ λ

+

+
+

+


∇ − − − <


=  ∇ − − − >
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 ( ) ( ) ( )
2

1 3
nnu x SI IS u xµ ++  

= °  
 

 (A9) 

We use a numerical method to solve the gradient equation (or a system of equa-
tions) to find this boundary. The method uses operations such as morphological 
operations and gradient calculations to update the segmentation boundary. 

Appendix B. Numerical Scheme for ACWE 

To obtain the global minimum of the functional energy, we first define the regu-
larisation of the Heaviside and Dirac functions. These functions are defined by: 

 ( ) 1 11 arctan
2e

xH x
ε

  = +  π   
 and ( ) 2 2

1
e x

x
εδ

ε
=
π +

 (B1) 

where ( )eH x : is the Heaviside function and ( )e xδ  the Dirac function 
 

 
(a) 

 
(b) 

Figure A1. Regularization function. (Rami Cohen, 2010). 

 
The integrator function u is stored in d-dimensional array with Boolean (binary 

basis) values in each cell. The dilation at each cell is implemented as the maximum 
of the values of u in the neighborhood of the cell. Similarly, the erosion is the 
minimum of the values of u in the vicinity of the cell. The neighborhood is defined 
as the Moore neighborhood (around the central cell), i.e. the set of cells at a Che-
byshev distance of 1. For example, in the 2D case, the Dilation is: 

 ( )
{ }

( )1 , 1,0,1
, max ,

i j

n
n i iu i j u i j+ ∇ ∇ −∈

= +∇ +∇  (B2) 

And the Erosion 

 ( )
{ }

( )1 , 1,0,1
, min ,

i j

n
n i iu i j u i j+ ∇ ∇ −∈

= +∇ +∇  (B3) 
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The gradient is the d-dimensional vector consisting of all the directional deriv-
atives, , ,u x yu u ∇ =   . Derivatives are calculated using central differences. For 
example, in 2D, the derivatives of u with respect to x and y are calculated as follows: 

 ( ) ( ) ( )( )1, 1, 1,
2xu i j u i j u i j= + − −  (B4) 

 ( ) ( ) ( )( )1, , 1 , 1
2yu i j u i j u i j= + − −  (B5) 

The parameters of the Active Contour Without Edge (ACWE) model are much 
easier to define and less sensitive to disturbances than those of the Geodetic Active 
Contour (GAC) model. Balloon power is rarely needed. It works directly on the 
image. It does not use a g-stop criterion. For our application, we set 1 2 1ε λ λ= = =  
and  0ν = . The regularisation force should be small when searching for small fea-
tures and large otherwise. 
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