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Abstract 

In the present study, energetic and entropic changes are investigated on a 
comparative basis, as they occur in the volume changes of an ideal gas in the 
Carnot cycle and in the course of the chemical reaction in a lead-acid battery. 
Differences between reversible and irreversible processes have been worked 
out, in particular between reversibly exchanged entropy ( eS∆ ) and irreversi-
bly produced entropy ( iS∆ ). In the partially irreversible case, eS∆  and iS∆  
add up to the sum S∆  for the volume changes of a gas, and only this function 
has an exact differential. In a chemical reaction, however, eS∆  is independent 
on reversibility. It arises from the different intramolecular energy contents 
between products and reactants. Entropy production in a partially irreversible 
Carnot cycle is brought about through work-free expansions, whereas in the 
irreversible battery reaction entropy is produced via activated complexes, 
whereby a certain, variable fraction of the available chemical energy becomes 
transformed into electrical energy and the remaining fraction dissipated into 
heat. The irreversible reaction process via activated complexes has been ex-
plained phenomenologically. For a sufficiently high power output of coupled 
reactions, it is essential that the input energy is not completely reversibly 
transformed, but rather partially dissipated, because this can increase the 
process velocity and consequently its power output. A reduction of the coun-
ter potential is necessary for this purpose. This is not only important for 
man-made machines, but also for the viability of cells.  
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1. Introduction 

In this paper, the energy and entropy changes for two different energy transfor-
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mations and the resulting work are analyzed. These are associated first with the 
volume changes of an ideal gas and second with the chemical reaction in a lead 
acid battery. The work coupled to volume changes of the gas comes up as me-
chanical work, while the lead-acid reaction of the battery is coupled to electrical 
work. The respective coupling makes it possible that the processes can in prin-
ciple also be gone through reversibly.  

R. Clausius recognized [1] [2] that such energy transformations are accompa-
nied by additional changes both in the system and surroundings, which are 
closely related to the energetic changes and allow a statement about how much 
of the available energy can be transformed. He designated this new quantity en-
tropy, also to underline its close relationship with energy. He also recognized 
that this quantity depends on whether a process such as the expansion work of a 
gas is reversible or irreversible gone through. He designated the entropy com-
ponent associated with irreversibility as a non-compensated transformation [2]. 
It is that amount of entropy which is not determined by reversible entropy ex-
change between the system and surroundings but is produced by the irreversi-
bility of the process. This result later led to the inequality dS q Tδ≥ , with the 
equal sign referring to reversible processes only. The greater-than sign comes 
into play when the process being analyzed is irreversible or contains irreversible 
parts. Under such conditions, volume changes take place without coupling to 
mechanical energy, so that under these circumstances heat energy cannot be 
consumed for this purpose either. In chemical reactions, which proceed without 
coupling to any other form of energy, the available chemical energy is released as 
heat.  

The work of L. Boltzmann, J. C. Maxwell and J. W. Gibbs gave rise to classical 
statistical mechanics. Here especially the Maxwell-Boltzmann distribution law is 
used to analyze entropy changes under reversible as well as irreversible condi-
tions. According to Ludwig Boltzmann, the fact that molecular particles (con-
stant number and energy) apparently strive to spontaneously occupy a larger 
volume is based on the fact that this drastically increases the number of possible 
energy distributions and thus also the probability that one of these will be rea-
lized. The distribution with maximal probability (multiplicity) is targeted spon-
taneously. In this case, as is known, this leads to the fact that the entire available 
volume is occupied by the particles. Thus, it is the enormous increase in proba-
bility that drives the free expansion of an ideal gas without any impact of force. 
Conversely, it would be extremely unlikely that particles would spontaneously 
concentrate themselves at a smaller volume.  

The Maxwell-Boltzmann energy distribution does not only come into play for 
volume changes, but is also of special importance for the energy distribution 
over the particles of a given particle species. Here the partition function is of 
central meaning. It is given by a sum of exponential functions, the Boltzmann 
factors, which indicate separate energy levels. Different partition functions are 
mainly generated by different translational, rotational, and vibrational energies 
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of non-identical molecules, for example. The possible energies are not arranged 
continuously, but are quantized. The total energy of all particles of a species is now 
distributed among these discrete energy levels in a very specific way. Namely, the 
relative frequencies with which particles can contain a given amount of energy 
decrease exponentially with increasing energy. Since the resulting exponential 
energy distribution has been obtained by maximizing the distribution probabili-
ty, its utmost important parameter, temperature, can also be interpreted as a sta-
tistical quantity [3]. When such an energy distribution of maximal probability is 
achieved for all particles and particle species of a system, the system is at statis-
tical or thermal equilibrium with temperature T. 

But one of the most significant achievements of the Maxwell-Boltzmann dis-
tribution law is that it provides a relationship between the Clausius definition of 
entropy and the maximal distribution probability at thermal equilibrium.  

The aim of this work is to elaborate in particular the differences of entropy 
changes between volume work and chemical reactions. For this purpose, both 
reversible and irreversible processes are analyzed. It will further be shown how 
the power output of a coupled reaction is related to its entropy production.  

2. Results and Discussion  
2.1. Carnot Cycle Work 

In the following, the ideal gas is chosen as the working substance, because with it 
the mathematical description of the physical processes involved is particularly 
simple and comprehensible. The behavior of a monatomic ideal gas is described 
by the ideal gas equation, given by  

RPV n T=                             (1a) 

(pressure P in Pa, volume V in m3, amount of gas particles n in mol, temperature 
T in K; gas constant R = 8.31447 J/(mol∙K)).  

An energy conversion from heat energy to mechanical energy, as in this case, 
is always brought about by a coupled process, which consists here of a gas-filled 
cylinder closed off by a movable piston. Volume expansion allows volume work 
to be done by the gas on the surroundings, whereas volume compression requires 
volume work to be done by the surroundings on the gas. The piston pressure 
may be varied by weight forces. 

During expansion, the piston pressure is reduced. Kinetic energy from the gas 
particles is transferred to the moving piston, so that volume work can be deli-
vered to the surroundings until the gas pressure and the changed piston pressure 
are in equilibrium again. The reverse process occurs during compression. Now 
the piston pressure is increased and the gas is compressed. In this case, volume 
work is performed on the gas. In the course of a work cycle, the gas absorbs heat 
energy from surroundings, but this can only be in part transformed into me-
chanical work.  

For the volume work by expansion as well as compression, it is now of partic-
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ular importance in which way these processes take place. In one extreme case, a 
maximum of work can be delivered during expansion, while a minimum of work 
must be expended during compression. Under such conditions, the respective 
process is reversible. If these extremes are not reached, the process also contains 
irreversible components.  

From a molecular point of view, such behavior is only granted if the change in 
momentum during expansion is maximal. However, this means that the change 
in particle velocity is also at a maximum, which in turn is only ensured when the 
piston does not move. A piston moving in the direction of expansion would re-
duce this change in velocity and thus also reduce the work associated with it. 
During compression, the opposite happens. A piston moving in the direction of 
compression would transfer additional momentum to the gas particles and thus 
increase the work done on the gas.  

This behavior will be demonstrated with a reversible and partially irreversible 
Carnot cycle. It consists of an isothermal (at high temperature) and subsequent 
adiabatic expansion, followed by an isothermal (at lower temperature) and adia-
batic compression to complete the cycle. For this purpose, the following closed 
path of volume changes is used:  

At the higher temperature Th = 310.15 K (K = Kelvin), one mole of the ideal 
gas has a volume of V1 = 0.015302 m3 and a pressure of P1 = 1.685204 × 105 Pa 
(Pa = Pasqual, 1.0 bar = 105 Pa). The gas is now isothermally and reversibly ex-
panded in the first step to V2 = 0.019069 m3 and P2 = 1.352317 × 105 Pa. In the 
second step the gas is reversibly and adiabatically expanded to V3 = 0.023072 m3 
and P3 = 9.843558 × 104 Pa. Since no heat exchange is possible, the amount of 
energy corresponding to this volume work is extracted from the gas. This reduc-
es the temperature of the system to Tc = 273.15 K. To return to the initial values 
(Th, V1 and P1), the gas must be compressed in the third step reversibly and 
isothermally at 273.15 K to V4 = 0.018514 m3 and P4 = 1.226665 × 105 Pa, and in 
the last step adiabatically back to V1 and P1. During this fourth step the temper-
ature of the system increases from 273.15 back to 310.15 K. Figure 1 shows the 
cyclic process as a P/V diagram.  

Both isothermal and adiabatic curves apply only to reversible processes. Any 
deviation from reversibility would result in a changed course in the P/V dia-
gram.  

The work differential of isothermal volume work is given by  

( )isW P V dVδ = − , 

(“δ ” indicates a non-exact differential) and work isW  by  

( ) R ln
Vf

is is
Vi

VfW W P V dV n T
Vi

δ  = = − = −  
 ∫ ∫             (1b) 

(Vi = initial, and Vf = final volume). 
Under adiabatic conditions, the work differential can be equated to the heat 

energy extracted from the gas, yielding  
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Figure 1. Reversible Carnot cycle of an ideal gas. In forward mode, the cycle begins with 
an isothermal expansion (Th = 310.15 K, red line) from point P1 to P2. From there, the 
ideal gas expands adiabatically with cooling (to Tc = 273.15 K, red points) to P3. At P3 
onward, it is isothermally (at 273.15 K, blue line) compressed to P4, and from P4 onward, 
it is adiabatically compressed under heating (to Th = 310.15 K, blue points) back to P1. 
The enclosed area corresponds to the work reversibly done by the system. 
 

( ) VCmP V dV n dT− =  

or ( VCm  = molar heat capacity at const. volume = 3/2 R (monatomic)),  

VR CmdV dT
V T

− = .  

Integration yields  

V

R
Cm

Vf Tf

Vi Ti

dV dT
V T

− =∫ ∫ . 

With P VR Cm Cm= − , and P

V

Cm
Cm

γ =  = 1.66667 ( PCm  = molar heat capac-

ity at const. pressure = 5/2R (monatomic), 

PiVi Pf Vf PV constγ γ γ= = = .                  (2a) 

is obtained.  
This leads to the adiabatic work differential  

( ) .ad
dVW P V dV const
V γδ = − = − , 

and  

.
Vf

ad ad
Vi

dVW W const
V γδ = = −∫ ∫ , 

yielding for the adiabatic reversible work, ( ) ( )( )1 1.
1ad
constW Vf Viγ γ

γ
− −= − −

−
, and 

with  

.const Pf Vf PiViγ γ= = ,                    (2b) 

( )1
1adW Pf Vf PiVi

γ
= − −

−
.                   (2c) 
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Since under adiabatic conditions the energy of expansion work cannot be re-
supplied by the surroundings as heat energy as under conditions of isothermal 
expansion, but is extracted from the gas particles in the system, this process 
must be accompanied by a drop in the system’s temperature from Th = 310.15 to 
Tc = 273.15 K. Therefore, the reversible adiabatic volume work can also be ex-
pressed through  

( )V VCm Cm
Tf

ad
Ti

W n dT n Tf Ti= = −∫ .                (2d) 

In the P/V diagram of Figure 1, the two isotherms are represented by  
( ) RisP V n T V= , and the adiabats by ( ) .adP V const V γ= .  

2.1.1. Reversibility and Irreversibility  
The derivation of the volume work with the help of infinitesimal calculus shows 
how the reversibility comes about and what is associated with it.  

The integral of volume work is defined as follows:  

( ) ( )
2

1

lim
VN

i iN i 1 V

P V V P V dV
→∞ =

 ×∆ = 
 
∑ ∫ . 

In Figure 2 the transition from the sum of a given number of finite steps to 
the formation of an integral is shown by the relation given by  

( )

2 1 2 11
21

2R ln
1

N

i 1

h

V V V VP V i
N N

q N
Vn T
V

=

 − −    + ⋅ ×        =
 
 
 

∑
 (N = number of steps).  (3) 

With only one expansion step (this can be achieved, for example, by expand-
ing to V2 at constant final pressure P2), the result is a quotient of ( )21 1q  = 
0.8976, which means that instead of the value found by integration (−567.495 J), 
a reduced value of 0.8976 × W21 = −509.391 J is obtained. As N increases, the 
value of the sum approaches the value of the integral. For example, ( )21 3q  = 
0.964, and ( )21 100q  = 0.999. The corresponding expansion works are equal to 
−547.111 and −556.869 J, respectively. In principle, similar results are obtained  
 

 

Figure 2. Work and reversibility. Blue points expansion and red points compression. Re-
versibility is reached when a quotient of 1.0 is reached (N > 100). Then the expansion 
work is maximal, and the compression work is minimal. 
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for an adiabatic expansion. The corresponding compressions, on the other hand, 
result in higher volume work, which now falls off when the number of steps is 
increased. Here, too, the value of the sum approaches the value of the integral at 
higher step numbers. E.g. for the reversible isothermal compression at Tc = 
273.15 K, one obtains with a one-step compression ( )43 1q  = 1.1186 and a 
compression work of 559.055 J, whereas a ( )43 100q  = 1.0011 results in a com-
pression work of 500.3472 J, instead of 499.7946 J by integration. In principle, 
the same applies to adiabatic compression.  

From this behavior of the sums in comparison to their integral, it can be seen 
that the respective integrals always result in the maximum volume work during 
expansion and the minimum volume work during compression. Since only the 
integral over the infinitesimal changes leads to these results, it can be assumed 
that under real conditions reversibility can be achieved only approximately. A 
deviation from reversibility results in the expansion work becoming less negative 
and the compression work more positive. In such cases, it must be expected that 
the process under consideration contains both reversible and irreversible con-
tributions.  

The completely irreversible expansion of an ideal gas is of particular impor-
tance in this context. Such a situation would be realized when a gas changes, for 
instance at Th, from V1 and P1 to V2 and P2 by diffusion into a vacuum. In 
such a process, no work is done and no heat is consumed. The respective ener-
gies of all particles involved are not changed by this, so that also the temperature 
remains unchanged. Such a process of free expansion is considered totally irre-
versible. A recompression of the gas without energy input, i.e. a spontaneous 
concentration of the particles from V2 to V1, has never been observed. It can 
therefore be stated as an empirical theorem that a process such as the free ex-
pansion of an ideal gas is completely irreversible. However, there is no direct 
proof of this.  

2.1.2. The Reversible Carnot Cycle  
In the following, the reversible Carnot cycle will be treated first. Its thermody-
namic functions such as internal energy U, enthalpy H, Helmholtz energy A, 
Gibbs energy G, and entropy S will be defined. Such a reversible cycle may start 
in the 1st step with a reversible isothermal expansion. The expansion work deli-
vered is given by (Equation (1b)),  

221 R ln 567.4951 J
1

VW n Th
V

 = − = − 
 

. 

In order for the temperature to remain constant, the energy given off as me-
chanical work must be replaced by heat energy. To ensure this, the system ab-
sorbs heat from the surroundings (heat reservoir at high temperature Th = 
310.15 K). The absorbed heat is given by, 

21 21 567.4951 JQ W= − = . 
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The 2nd step consists of an adiabatic expansion. The expansion work is given 
by (Equation (2c)),  

( ) ( )132 3 3 2 2 461.4532 J
1 VW P V P V n Cm Tc Th

γ
= − − = − = −

−
.  

Since no heat can be exchanged, Q = 0. As already mentioned, the heat energy 
corresponding to the work done is extracted from the gas, so that the tempera-
ture of the system becomes decreased from Th = 310.15 to the colder tempera-
ture Tc = 273.15 K.  

The next two compression steps return the system to its initial state (Th, V1, 
P1). This allows the process to be run repeatedly. The work input of the 3rd step 
via isothermal compression is given by,  

443 R ln 499.7946 J
3

VW n Tc
V
 = − = 
 

 (according to Equation (1b)), 

and  
43 43 499.7946 JQ W= − = − .  

In the case of isothermal compression, the system absorbs work from sur-
roundings. The associated energy is now released into the surroundings (reser-
voir of lower temperature Tc = 273.15 K) as heat energy to keep the temperature 
constant.  

Then, in the 4th step, the system is adiabatically compressed so that it can as-
sume the initial values mentioned above. This compression work is given by 
(Equation (2c)) 

( ) ( )114 1 1 4 4 461.4532 J
1 VW P V P V nCm Th Tc

γ
= − − = − =

−
. 

Obviously 14 32W W= − . This result for a reversible cycle can be obtained 
from the ideal gas law, 1 1 2 2P V P V= , and 3 3 4 4P V P V= . It follows that  

1 1 4 4 2 2 3 3P V P V P V P V− = − , which is equal to 14 32W W= − .  

With the help of the adiabatic relations one also obtains 32 3
2

VP P
V

γ
 =  
 

, and 

14 1
4

VP P
V

γ
 =  
 

, yielding 1 3 3 1
2 4 2 4

V V V V
V V V V

γ γ
   =    
   

, and  

(1 ) ( 1) ( 1) (1 )1 2 3 4V V V Vγ γ γ γ− − − −= . This leads to the relation  

2 3
1 4

V V
V V

= .                           (4) 

2.1.3. Thermodynamic Functions and Volume Changes  
The differential of the inner energy U of a system is known as  

dU Q W Q PdVδ δ δ= + = −  (volume work only),         (5a) 

With H U PV= +  you get  

( )dH dU d PV= + ,                      (5b) 

and for P = const. 
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dH Qδ= . 

For an ideal gas at T = const. it holds that, ( ) R 0d PV n dT= = , which gives 
dH dU=  under isothermal conditions.  

Under reversible conditions Qδ  can be replaced by eTd S .  
With eA U TS= − , you get  

( )e edA dU d TS S dT PdV= − = − − ,                  (5c) 

and for an ideal gas at T = const., revdA Wδ= . 
This means that under these conditions the integral over dA  represents the 

maximum (minimum) work A∆ .  
With eG H TS= − , you get  

( )e edG dH d TS S dT VdP= − = − + ,                  (5d) 

and at T = const., revdG Wδ=  ( ( ) 0d PV = ). 
That is under these latter conditions the maximum (minimum) work is given 

by G∆ .  
Under adiabatic conditions ( Qδ  and ed S  are equal to zero),  

revdU Wδ= ,                           (6a) 

( ) RrevdH dU d PV W n dTδ= + = + ,                 (6b) 

edA PdV S dT= − − ,                        (6c) 

and 

edG VdP S dT= − .                         (6d) 

Using the above relationships, the respective changes in all relevant thermo-
dynamic functions can now be calculated. The change of U is given by (Equation 
(5a)). 

For the 2nd step, since no heat is exchanged (Q = 0, Equation (6a)), you get  

( )32 32 461.4532 JVU nCm Tc Th W∆ = − = = − .  

For the 3rd step (Equation (5a)),  

43 43 43 499.7946 499.7946 0 JU Q W∆ = + = − + = ,  

and for the 4th step (Equation (6a)),  

( )14 461.4532 JVU nCm Th Tc∆ = − = .  

When all integrals are summed over the four steps of the cycle, the line integral 
over a closed path is obtained. For the changes of U it is given by  

4

1
21 32 43 14 0 Ji

i
U dU U U U U

=

∆ = = ∆ + ∆ + ∆ + ∆ =∑ ∫ .  

From the fact that the line integral over dU  of the whole cycle (closed path) 
vanishes, according to the rules of differential calculus shows that it is an exact 
differential. This apparently does not apply to Qδ  and Wδ ,  
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( )

4

1
21 32 43 14

567.4951 0 499.7946 0 67.7 J

i
i

Q Q Q Q Q Qδ
=

= = + + +

= + + − + =

∑ ∫ , 

and  
4

1
21 32 43 14

567.4951 461.4532 499.7946 461.4532 67.7 J

i
i

W W W W W Wδ
=

= = + + +

= − − + + = −

∑ ∫ . 

Since the line integrals over Qδ  and Wδ , respectively, do not vanish, these 
differentials are considered as non-exact.  

The reversibly exchanged heat energies ( )21 R ln 2 1Q n Th V V=  and  
( )43 R ln 4 3Q n Tc V V=  are unequal because of the different temperatures oc-

curring in the formulas (Th > Tc). The quantities ( )R ln 2 1n V V  and  
( )R ln 4 3n V V , however, are opposite equal. It has already been derived above 

that in the present Carnot cycle, 2 1 3 4V V V V= . That means that these expres-
sions 21Q Th  and 43Q Tc  resulting from the reversible heats 21Q  and 43Q  
by division with the respective temperature can be represented as outcomes of a 
new function which cancel each other. The line integral hence vanishes, which 
means that the differential of this new function must be exact. The functional 
relation, recognized by R. Clausius, has been defined by him as entropy (see In-
troduction), its differential is given by  

e
Qd S

T
δ

=                             (7a) 

(the index “e” indicates that this infinitesimal change of eS  is associated with 
reversible heat exchange). Integration yields the entropy change.  

e e
Qd S S
T

= ∆ =∫ .                        (7b) 

For the present reversible Carnot cycle, the entropy change is given by  

21 221 R ln 1.82974 J K
1e

Q VS n
Th V

 ∆ = = = 
 

, 

and  

43 443 R ln 1.82974 J K
3e

Q VS n
Tc V

 ∆ = = = − 
 

,  

which results in zero for the line integral.  
H∆  of the first step is obtained by integrating ( )dH dU d PV= + . This 

yields  

( )
2 2 2

1 1 1

21 0 J
U P V

U P V

H dU d PV∆ = + =∫ ∫  (T = const., ideal gas), 

and  

( )
4 4 4

3 3 3

43 0 J
U P V

U P V

H dU d PV∆ = + =∫ ∫ . 
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For the adiabatic situation, ( )d PV  cannot be set equal to zero, since the 
temperature changes during both the expansion and compression process. From  

( ) ( )
3 3

2 2

R R
P V Tc

c h
P V Th

d PV n dT n T T= = −∫ ∫  is obtained, which has to be added to 

U∆  under adiabatic conditions to yield H∆ . So  

( ) ( ) ( )V P32 Cm R Cm 769.0887 JH n Tc Th n Tc Th n Tc Th∆ = − + − = − = − , 

and  

( )P14 Cm 769.0887 JH n Th Tc∆ = − = .  

The results show that also the line integral over dH vanishes in the cyclic 
process, and consequently also dH is an exact differential.  

Integration of revdA dG Wδ= =  yields for the first step (Th = const.). 

21 21 567.4951 JA W∆ = = − , 

and  

21 21 567.4951 JG W∆ = = −  (maximal output work).  

For the third step (Tc = const.), 

43 43 499.7946 JA W∆ = = , 

and  

43 43 499.7946 JG W∆ = =  (minimal input work) is obtained. 

To integrate edA PdV S dT= − − , and ad ad edG V dP S dT= − , respectively, for 
the adiabatic steps (2nd and fourth steps), their constant entropy values must be 
known. They are given by [4], and can be obtained from the Sackur-Tetrode eq-
uation [3] [5],  

5
2

B
2

A

2 k e2 R ln 2
h N

He
e

m ThS n Vπ
  
   = × ×         

,              (8a) 

and 
5
2

B
2

A

2 k e4 R ln 4
h N
He

e
m TcS n Vπ

  
   = × ×         

              (8b) 

(NA = 6.022137 × 1023 particles/mol, mHe = 2.003 × 10−3/NA kg/He atom, kB = 
R/NA J/K, h = 6.626176 × 10−34 Js).  

For the respective variables T and V, corresponding values must be inserted 
into the equation, e.g. for 2eS , T = Th, and V = V2. Since 32eS∆  and 14eS∆  
are zero under adiabatic conditions, the temperature change in the course of the 
adiabatic process is compensated by the volume change, which always occurs in 
opposite directions. The constant values of eS  are given by  

2 124.4646eS = , and 4 122.6349 J KeS = . 
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The respective results for A∆  of steps 2 and 4, are given by  

( ) ( ) 332 2 4.1437 10 JV eA nCm Tc Th n S Tc Th = ×∆ = − − − , 

and  

( ) ( ) 314 4 4.076 10 JV eA nCm Th Tc n S Th Tc = − ×∆ = − − − .  

In a corresponding way, the G∆  values for these steps are found.  

( ) ( ) 332 2 3.8361 10 JP eG nCm Tc Th n S Tc Th = ×∆ = − − − , 

and  

( ) ( ) 314 4 3.7684 10 JP eG nCm Th Tc n S Th Tc = − ×∆ = − − − .  

The line integrals over dA  and dG  (
4

1
i

i
A

=

∆∑  and 
4

1
i

i
G

=

∆∑ , respectively)  

over the cycle vanish like those over ed S , dU , and dH  (Table 1). Therefore, 
these differentials are also exact. Their respective non-infinitesimal changes A∆  
and G∆  are consequently independent of the path. Under isothermal condi-
tions, the latter work functions are equal to the volume work. However, this does 
not apply to adiabatic conditions. This fact in addition distinguishes the volume 
work from the Helmholtz and Gibbs energies, since the latter vanish over the 
closed path of a Carnot cycle, while the volume work can be negative, zero or 
positive (Table 1 and Table 2). 
 

Table 1. Change of thermodynamic functions in the four steps of a reversible Carnot cycle.  

 W [J] Q [J] ΔeS [J/K] ΔU [J] ΔH [J] ΔA [J] ΔG [J] 

1 −567.4951 567.4951 1.82974 0 0 −567.4951 −567.4951 

2 −461.4532 0 0 −461.4532 −769.0887 4.1438 × 103 3.8361 × 103 

3 499.7946 −499.7946 −1.82974 0 0 499.7946 499.7946 

4 461.4532 0 0 461.4532 769.0887 −4.076 × 103 −3.7684 × 103 

∑ −67.7 67.7 0 0 0 0 0 

 
Table 2. Change of thermodynamic functions in the four steps of a partially irreversible Carnot cycle. 

 W [J] Q [J] ΔeS [J/K] ΔU [J] ΔH [J] ΔiS [J/K] ΔeS + ΔiS [J/K] 

1 −445.2988 445.2988 1.4358 0 0 0.1404 1.5762 

2 −461.4532 0 0 −461.4532 −769.0887 0.2432 0.2432 

3 643.0752 −643.0752 −2.3543 0 0 0.2813 −2.073 

4 461.4532 0 0 461.4532 769.0887 0.2536 0.2536 

∑ 197.776 −197.776 −0.9185 0 0 0.9185 0 
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Whether a differential such as dG is exact can also be assessed using Maxwell’s 
relations [4], which are mathematically based on the theorem of Schwarz. This 
states that the order of taking the 2nd partial derivative is of no relevance. Ac-
cordingly, the following results for the exact differential, 

( ), G GdG T P dT dP
T P
∂ ∂

= +
∂ ∂

,  

G
G GT

P T P P T

∂ ∂     ∂ ∂∂  = ∂ ≡ ∂   ∂ ∂ ∂ ∂ ∂   
.  

For an ideal gas you get,  

edG S dT VdP= − + , 

and from this the Maxwell relation, 

e

PT

S V
P T

∂ ∂   − =   ∂ ∂  
, 

(indices “T” and “P” mean at constant temperature and pressure, respectively). 
With  

ln lne
i i

V PS nR nR
V P
   

∆ = = −   
   

, 

and  

( )e eS S nR
P P P

∂ ∆ ∂
− = − =

∂ ∂
, 

as well as  

V nR
T P
∂

=
∂

, 

it follows  

eS V nR
P T P

∂ ∂
− = =
∂ ∂

.  

This means that the differential of the Gibbs function ( ),G T P  of an ideal 
gas is an exact differential.  

The Sackur-Tetrode equation can also be used for the isothermal entropy 
changes. For this purpose, the entropy differences at the same temperature but 
different volumes must be built. They are obtained by substituting the corres-
ponding final and initial volumes. These results found with the help of quantum 
statistics are identical to those of classical thermodynamics.  

All function values of the 4 steps in the Carnot cycle are summarized in Table 
1.  

In this context, it seems worth mentioning that for each infinitesimal step, the 
dG value for the coupled gas/piston process is zero. This is because at each mo-
ment of force development of the gas upon the piston (e. g. expansion), this is 
compensated by an opposing force emanating from the piston. Each step of the 
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coupled process therefore takes place without net work. As a result, the gas/piston 
system moves quasi-statically from one equilibrium state to the next. Characte-
ristic for the existence of an equilibrium is therefore the condition dG = 0. 

The efficiency of the volume work of an ideal gas when it expands under re-
versible conditions is 1.0, as it is for any other reversible energy transformation, 
such as the electrochemical reaction in a battery. In the case of a cyclic (Carnot) 
process ( ( )2 0.11931iW Q Th Tc Thη = = − =∑ ), however, this value is consi-
derably lower, despite reversibility. This is due to the fact that part of the expan-
sion work has to be expended to bring the gas back to its initial volume (as well 
as P and T). This is inevitable because the volume can often only increase to a 
very limited extent. The low efficiency is therefore not due to the underlying 
molecular coupling process.  

2.1.4. The Partially Irreversible Carnot Cycle  
In the following, irreversible steps corresponding to the four reversible steps of 
the Carnot cycle are cyclically gone through. Irreversibility is achieved by the 
fact that all four volume changes take place at constant pressure. In the case of 
the two expansions, this is from the very beginning the lower final pressure, 
while in the case of the two compressions, the higher final pressure is present. 
The pressure and volume changes now no longer occur in infinitesimal steps, 
but in just one step at a time. Under these conditions, the work obtained (expan-
sion) or put in (compression) is not maximal (less negative) for expansion and 
not minimal (more positive) for compression compared to reversibility. Since all 
works are non-zero, the individual processes are not completely irreversible.  

This time the cycle starts with the partially irreversible expansion of the ideal 
gas from V1y to V2 at constant pressure P2. In order to also run the irreversible 
cycle at the same temperatures Th and Tc, the adiabatic steps must be dimen-
sioned so that their change in inner energy causes the specified temperature dif-
ference of 310.15 − 273.15 = 37.0 K. This cannot be achieved with the volumes 
V3 and V1 because ΔU would be too low for adiabatic expansion and too high 
for adiabatic compression. The desired temperature change can be achieved, for 
example, by increasing V3 and V1 to V3y and V1y, respectively. Hence, the cyc-
lic process starts with the isothermal expansion given by  

( )21 2 2 441 5.3irrpW P V V y = −= − − ,                (9a) 

and 

21 21 445.3 Jirrp irrpQ W == − .  

So 21irrpU∆  and 21irrpH∆  are zero also under these conditions. 
For the next adiabatic step of the cycle the work done must be equal to 

( )VCmn Tc Th− , to reach the lower temperature Tc. The increased volume V3y 
is obtained by equating W32 with ( )32 3 3 2irrpW P V y V= − , yielding (9b) 

( ) ( )V32 Cm 3 3 2W n Tc Th P V y V= − = − , yielding 
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3323 2
3

0.023757 mWV y V
P

= − = . 

32irrpU∆  and 32irrpH∆  have the same values as under reversible conditions 
because 32 32irrpW W= .  

The isothermal compression work at Tc is given by  

( )43 4 4 643.073 52irrpW P V V y= − − = − ,               (9c) 

and 

643.0752 J43 43irrp irrpQ W == − . 

43irrpU∆  and 43irrpH∆  are again both equal to zero. 
The final step of the partially irreversible cycle is an adiabatic compression, 

which again results in Th. To do this, also this time V1 must be enlarged to V1y 
according to 

3141 4
4

0.015776 mWV y V
P

= − = , 

and  

( )14 1 1 461.45324 JirrpW P V y V= − − = .              (9d) 

In the following, the entropy changes for the reversible and irreversible parts 
of the individual steps are considered separately in order to identify the changes 
caused by irreversibility. To determine eS∆ , the reversible fractions of all par-
tially irreversible steps of the cycle must be found. For this purpose, the partially 
irreversible work is set equal to the reversible work yielding for isothermal ex-
pansion  

( ) 1x2 2 1y R ln
1y

VP V V n Th
V
 

− =  
 

, 

from which  
( )2 2 1y

R 31 0.018x 1 7y 5 m
P V V

n ThV V e
−

== , 

is obtained.  
The reversible volume work is given by  

1x21x R ln
1y

445.3 JVW n Th
V
 

= −  = −
 

. 

It is equal to 21irrpW , and the reversible heat is 21 21Q x W x= − , and thus, 

21x 1x21x R l 1.4358n
1y

J Ke
Q VS n

Th V
 

∆ = =  
 

= . 

V2 would then have to be attained by increasing the gas volume from V1x to 
V2 without volume work. As already mentioned, such a free expansion of an 
ideal gas happens without temperature change. Only the pressure of the gas 
would decrease to P2. This completely irreversible process is associated with an 
entropy production of 
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221 R l 0.1404 J Kn
1xi

VS n
V
 =∆ =  
 

.  

Since the ideal gas expands freely under these conditions, also no work can be 
done. In other words, the maximal work that can be gained under reversible 
conditions is dissipated under completely irreversible conditions. Hence, the en-
tropy production iS∆  is always associated with that dissipated work under 
completely irreversible conditions. 

The sum of both forms of entropy is given by  

1x 2 221 21 21 R ln R ln
1y 1x

1.57
1

62 J K
ye i

V V VS S x S n n
V V V
   

∆ = ∆ + ∆ = =  


=
  

.  

Obviously, the sum of both entropies has the value which the entropy would 
take in case of a completely reversible, isothermal expansion (from V1y to V2).  

In an analogous way one finds for the partially irreversible compression,  
( )4 4 3y

3R3 0.0179 mx 3y
P V V

n TcV V e
−

== , 

leading to  

3x43 R ln
3y

2.3543 J Ke
VS x n
V
 

∆ =  
 

= − , 

and  

443 R l 0.2813 J Kn
3xi

VS n
V
 =∆ =  
 

, 

whose sum is given by  

443 43 43 R ln
3y

2.073 J Ke i
VS S x S n

V
 

∆ = ∆ + ∆ =  


= −


.  

To obtain the Vx of the adiabatic processes, the partially irreversible volume 
work is equated to the reversible volume work of the respective adiabatic process. 
For the adiabatic expansion this results in  

( ) ( )
( )

3
1

132 y 1
2x 2

2 2
0.02307 m

W
V V

P V

γ
γ

γ

γ
−

−− 
= + 

− 
= .  

Thus the entropy production for this step results in  

3y32 R ln
2x

0.2432 J Ki
VS n
V
 ∆ =  
 

= . 

For the partially irreversible adiabatic compression you get  

( ) ( )
( )1

1 314 y 1
4x 4

4 4
0.0153 m

W
V V

P V

γ
γ

γ

γ
−

−− 
= + 

−
=


, 

and  

4 y14 R ln
4x

0.2536 J Ki
VS n
V
 ∆ =  
 

= . 
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It turns out that under partially irreversible conditions the sum of the ex-
changed entropies, 21eS∆  and 43eS∆ , is not zero as in a fully reversible cycle 
but negative (Table 2). Thus, the sum of irreversibly produced entropies  

21iS∆ , 32iS∆ , 43iS∆ , and 14iS∆  (each one positive), must add up to zero 
with the former sum (Table 2). This fact can be expressed as follows:  

0e
irrp

d S <∫ , and 0i
irrp

d S >∫ ,                   (10a) 

and 

0
cyc

irrp
e i

irrp irrp

S d S d S∆ = + =∫ ∫ 

.                  (10b) 

The result of the present partially irreversible cycle is accordingly  

( ) ( )21 43 21 32 4
0.91854 0.9185 K

14
4 J

3e e i i i iS S S S S S
= − +

∆ + ∆ + ∆ + ∆ + ∆ + ∆
, 

or  

2 21 32 4 43 14ln
21 14 32 43 32 14
2 4ln 0

32 14

irrp
cyc

V V x V y V V x V yS R
V x V y V x V x V y V x
V VR

V x V x

 
∆ =  

 
 = = 
 

.  

The above expression contains the volume ratios of the reversible portions of 
this cycle, which correspond to the relationship of the entirely reversible cycle 
( 2 3 4 1 1.0V V V V× = , see above).  

With S∆ , the irreversible fraction of a partially irreversible process is given 
by iS S∆ ∆ . From Table 2 it can be seen that this fraction is, for example, 
0.1404/1.5762 = 0.089 for the first step of the Carnot cycle, 1.0 for the second 
and fourth steps, and −0.1357 for the third step. 

For all irreversible and partially irreversible processes, 0iS∆ > , always holds. 
For the partially irreversible cycle considered here, this latter statement is proved 
by the fact that the quotient xfV V  appearing in the respective logarithms 
(free expansion in each step of the cycle) is always greater than one, so that 

( )R lni fS n V Vx∆ = , must always be positive.  
Also for the partially irreversible case, the application of the Sackur-Tetrode 

equation gives identical results. For instance,  

( ) ( ) 124.3242 122.8885 12 .4358 J K1 21 1 21 1eS x S V x S V y = −− =∆ = , 

and  

( ) ( ) 124.4646 124.3221 2 42 0.141 41 J K2 0iS S V S V x = − =∆ = − . 

All function values of the 4 steps of the partially irreversible cycle are summa-
rized in Table 2.  

In this context, the following problem may be also of interest: How do the en-
tropies behave in a Carnot cycle whose volume work is equal to zero? Such a 
cycle would be realized, for example, by increasing the isothermal compression 
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work to such an extent that it would be opposite equal to the isothermal expan-
sion work. The total work of the otherwise reversible cycle would then be zero. 
An increase from W43 to −W21 can be achieved by enlarging the volume of V3 
accordingly. This must be done at constant Tc by irreversible free expansion of 
the gas into a vacuum. The new volume from which compression now starts is 
given by  

( ) 33 4 2 1 0.02377 mTh TcV z V V V ==  (equating W43z with −W21),  

and the respective, reversible compression work by,  

443 R ln 567.4951 J
3

VW z n Tc
V z
 = − 


=


.  

The produced entropy of the additional free expansion step is given by  

343 R ln
3

0.2479 J Ki
V zS z n
V

  =∆ =  
 

.  

However, the exchanged entropy has also changed under this new condition, 
it must be more negative due to the increased reversible compression work of 
this step,  

443 R ln 2.0776 J K
3e

VS z n
V z
  =


−∆ = 


.  

As requested, the total entropy change over the cycle vanishes,  

1.82921 7 2.0776 0.2479 043 4 J3 Ke e iS S z S z = − ++ ∆ =∆ + ∆ , 

or  

( )

1 1567

1 143

.495

21

1 0.2479 J K
273.15 310.15

43 21i e eS z S S z Q
Tc Th

 = − = 
 

 ∆ = − ∆ + ∆ = − 
  .  

The same result is obtained by comparing eS∆  values of the fully reversible 
with the partially irreversible step 3,  

( )1.8297 2.0776 0.2479 J3 K43 4e eS S z = − − − =∆ − ∆ . 

Analogously, with W21 = −W43, and –Q43 = 499.7946 J, 21iS z∆  = 0.2182 
J/K can be obtained, and 1.8297 1.6115 0.2182 J K21 21e eS S z∆ − ∆ = − = .  

This result can also be understood as entropy production by irreversible heat 
transfer (heat quantity = Q21) from a reservoir with temperature Th to a reser-
voir with temperature Tc. When the two compartments are connected by a 
heat-permeable boundary to form one single system, heat energy will flow irre-
versibly from compartment I with Th to compartment II with Tc. Since this 
process is not coupled to work, and moreover takes place at unequal tempera-
tures, it can be expected that these are irreversible entropy changes. This leads to 

I
i hS Qh Th∆ = − , and II

i cS Qc Tc∆ = . This yields for the entire system with 
Qh Qc Q= = , 
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1 1I II
i i h i cS S S Q

Tc Th
 ∆ = ∆ + ∆ = − 
 

.                  (11) 

Since for all pathways the molecular composition of the reservoirs has not 
been specified, it follows that the entropy production by irreversible heat trans-
fer is independent of the molecular structure of the media in which it takes 
place.  

Though irreversibility and associated entropy production in energy conver-
sions always leads to reduced efficiency, it also offers indispensable advantages. 
In technology, it is not the energy but the power output—i.e. the provision of 
energy per unit of time or, for mechanical processes, the speed at which a force 
is available—that is of primary interest. In living organisms, too, the ability to 
deliver power is of utmost importance. This ability is inevitably linked to entro-
py production ( iS∆ ). Therefore, in order to gain a certain amount of power 
from a process, it is imperative to run it partially irreversibly.  

2.2. Chemical Reactions  

Irreversibility is particularly important for spontaneously extending chemical 
and biochemical reactions. However, before the changes of eS∆  and iS∆  oc-
curring in the process can be dealt with, some aspects of the energetics of chemical 
reactions shall first be considered.  

dU  can be formulated with the inclusion of non-volume work ( nvwW ) for 
reversible conditions as  

nvw
e edU PdV Td S W PdV Td S dnδ µ= − + + = − + + ,          (12a) 

where nvwWδ  may be given e.g. by dnµ . The newly added conjugate pair dnµ  
is composed of the chemical potential µ  (in J/mol, see e.g. [6] [7] [8]) and the 
variable particle amount n (in mol).  

You get also,  

edH VdP Td S dnµ= + + ,                   (12b) 

edA PdV S dT dnµ= − − + ,                   (12c) 

and 

edG VdP S dT dnµ= − + .                   (12d) 

With i in ν ξ=  (ξ  = extent of reaction in mol, iν  = stoichiometric coeffi-
cient of substance i), and constant P, the respective Maxwell relation (see above) 
can be formulated as follows,  

( ) ( )G G
T Tξ ξ

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
, 

or, since 

e
G S
T
∂

= −
∂

, e eS S
ξ ξ

∂ ∂
≡

∂ ∂
, 

which proves that ( ),dG T ξ  is also an exact differential for chemical reactions. 
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In analogy to the notation RG Gξ∂ ∂ = ∆ , e ReS Sξ∂ ∂ = ∆  is used here.  
For constant T and V, dA dnµ= , and for constant T and P, dG dnµ= . 

Since the functions A and G refer exclusively to reversible processes,  
( ) eVA T S∂ ∂ = −  and ( ) ePG T S∂ ∂ = −  are applicable to the exchanged entropy 
only. 

If several substances are present in the system, dG  is made up of the indi-
vidual dnµ ’s of all substances of the system, leading to  

,
i i i i

i iT P

dG dn dµ ν µ ξ = = 
 
∑ ∑  

(The summation symbol indicates the stoichiometric summation of products 
and reactants), or  

( )
,

R i i
iT P

dG G
d

ν µ
ξ

 
= ∆ = 

 
∑ .                   (13) 

Inserting the expression for the chemical potentials,  

0
0R ln cT

c
µ µ  = +  

 
, 

(in J/mol, 0µ  = reference or standard potential, ideal conditions), results in, 

( ) ( )0 0R ln R lnR i i i i R
i i

dG G T c G T
d

ν µ ν
ξ
= ∆ = + = ∆ + Γ∑ ∑         (14) 

The stoichiometric sum of standard potentials is given by 0 0
R i i

i
G ν µ∆ =∑ ,  

while the expression ( )R lnT Γ  represents the concentration dependent term of 
the chemical potential sum. To obtain the primitive G or ΔG, the above equation 
must be integrated. From Equation (14) you get,  

( ) ( ) ( ) ( )( )
0 0 0

R ln0
R RdG G G d G T

ξ ξ ξ

ξ ξ ξ ξ ξ ξ= ∆ = ∆ = ∆ × + Γ∫ ∫ ∫ .     (15) 

In contrast to the differential quotient RdG d Gξ = ∆ , ΔG is a difference. The 
difference between ΔG and ΔRG is also apparent in their respective dimensions. 
ΔG is given in J, whereas ΔRG is given in J/mol. The derivative with respect to ξ 
represents a potential difference. It is equal to the energy change that would be 
achieved if the reaction were run one mole times at constant concentrations of 
products and reactants.  

In electrochemical reactions, electrical potentials are involved in addition to 
chemical ones. If these are to be taken into account, the electrochemical poten-
tial µ  must be used instead of µ  alone. It is defined as zFµ µ ϕ= + . This 
leads for an electrochemical reaction (P, T const.) to  

( )z FR i i i i
i

G ν µ ϕ∆ = +∑                      (16) 

(z = charge number, F = Faraday constant in Coulomb/mol, φ = electrical po-
tential in Volt (V)).  

In this context, it is worth mentioning that the direction of progress of a 
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chemical or biochemical reaction is specified by its driving force RDF G= −∆ . 
A positive value indicates if a reaction can proceed into the given direction.  

Coupled reactions often proceed partially irreversibly in order to achieve a 
certain power output, as has been already mentioned. In this case, the reversible 
part of the coupled overall reaction becomes reversibly transformed mostly into 
another form of energy (output energy), whereas the rest of the input energy 
( R cG∆  or cG∆ ) is converted into heat energy.  

The dissipation function Φ  is closely related to this irreversibly produced 
heat and entropy RiS∆ . When the flux ( )J d dtξ ξ=  (in mol/s) is given, one 
obtains with,  

( ) ( ) ( ) ( ) ( )J si
R

dG d SG J T
dt dt
ξ

ξ ξ ξ
−

Φ = −∆ = = ,          (17) 

and 

( ) ( )
( )RiS J T
ξ

ξ
ξ

Φ
∆ =                       (18) 

Integration yields,  

( ) ( ) ( )
0 0

idt dG T d S
ξ ξ

φ ξ ξ ξ= − =∫ ∫ ∫ , 

and with 
( )

ddt
J
ξ
ξ

= , and 
( )0

1 1
3600

t d
J

ξ

ξ
ξ

= ∫  (For comparison, the potentials 

are also shown against time t, see Figure 3(a) and Figure 3(c)),  

( )
( ) ( ) ( )

0
id G T S

J

ξ ξ
ξ ξ ξ

ξ
Φ

= −∆ = ∆∫  in J.              (19) 

Φ  indicates how much energy becomes dissipated into heat energy per unit 
time (Equation (17)). The time integral of this function thus gives the energy 
dissipated within a given time interval, which is identical to iG T S−∆ = ∆ .  

2.2.1. Coupled Reactions of the Lead-Acid Battery  
As an example of a coupled reaction, the electrochemical processes as they occur 
in a lead-acid battery are considered below. The common car battery (lead-acid 
battery) probably represents the most widespread man-made device in which 
chemical energy is transformed into electrical energy by coupling. The coupling 
process takes place at both electrodes. The half-reactions at the electrodes for the 
spontaneous discharge are given by  

( ) ( ) ( )
+

2 4 4s aq sPb H SO PbSO 2H 2e−+ → + +                (Rox) 

(oxidation, anode, minus pole),  

( ) ( ) ( ) ( )
+

2 2 4 4 2s aq s lPbO H SO 2H 2e PbSO 2H O−+ + + → +        (Rred) 

(reduction, cathode, plus pole), and the overall reaction by 

( ) ( ) ( ) ( ) ( )2 2 4 4 2s s aq s lPb PbO 2H SO 2PbSO 2H O+ + → +            (Rov) 
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Figure 3. Potentials and electrical currents during the extending reaction (discharge) of a 
lead-acid battery. (a): ( )EMF ξ  (blue points) and ( )ϕ ξ−∆  (red line) in a simple cir-

cuit (Ge = 0.42 1/Ω, discharge). (b): Currents in the inner and outer current branches, re-
spectively (inner branch: red line, outer branch: blue points). (c): as in A, but as a func-
tion of time. (d): Charging of a discharged battery by a fully charged one (see below). Red 
line: ( )ϕ ξ−∆ , dark blue line: ( )1EMF ξ , light blue line: ( )2EMF ξ . The potentials 

take the following values with eqξ  = 1.0 mol: ( )1 1.0EMF  = 12.3005, ( )2 1.0EMF  = 

−12.3005, and ( )1.0ϕ∆  = ±12.3005 V. At this ξ, equilibrium is reached between dis-

charge and charge reactions. 
 

The sum of both half-reactions gives the overall reaction Rov (half-reactions 
are usually formulated as a reduction).  

The electrolyte surrounding the electrodes is an aqueous solution of sulfuric 
acid. In car batteries, the acid concentration is about 6.0 m (m = mol/kg H2O, 
molal). When the electrodes of the battery come into contact with the electro-
lyte, spontaneous reactions are triggered at both electrodes (open circuit condi-
tions). At the anode (minus pole), Pb2+ ions are formed from the lead atoms of 
the electrode by oxidation. At the cathode, Pb2+ ions are also formed but this 
time by electron uptake of the PbO2 with the participation of H2SO4. In this 
process, the PbIV of the PbO2 is reduced to Pb2+ ions. At both electrodes crystal-
line PbSO4(s) may be formed according to its solubility product. However, these 
electrochemical electrode reactions can only take place to a very limited extent, 
because electrical double layers are formed at the anode and cathode [9], whose 
respective electrical potential differences are opposed to the chemical potential 
differences of respective electrode reactions, so that both reactions very quickly 
reach an electrochemical equilibrium. The Gibbs potential of the overall reaction 
is then opposite equal to the sum of the electric potentials of the double layers. 
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When both poles are electrically connected via an external resistor, a current 
can flow that destroys the electrochemical equilibrium. Now the Gibbs potential 
outweighs the opposite electrical potential difference, allowing the chemical 
reaction and the coupled electrode reactions to proceed. The Gibbs potential of 
the total sulfuric acid reaction corresponding to Rov is given by,  

2

2 4

2
H O0

2
H SO

R lnR SA R SA

a
G G T

a

 
∆ = ∆ +   

 
.                (20a) 

The Gibbs standard reaction potential, 0
R SAG∆  = −394.148 × 103 J/mol, and 

the standard reaction enthalpy, 0
R SAH∆  = −315.6 × 103 J/mol, have been calcu-

lated from Gibbs formation and enthalpy formation potentials [10], respectively. 
The reaction entropy, Re SAS∆  = 263.35 J/(mol∙K), has been calculated from 
Third Law entropies [10]. The notation “ indexa ” indicates that this is not a con-
centration but an activity. This is essential because the electrolyte is a highly 
concentrated (6.0 mol/kg H2O) aqueous solution of sulfuric acid, which deviates 
significantly from the properties of an ideal solution. The activity of H2SO4 is re-
lated to its molality m by the following definition: for a H2SO4 solution of molal 
concentration m, it is assumed that it is completely dissociated in aqueous solu-
tion into the corresponding ions according to its stoichiometric coefficients, that 
is 

H
2m m+ = , and 2

4SO
m m− = . Ion activities are related to their molality 

through a mean activity coefficient γ ± ,  

ion iona m γ ±= . 

Single ion coefficients on the other hand are defined as  

ion ion iona m γ= . 

As a consequence, the activity of H2SO4 in the argument of the logarithm can 

be expressed as ( ) ( )22 4 4

22 3 3
H SO H SO

2 4a a a m m mγ γ γ+ − ± ± ±= = =  [11], leading to 

( )
2

2
H O0

23 3
R ln

4
R SA R SA

a
G G T

m γ ±

 
 ∆ = ∆ +   
 

.                   (20b) 

With single ion activity coefficients, you would get  

( ) ( )2 2 2
4 4 4

22 3 2
H SO H SO H SO

2 4a a m m mγ γ γ γ+ − + − + −= = . 

By comparison you obtain  

( )2
4

1
32

H SO
γ γ γ+ −± = , 

or more generally,  

( )
1

ν ν ν νγ γ γ+ − + −+
± + −=  

(the stoichiometric coefficients of H2SO4 are 2ν+ = , and 1ν− = ). 
The mean ionic activity coefficient thus is the geometric mean of the single 

ionic activity coefficients.  
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Fraenkel [12] [13] [14] was able to calculate both mean and single ion activity 
coefficients using a theoretical approach. Theory and experimental results are in 
excellent agreement if it is assumed that H2SO4 and H2O react almost quantita-
tively to give H4SO5 (sulfoxuric or parasulfuric acid, [12]). This acid exists in an 
aqueous solution as 3

5HSO −  plus 3H+ even at high concentrations. For the fol-
lowing calculations, however, the chemical reactions mentioned above (Rov, Rox 
and Rred) are used because they are well-known and less complicated, which 
simplifies their treatment as a coupled reaction. Moreover, their thermodynamic 
data are easily accessible (e.g. in [10] [11]).  

To represent R SAG∆  as a function of ξ, the activities for H2O and H2SO4 must 
be substituted into Equation (20b). These can be found in K. R. Bullock [11] as a 
function of molality. Here, the values in the range between 6.0 and 1.5 m have 
been approximated by quadratic functions. This yields the Gibbs potential and 
the electromotive force, respectively, of a battery composed of six cells in series,  

( )
2

2

2 2

2
0

H O 3
H O

233
0 0

3 3
H O H O

2
1 2 M 10

6 6R ln
2 24

1 2 M 10 1 2 M 10

SA

0
R R SA

SA SA
±

na

G G T
n n

ξ
ξ

ξ
ξ ξγ

ξ ξ

−

− −

 
   −     +   ∆ = ∆ +  

      − −           + +       
(20c) 

and 

( ) ( )
z F

RG
EMF

ξ
ξ

∆
= −  in Volt. 

( 0
SAn  = 6.0 mol, 

2H OM  = 18.015 × 10−3 kg/mol z = 2, F = Faraday constant in 
coulomb/mol).  

For instance, ( ) 12.74670EMF = , and ( ) 11.82 212 VEMF = . The concen-
tration of H2SO4 is ( ) ( ) ( )2

0 3
H O0 2 1 2 M 10 6.0SA SAm nξ ξ ξ −= = − + = , and  

( )2SAm ξ =  = 1.865567 mol/(kg H2O). For 1.0092254stξ ξ= =  mol,  
( ) 6R stG ξ∆  = 0

R SAG∆  = −3.9547 × 105 J ( ( )R SA stG ξ∆ Γ , the logarithmic term 
of ( )R SA stG ξ∆ , must vanish), the standard Gibbs potential of this reaction is 
obtained. This means that with 0 2SA stn ξ−  = 3.9816 mol H2SO4, and mass of 
water, ( )

2 2

3
H O H O1 2 M 10st stm ξ ξ −= +  = 1.0364 kg, the H2SO4 concentration  

( )SA stm ξ  = 3.8419 mol H2SO4/(kg H2O), standard conditions are present.  
In the following, the electric current I (in A) supplied by the battery is calcu-

lated using the flux equation known from the thermodynamics of irreversible 
processes [7] [15] [16] [17]. For a system consisting of two thermodynamic 
forces (X1 and X2) coupled to each other, the fluxes J1 and J2 are given by the 
flux equations  

1 11 1 12 2J L X L X= + ,                    (21a) 

and 

2 12 1 22 2J L X L X= + .                    (21b) 
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J1 and J2 are the output and input fluxes (in mol/s), respectively, X1 and X2 
are the thermodynamic output and input “forces” (in J/mol). The input forces 
can be taken as driving forces, as they occur as affinities ( RA G= −∆ ) of chemi-
cal or biochemical reactions, while the output forces are often electrical or elec-
trochemical potential differences. L11 and L22 are called straight coefficients, 
whereas L12 is called coupling coefficient.  

Replacing the straight coefficients L11 and L22 by 111 12 LL L L= + , and 

222 12 LL L L= +  ( 1LL  and 2LL  = leak conductances, all in mol/s × mol/J), re-
spectively, yields  

( ) 11 12 1 2 1LJ L X X L X= + + , 

and 

( ) 22 12 1 2 2LJ L X X L X= + + . 

With 11 12LL Lλ = , and 22 12LL Lλ = , you get,  

( )1 12 1 2 1 12 1J L X X L Xλ= + + , 

or  

( )( )1 12 1 1 1 2J L X Xλ= + + ,                  (21c) 

as well as 

( )2 12 1 2 2 12 2J L X X L Xλ= + + , 

or  

( )( )2 12 1 2 1 2J L X Xλ= + +  [18] [19].             (21d) 

For totally coupled systems, 1 2 0λ λ= = , so that 1 2J J J= =  results. For 
the totally coupled reaction flux of the lead acid battery you get,  

( ) ( ) ( )( )Fc RJ L z Gξ ϕ ξ ξ= ∆ − ∆  (in mol/s),           (21e) 

( 12cL L  = coupling conductance, ( )RG ξ∆  = Gibbs potential and ϕ∆  = 
electrical potential difference (<0) of 6 cells in series) which leads with  

( )2
c cG L zF=  (Gc = electrical conductance (1/Ω)) to  

( ) ( )F F 2
cI z J L z EMFϕ= = ∆ + , 

and  

( ) ( ) ( )( )cI G EMFξ ϕ ξ ξ= ∆ +  (in coulomb/s = A).         (21f) 

When the two poles of the battery are connected via a resistance, an electric 
current can flow. This practically immediately increases ( 0ϕ∆ <  becomes more 
positive) the electrical potential difference coupled to the EMF. The former pa-
rameter is obtained by equating the current flowing in the battery through the 
coupled reaction with the current passing through the external resistance (1/Ge),  
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( ) ( )c eG EMF Gϕ ϕ∆ + = −∆ , 

leading to  

( ) ( )c

e c

G EMF
G G

ϕ ξ ξ∆ = −
+

,                 (22a) 

or with ( ) ( )U ξ ϕ ξ= −∆ ,  

( ) ( )c

e c

GU EMF
G G

ξ ξ=
+

                   (22b) 

Setting the coupling conductance to Gc = 200/6, and the external conductance 
to Ge = 0.42 1/Ω, yields e.g., I(0) = 5.287 A and U(0) = 12.588 V.  

How the curves of Figure 3 (especially Figure 3(a)) come about can be seen 
from the behavior at constant EMF. Under such conditions, both curves (3A) 
would run parallel to the abscissa. Consequently, the decrease of EMF or the in-
crease of Δφ are solely determined by the changing concentrations of products 
and reactants (Equation (20c)) [20]. The difference between EMF and –Δφ val-
ues (−Δφ < EMF) is due to the fact that a steady-state-like condition obviously 
arises for the magnitude of −Δφ. In this process, the inner battery current 

( )cG EMFϕ∆ +  charges –Δφ while the outer current ( )eG ϕ−∆  discharges it, 
showing that both conductances are involved.  

From Equations (22) also the efficiency of the coupled process can be ob-
tained,  

( )
( )

0.9876c

e c

G
EMF G G
ϕ ξ

η
ξ

= =
∆

= −
+

,             (23) 

which does not depend on ξ. 
This high efficiency value shows that the discharge reaction is close to equili-

brium under these conditions. It therefore seems justified to use the formalism 
known from non-equilibrium thermodynamics for the reaction flux or the elec-
tric current, which is particularly valid close to equilibrium [15] [16].  

The output power of the battery is given by,  

( ) ( ) ( ) ( )
2

c
e

e c

GP U I G EMF
G G

ξ ξ ξ ξ
 

= =  + 
           (24a) 

( ) ( )( )2
eP G EMFξ η ξ= ,                   (24b) 

and the maximal power is reached, by setting 0edP dG = , leading to e cG G= . 
Under such conditions, the following values could theoretically be achieved with 
Ge = Gc = 33.33 1/Ω: η = 0.5, U(0) = 6.3528 V, I(0) = 211.76 A, and Pmax(0) = 
1.3453 × 103 J/s. At the given conductances (Gc = 33.33, and Ge = 0.42 1/Ω), cur-
rent and power output are considerably lower, while efficiency is significantly 
higher. This clearly shows how the velocity of a coupled process affects its power 
and efficiency. Such a relationship can also be formulated with respect to the ir-
reversibility of a coupled reaction: with 
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( ) ( )
( )

( )
( )

1 Ri cEMF T S
EMF EMF zF

ϕ ξ ξ ξ
η

ξ ξ
∆ + ∆

− = = ,
 

you get  

1 e

c e

G
G G

η− =
+

, 

and 

( ) ( )Re
Ri c

c e

GGS
G G T

ξ
ξ

−∆ 
∆ =  + 

,                 (25) 

( ) ( )102.3254 J m K0 olRiS = ⋅∆ . 

This means that 0. 1241 0η− = , or about 1.2% of the coupled process are 
gone through irreversibly. Power output and entropy production of the coupled 
reaction are connected by  

( ) ( ) ( )Ri c
c

T S
P G U

zF
ξ

ξ ξ
∆

= . 

At maximal power output 1 0.5η− = , and ( )0Ri maxS∆  = 4.1117 × 103 
J/(mol∙K). If the efficiency approaches one, the power and RiS∆  approach zero, 
so that the reaction can now go through in a virtually reversible manner.  

If Gc could be increased, this would lead to a more negative ϕ∆ , and to a 
larger power output. If cG →∞ , then EMFϕ∆ → − , and thus 1.0η → . This 
could provide a high power output at a high output potential and a compara-
tively low battery current, so that battery discharge would be slower. However, 
with the high value for Gc used here, these effects are not very pronounced.  

According to Ohm’s law, the partial conductances of the coupling conduc-
tance Gc, that is, those of ϕ∆  and EMF, respectively, are given by, 

( )
( )

( ) ( )
( )c1 c e

I EMF
G G G

ξ ϕ ξ ξ
ϕ ξ ϕ ξ

∆ +
= = = −
∆ ∆

 ( 1 0cG < ),      (26a) 

and 

( )
( )

( ) ( )
( )c2 c

I EMF
G G

EMF EMF
ξ ϕ ξ ξ
ξ ξ

∆ +
= = .             (26b) 

The following must be fulfilled for in series conductances: ( )1 1 1c c1 c2G G G= + . 
Like Gc, both partial conductances do not depend on ξ . Since U ϕ= −∆ , Ge 
must always be opposite equal to Gc1.  

The outer current branch of such a circuit can also be understood as an un-
coupling of ϕ∆  through a leak flux.  

Despite the use of activity coefficients, the above processes must be considered 
idealized, since only the one electrochemical reaction Rov has been considered. 
Other parallel reactions are possible [21] and could influence the results. How-
ever, one of the main reasons for the deviation from theoretical behavior during 
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the discharge process may be caused through the structural changes at the elec-
trodes [21] [22].  

2.2.2. Entropy Changes during Discharge 
For the whole battery at T = 298.15 K the entropy is given by 6Re Re SAS S∆ = ∆  = 
1.5801 × 103 J/(mol∙K). This means that a lead acid battery would absorb a quan-
tity of heat of ReT S∆  = 4.7111 × 105 J/mol from surroundings by entropy ex-
change alone, regardless of the reactant concentrations involved. In addition, ir-
reversible heat appears due to the irreversible reaction process during discharge. 
The closely related dissipation functions are,  

( ) ( ) ( ) ( ) ( )( ) ( )1 cI G EMFξ ξ ϕ ξ ϕ ξ ξ ϕ ξΦ = ∆ = ∆ + ∆         (27a) 

(for the output force ( )ϕ ξ∆ ),  

( )1 66.120 44 J sΦ = − , 

and  

( ) ( ) ( ) ( ) ( )( ) ( )2 cI EMF G EMF EMFξ ξ ξ ϕ ξ ξ ξΦ = = ∆ +        (27b) 

(for the input force ( )EMF ξ ),  

( )2 66.95 J0 76 sΦ = .  

The dissipation function 1Φ  is opposite equal to the power output P, and for 
the entire coupled reaction given by  

( ) ( ) ( ) ( ) ( )( )2
1 2c cG EMFξ ξ ξ ϕ ξ ξΦ = Φ +Φ = ∆ + ,         (27c) 

( ) 0.830 32 J scΦ = . 

The entropy production of the coupled reaction is obtained from ( )c ξΦ  by 

( ) ( )
( )
c

Ri cS
J T

ξ
ξ

ξ
Φ

∆ = ,                     (27d) 

( ) ( )102.3254 J m K0 olRi cS = ⋅∆ .  

If the outer current branch is counted as part of the surroundings, electrical 
energy becomes dissipated at this location when current flows through this 
branch via a resistance. This dissipation function is given by  

( ) ( ) ( ) ( ) ( )( ) ( )( )e cI U G EMFξ ξ ξ ϕ ξ ξ ϕ ξΦ = = ∆ + −∆  (with ( ) ( )Uϕ ξ ξ−∆ = ), 

( ) 66.12 4 J0 4 seΦ = .  

This value must be opposite equal to  

( ) ( )1 eξ ξΦ = −Φ .  

If dissipation in surroundings were included, with ( ) ( )1 eξ ξΦ = −Φ , the re-
sult would be,  

( ) ( ) ( ) ( )1 2 2eξ ξ ξ ξΦ +Φ +Φ = Φ . 
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Unlike the dissipation of the coupled reaction, however, this irreversible heat 
production is driven solely by an electric potential difference. As a conservative 
force, it alone is directly responsible for the flow of charges and the generation of 
heat. This kind of heat and entropy production is given by,  

( ) ( )
( )

( )z Fe
Ri e

U
S

J T T
ξ ξ

ξ
ξ

Φ
∆ = = ,  

( ) ( )38.1211 10 J l K0 moRi eS = ×∆ ⋅ .  

Because ( ) ( )1 eξ ξΦ = −Φ , this leads also to ( ) ( )1Ri Ri eS Sξ ξ∆ = −∆ , and 
likewise  

( ) ( )
( )
2

2RiS J T
ξ

ξ
ξ

Φ
∆ = . 

( )1
38.1211 100RiS = − ×∆ , and ( ) ( )2

3 8.2234 10 J ol K0 mRiS = × ⋅∆ .  

The heat absorbed by a battery from surroundings through the coupled reac-
tion is given by,  

( ) ( )
0

R c ReH G d T S
ξ

ξ ξ ξ ξ∆ = ∆ + ∆ ×∫ ,                (28) 

( ) ( )4 4 45.8853 10 94.2214 10 88.334 10 J 298.12 5 KH = − × + × = ×∆ . 

Thus, for a discharge of e.g. ξ = 2.0 mol (
( )

2

0

1 1
3600

21.03 ht d
J

ξ
ξ

== ∫ ),  

88.334 × 104 J of heat energy is taken up by the battery. Adding the electrical 
energy dissipated in surroundings (467.0866 × 104 J), a total amount of heat of 
467.0866 × 104 - 88.334 × 104 = 378.7526 × 104 J appears in this location. This 
means that during discharge over an external resistance, both the system and the 
surroundings will heat up.  

2.2.3. Electrode Potentials  
In the foregoing, the electric potential difference of the overall reaction has been 
derived from its thermodynamic quantities. However, the total reaction can be 
divided into two partial reactions, which take place at the anode and cathode, 
respectively, according to reactions Rox and Rred. The electric potential differ-
ences occurring at the electric double layers of the respective electrode can also 
be determined from the thermodynamic data of these electrochemical partial 
reactions. For anodic oxidation and cathodic reduction (discharging, 0

R SAoxG∆  
= −68.61 × 103 J, 0

R SAredG∆  = −325.538 × 103 J) the following equations result,  

2 4

2
0 0H

H SO

1R ln R lnR SAox R SAox R SAox

a
G G T G T

a mγ
+

±

   
 ∆ = ∆ + = ∆ +      

,      (29a) 

and 

( )
2 2

2 4

2 2
H O H O0 0

2 5
H SO H

R ln R ln
16

R SAred R SAred R SAred

a a
G G T G T

a a mγ+ ±

  
  ∆ = ∆ + = ∆ +

      
, (29b) 
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respectively. The corresponding EMF values for a battery are, ( )0oxEMF  = 
2.1333, and ( )0redEMF  = 10.1219 V.  

Protons generated at the anode migrate to the cathode where they are con-
sumed. The associated charge transport through the electrolyte of the battery 
thus completes the electric circuit. At higher currents, it cannot be ruled out that 
an additional electrical potential difference is generated, which is caused by a li-
mited proton mobility and is opposite to ϕ∆ . However, such a mechanism can 
be neglected if the current is relatively low, as is the case here.  

For 1.0092stξ ξ= = , the logarithmic terms of the Gibbs potentials for these 
partial reactions should also vanish, as has been shown for the overall reaction. 
For stξ ξ= , the log terms of the Gibbs potentials of both electrode reactions 
must be zero, leading to ( ) 0

R SAox st R SAoxG Gξ∆ = ∆  and ( ) 0
R SAred st R SAredG Gξ∆ = ∆ , 

respectively. However, this requirement is only approximately satisfied, 
( )R SAox stG ξ∆  = −67.272 × 103 instead of 0

R SAoxG∆  = −68.61 × 103 J/mol, and 
( )R SAred stG ξ∆  = −326.876 × 103 instead of 0

R SAredG∆  = −325.54 × 103 J/mol. 
Possibly, the deviations are primarily due to the application of the mean activity 
coefficient, which, as a geometric mean can only provide an approximation of 
the single ion activity of H+ ions.  

In principle, the same laws apply to the calculation of all thermodynamic 
functions for both electrode reactions as to the overall reaction. The sum of the 
values of the partial reactions at the respective electrodes must always be equal to 
the results for the overall reaction. This gives the values Re SAoxS∆  = 63.66 
J/(mol∙K), and 0

R SAoxH∆  = −10.67 × 103 J/mol for the cathode, and Re SAredS∆  = 
199.69 J/(mol∙K), and 0

R SAredH∆  = −304.93 × 103 J/mol for the anode. This 
means, however, that most of the irreversible heat is produced at the cathode. 
The respective efficiencies are the same for both electrode reactions and moreo-
ver identical to the efficiency of the overall reaction.  

2.2.4. Charging of a Discharged by a Charged Battery  
The situation changes drastically when the electrical potential difference –Δφ is 
not dissipated but transferred into work. For example, this can be done by charg-
ing a second, discharged battery. In this case, electrical energy from the fully 
charged battery is transferred into electrochemical energy of the initially dis-
charged battery. This is achieved by reverse connection of the charged battery I 
with the discharged battery II. The reaction direction in battery I is maintained 
(=direction of the spontaneous discharge reaction with H2SO4 consumption), 
whereas in battery II it is forced into the reverse direction.  

0 0
revEMF EMF= − , Re SArev Re SAS S∆ = −∆ , 33.331 331cG = Ω , 2 1 2 1c cG G= Ω . 

Battery I starts at an ( )1 0EMF  = 12.7056 V, and battery II at an  
( )2 0revEMF  = ( )1 2EMF−  = −11.7801 V.  

The electrical potential difference of battery II ( 0revϕ∆ > ) is opposite equal to 
that of battery I ( 0ϕ∆ < ) virtually immediately. It is obtained by equating the 

https://doi.org/10.4236/aces.2024.141002


F. Diederichs 
 

 

DOI: 10.4236/aces.2024.141002 38 Advances in Chemical Engineering and Science 
 

currents through battery I and II (Figure 3(d)),  

( ) ( )( ) ( ) ( )( )( )1 1 2 2c c revG EMF G EMFϕ ξ ξ ξ ϕ ξ∆ + = + −∆ , 

(neglecting the resistance of connecting wires), 

( ) ( ) ( )2 2 1 1
1 2

c rev c

c c

G EMF G EMF
G G

ξ ξ
ϕ ξ

−
∆ =

+
,            (30) 

( ) 12.397 V0 1ϕ = −∆ . 

The current can be expressed by three different formulas that have the same 
result,  

( ) ( ) ( )( )1 1 1cI G EMFξ ϕ ξ ξ= ∆ + , ( ) 10.21 0 836 AI = ,        (31a) 

( ) ( ) ( )( )( )2 2 2c revI G EMFξ ξ ϕ ξ= + −∆ , ( ) 10.22 0 836 AI = ,    (31b) 

and with 

11.1111112 1 1
1 2

1c

c c

G

G G

==
+

Ω ,                (31c) 

( ) ( ) ( )( )12 12 1 2c revI G EMF EMFξ ξ ξ= + , ( ) 10.212 0 836 AI = .  

The Gibbs potential of the overall charging reaction is (Figure 3(d)),  

( ) ( ) ( )( )12 1 2R revG zF EMF EMFξ ξ ξ∆ = − + ,             (32) 

( ) 51.7812 61 100RG ×∆ = − , and ( )12 1 J mol0RG∆ = . 

Their integrals up to equilibrium at 1.0eqξ =  (see below) are given by  

( )
1

4

0

2.94 J1 1 02 10c R cG G dξ ξ∆ = − ×= ∆∫ ,  

( )
1

4

0

5.88 J2 2 03 10c R cG G dξ ξ∆ = − ×= ∆∫ , 

and 

( )
1

4

0

8.8212 04 10 J12RG G dξ ξ∆ = − ×= ∆∫ . 

Accordingly, the entropy production up to equilibrium is given by,  

1 9 31 8.61c
i c

GS
T

−∆
∆ = = , 197.222 612c

i c
GS
T

−∆
∆ = = , 

and 

295.8391 J K1212i c
GS
T

=
−∆

∆ = .  

The entire entropy eS∆  of both batteries exchanged with the environment 
must vanish, since the respective eS∆ ’s of each battery are opposite equal. The 
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heat appearing in surroundings from both batteries is thus given by— 
( ) ( ) 412 1 12 1 8.8204 10 JiT S G = − ×∆ = ∆  during about 36 h of charging, which is 

considerably less than the heat released by only one battery with external dissi-
pation (−378.7526 × 104 J). 

Equating the H2SO4 concentrations yields,  

2 2 2

0 0

3 3 3
H O H O H O

1 2 2 2
1.0 2 10 1 4 10 2 10

SA SAn n
M M M

ξ ξ
ξ ξ− − −

− +
=

+ + −
, 

leads to  

1.0eqξ = . 

eqξ  gives that extent of reaction for both batteries, at which the whole system 
is at equilibrium. Then ( )1 1EMF  = 12.2594, ( )2 1revEMF  = −12.2594, and 

( )1ϕ∆  = 12.259348 V (negative for battery I and positive for battery II). The 
current decreases nearly linearly from 10.2836 to 0 A. During the process, in 
battery I 2.0 moles of H2SO4 are consumed, whereas in battery II 2.0 moles are 
produced. At equilibrium both batteries possess the same H2SO4 concentration 
of 3.8609 mol/kg H2O.  

2.2.5. Activated Complexes and Partition Functions  
The occurrence of chemical reactions is facilitated by the attainment of a transi-
tion state [23] [24]. This is achieved by arranging the reactants of a reaction into 
complexes while maintaining the stoichiometry in such a way that uptake of 
energy (activation) they can decompose into products [8]. The partial reactions 
of a battery take place at the electrodes, namely in their phase boundaries, where 
electrical double layers are formed with their respective electrical potential dif-
ference. The sum of these potential jumps at both electrodes results in the elec-
trical potential difference ϕ∆  (<0), which can be measured as U ϕ= −∆  (>0) 
at the poles. It is assumed that the respective complexes for the partial reactions 
are also localized in these phase boundaries, for only there can they be affected 
by both chemical and electrical potentials.  

Figure 4 shows how such activated complexes could be constructed. Two dots 
each between electrons, atoms or groups of atoms mark the bonds in the com-
plex which have become more labile due to energy absorption. At this state, a 
rearrangement of the bonds of the reactants to those of the products becomes 
possible. In Figure 4(a), an activated complex as it might occur at the anode is 
shown. The two electrons from the Pb remain in the solid body of the electrode 
(negative pole), while the resulting Pb2+ ion can combine with the 2

4SO −  ion to 
form PbSO4 after H2SO4 has dissociated two protons. In Figure 4(b), such an ac-
tivated complex at the cathode is shown. Here, two electrons are taken up by the 

IVPb +  of the PbO2 of the cathode to form PbSO4 with the 2
4SO −  ion of the 

H2SO4 molecule. Two protons dissociated from this latter compound, together 
with two additional H+ ions of the electrolyte form two H2O with the residual 

IV
2O − . The same complexes can obviously also be formed from the products, so  
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(a) 

 
(b) 

Figure 4. Configuration of activated complexes. (a): at the phase boundary between 
anode and electrolyte, Pb2+ ions are released from the anode, whereas electrons remain on 
the electrode surface. (b): at the phase boundary between cathode and electrolyte, elec-
trons are released from the cathode. 
 
that the reaction can also proceed in the reverse direction. Since the reaction is 
coupled to the formation of ϕ∆ , a simple way to reverse it is to change this 
quantity accordingly. 

The two different electrode reactions occur in the respective electrical double 
layers, their RG∆  values must both be negative. This means that the respective 
entropy production also takes place at these locations and each must be positive.  

For the occurrence of entropy changes during a chemical or biochemical reac-
tion, it is important to understand the energetic processes involved in the forma-
tion of transition states from reactants and their decomposition into products. 
That the equilibrium constant of a chemical or biochemical reaction can also be 
calculated using Maxwell-Boltzmann statistics and partition functions has been 
adequately demonstrated [3] [4] [5] [6]. Here, an attempt is made to explain the 
reactions occurring under non-equilibrium conditions, via the formation of ac-
tivatable complexes, their activation, and their decay to products. It is assumed 
that also under these non-equilibrium conditions the Maxwell-Boltzmann statis-
tics (constant energies and particle numbers), which is valid for equilibria, might 
be significantly involved. 

The association reaction of reactants to form complexes that can absorb ener-
gy to form transiently activated complexes is assumed to be in an equili-
brium-like state ( 0R assG∆ = ). Since no heat energy can arise in this first reaction 
step, the entire energy of the reactants must have been transferred to the result-
ing complexes, as would be the case in an at-equilibrium reaction. Activation 
raises the Gibbs potential of the complexes by ‡

RG∆  (“‡” denotes the activated 
state). This transiently transforms it to an unstable state, whereby the Gibbs po-
tential of the subsequent reaction step, R dissG∆ , becomes more negative. After 
the decomposition of the activated complexes, their activation energy ‡

RG∆  is 
released again (the same is true for the entropy changes associated with the tran-
sition state and activation), so the energy of the reactants first remains associated 
with the newly formed product molecules. Obviously, however, the energy dis-
tribution obtained in this way does not have the maximum possible probability. 
This might be achieved (constant temperature), when a certain amount of that 
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energy could be released as heat from the system into the surroundings. This 
amount is now apparently given by that fraction of energy which corresponds to 
the difference of the mean particle energies between newly formed products and 
already present products. This would mean that at an infinitesimal extent of 
reaction, reactants with the average energy of the remaining reactants in thermal 
equilibrium enter the reaction and appear as products with just this reactant 
energy. By releasing this surplus energy as heat energy, their energy is then 
brought to the mean energy of the products already present, which are also al-
ready in thermal equilibrium. In this way, all particles in the system and the en-
vironment could remain in or at least close to thermal equilibrium despite an ir-
reversibly extending reaction, thus maintaining the respective energy distribu-
tions close to maximum probability. 

The corresponding energetic and entropic changes will be explained by means 
of the following numerical example for the PCr reaction. The reaction proceeds 
irreversibly starting from the initial concentrations up to equilibrium (see refer-
ence [8]). Let the initial concentrations be [ ]0PCr  = 1.2, [ ]0ADP  = 1.2, 
[ ]0ATP  = 0.8, and [ ]0Cr  = 0.8 mmol/L. Equilibrium is reached when the reac-
tion has irreversibly extended by eqξ  = 1.06053 × 10−3 mol. This creates a G∆  
value of −9.4572 J. With ReS∆  = 10.2589 J/(mol∙K), and e Re eqS S ξ∆ = ∆ ×  = 
0.0109 J/K, you get eT S∆  = 3.2485 J and H∆  = −6.2133 J [8].  

Initially, 9.4572 J of (integrated) surplus energies are produced in the system, 
of which in this case ( 0ReS∆ > ) 3.2485 J must be transferred to the newly 
formed products to balance the internal energy difference between product and 
reactant molecules. The remaining energy that can be released by the system as 
heat is thus given by 9.4572 − 3.2485 = 6.2133 J. Finally, since this amount of 
energy is released from the system into surroundings, all signs have to be re-
versed. This then leads to eH G T S∆ = ∆ + ∆  = −9.4572 + 3.2485 = −6.2133 J, 
which matches the known relation, eG H T S∆ = ∆ − ∆ . The same result would be 
obtained if the equalization of the intramolecular energies between products and 
reactants (3.2485 J) were to take place after the release of the total energy differ-
ence (−9.4572 J). Such a description would express the associated entropy ex-
change more clearly, especially in the case that 0ReS∆ < .  

For the reverse reaction, initial concentrations are: [ ]0PCr  = 0.1, [ ]0ADP  = 
0.1, [ ]0ATP  = 4.0, and [ ]0Cr  = 4.0 mmol/L. Equilibrium for the reverse reac-
tion is reached when the reaction now has irreversibly extended by eq

revξ  = 
0.185846 × 10−3 mol. This creates a G∆  value of revG∆  = −0.4228 J. With 

Re revS∆  = −10.2589 J/(mol∙K) and eq
e rev Re rev revS S ξ∆ = ∆ ×  = −0.001907 J/K, you 

get e revT S∆  = −0.5684 J. The total heat for the reverse reaction then is given by, 
ΔHrev = −0.4228 − 0.5685 = −0.9913 J. Since in this case Re revS∆  is negative, the 
newly formed product molecules this time contain too much intra-molecular 
energy compared to the reactants, so that additional heat energy has to be re-
leased to maintain a constant temperature. Also for the reverse reaction  

rev rev e revG H T S∆ = ∆ − ∆  is fulfilled.  
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As the reaction proceeds, the number of product particles increases and the 
number of reactant particles decreases. The same applies to their energies, but 
without changing their average energies. In the course of the reaction, a certain 
point may be reached, where there are no more energy differences between 
products and reactants, so that RG∆  vanishes. Under such conditions, the 
same activatable complexes can be formed from both the forward reaction from 
reactants and the reverse reaction from products. Since 0RG∆ = , no irreversible 
heat can be generated under these equilibrium conditions and thus also no 

RiS∆  can be produced, the reaction must come to a halt. However, in order to 
achieve a complete equilibrium at the given temperature, the following condi-
tion must also be fulfilled: All particle energies must be distributed according to 
their respective partition function. Then and only then the system is also in 
thermal equilibrium.  

For the spontaneous progression of a chemical reaction at constant tempera-
ture, the following can therefore be stated: As a precondition, there must be a 
negative energy difference between products and reactants. This actual energy 
difference, which depends on the reaction extent, is released into the surround-
ings as heat energy in order to enable an energy distribution of maximal proba-
bility between all particles of the system and surroundings.  

In case the system boundaries do not allow heat transfer, the system would 
have to absorb the surplus of energy. This would be considerably more complex 
and presumably more time-consuming, since all particle species of the sys-
tem—not just the reaction participants—would have to redistribute onto parti-
tion functions that were changed as a result of the temperature shift. This is also 
known to be associated with a shift in all thermodynamic parameters such as 

0
RG∆ .  
In non-coupled reactions, the entire Gibbs potential available as RG∆  is al-

ways converted into heat energy, whereas in a coupled reaction such as the dis-
charge reaction of a battery, part of that input potential can be converted into an 
electrical potential, so that only the remainder of the input can be released as 
heat. As shown above, the extent of this transformation is determined by the ef-
ficiency, which in turn is essentially determined (for a given Lc) by the conduc-
tance Le of the outer current branch. It is hence the magnitude of the current 
that controls the efficiency of the coupled reaction in a battery. Since the coupl-
ing presumably occurs at the phase boundaries of the electrodes, it seems plausi-
ble to assume that as current I increases and efficiency η  decreases, the charge 
transport against the respective electrode potentials ( oxϕ∆  and redϕ∆ ) may be 
affected first. Apparently, the electrical potential difference Δφ (counter poten-
tial) is used up so quickly that only a reduced (less negative) Δφ is available for 
transformation. The rest of the input potential is released as heat. This behavior 
can also be taken from Equations (27c) and (27d) for dissipation and entropy 
production (dependence on counter potential Δφ and hence also on Ge).  

It should be noted that this kind of variable entropy production does not arise 
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from uncoupling. Uncoupling is present whenever an additional leak flux occurs 
that is driven separately by only one of the potentials, EMF or Δφ. For example, 
if the reaction occurred without charge transport, or if charge could flow back 
into the direction of the electric field without participation of the reaction. In 
both cases, additional irreversible heat and entropy would be produced, and the 
efficiency would be reduced.  

The mechanism of such a power enhancement is demonstrated particularly 
impressively by the reactions leading to the activation of muscle contraction [25] 
[26]. There is a nerve impulse and a depolarization of the membrane potential at 
the beginning of this process, which causes the Ca2+ concentration in the sarco-
sol of a skeletal muscle cell to increase drastically. This in turn triggers the con-
traction process coupled to adenosine triphosphate (ATP) splitting. Under rest-
ing conditions, this reaction is far from equilibrium ( 0R cG∆  ) despite coupl-
ing, but in an inhibited state. When de-inhibited (activation by [Ca2+]), sufficient 
power can be released due to this status. The Gibbs potential of ATP splitting 
becomes more positive as a result, so that the coupled reactions of ATP forma-
tion can go through faster. Ultimately, this also includes the metabolism of the 
fuel glucose. This metabolic pathway is mainly activated at just one point, the 
phosphofructokinase reaction, by increasing the adenosine monophosphate 
concentration. Special activation of the many other enzyme-catalyzed reactions 
involved is apparently not necessary [25] [26] [27]. Obviously, it is sufficient that 
the counter potentials of a few coupled in-series reactions become less negative, 
as has been shown for the coupled battery reaction, to also bring about the re-
quired increase in power output of the entire energy metabolism of the muscle 
fiber.  

2.2.6. Comparison of Entropy Changes  
The amount of entropy eS∆  exchanged with the surroundings during volume 
work depends on whether the process has been conducted reversibly or irre-
versibly. Under partially irreversible conditions, only a fraction of the maximum 
that can be achieved under reversible conditions can be exchanged. As has been 
shown, such a work process can be divided into a completely reversible and 
completely irreversible part. Only the reversible part is associated with a corres-
ponding eS∆ . The rest of the volume change is work-free and is associated with 
entropy production iS∆ . 

Since the work-free volume change is always positive (also under conditions 
of compression), iS∆  must also be positive. Moreover, there is no simultane-
ous entropy change of the opposite sign at another location, as is the case with 
the exchanged entropy. Since under reversible as well as partially irreversible 
conditions the same total volume change occurs (under adiabatic conditions, a 
reversible and eS∆ -associated volume change does not exist), which equals the 
sum of volume changes of the partial processes, the entropies of the partial 
processes, eS∆  and iS∆ , must also add up to the total entropy S∆ . Thus,  
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e iS S S∆ = ∆ + ∆ , and hence S∆  must equal eS∆  under entirely reversible con-
ditions.  

Such behavior, on the other hand, is not observed in a partially irreversible 
reaction such as the discharge of a lead-acid battery. ReS∆  as well as eS∆  do 
not depend on whether the reaction has gone through reversibly or irreversibly. 
Consequently, there can be no interrelation between ReS∆  and RiS∆  (or eS∆  
and iS∆  of a reaction), like the entropy summation in the case of volume work. 
For chemical and biochemical reactions, ReS∆  is temperature-dependent and, 
like 0

RG∆ , changes its sign when the direction of the reaction becomes re-
versed.  

However, entropy changes during volume work and reactions exhibit an iden-
tical behavior in two essential points. In both processes, entropy production is 
associated with an increase of the process velocity and thus, also with an increase 
(up to a maximum value) of its power output. This is as if a real force were 
causing an acceleration. However, there is no such force. The higher process 
speed by entropy production is due to the tendency to maximize the probability 
of energy distribution at the molecular level. Secondly, both processes produce 
additional heat in the surroundings under partially irreversible conditions and at 
constant temperatures. In the partially irreversible Carnot cycle, this is caused by 
the occurrence of free expansions, which can arise as a result of rapid piston 
movement. This means that more heat energy remains in the surroundings dur-
ing the expansion process, while more heat energy is released into the sur-
roundings during the compression process (Table 1 and Table 2). This releases 
more eS∆  into the surroundings, but also produces a corresponding amount 
of iS∆  (Table 2). In chemical reactions, the surplus energy of the reactants, 
which has not been transformed by coupling, is responsible for that additional 
heat in the surroundings. In this case, it is accompanied by a corresponding 

iS∆  but not by a further change in eS∆ . 

2.3. Reaction Coupling in Biological Systems  

In living cells, many reactions are only possible through coupling. These include 
all synthetic reactions such as protein biosynthesis, and a number of ion trans-
port reactions such as the Na/K pump and the Ca pump. In this context, special 
mention should be made of muscle contraction, in which mechanical work is 
obtained from the chemical energy of ATP splitting through coupling.  

The coupling phenomena occurring in living cells are known to be far more 
complex than the association of reactants to activatable complexes in a non-coupled, 
completely irreversible reaction or the coupling via electrical potential differenc-
es of electrodes in a partially irreversible reaction. For example, in order to 
couple proton transport across the inner mitochondrial membrane to ATP syn-
thesis via ATP synthase, the cell must be equipped with highly differentiated 
protein complexes that fulfill this task as molecular machines, so to speak. The 
energetic and entropic principles of the coupled reaction itself remain the same, 
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however.  
The entire energy metabolism of a cell such as the muscle cell can be viewed as 

the flow of energy coupled to ATP formation, which in turn through ATP split-
ting is coupled to work functions such as ion transport, contraction, or bio-
chemical synthesis. This is comparable to a battery whose external current 
branch is connected to another battery or, for instance, to an electric motor. The 
electrical potential difference corresponds to the RG∆  of ATP formation (posi-
tive), whereas the work of the electric motor can be assigned to the work func-
tions specified above.  

Power generation in the course of energy transformations is achieved by the 
process of energetic coupling, as has been demonstrated here for processes as 
different as volume work and chemical reactions. It is of the most significant 
importance, both in technology and also in the living cell. In this context, it is 
imperative that the input energy is not only available in sufficient quantity, but 
that this energy or the potential associated with it can also be transformed at the 
required speed by coupling. From this, it can be concluded that the coupling 
mechanism should particularly have a high coupling conductance (Lc). It fol-
lows, though, that both the performance of man-made machines and the viabili-
ty of cells depend not only on energy, but to no less significant an extent on the 
ability to produce entropy.  
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