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Abstract 
The Ki67 index (KI) is a standard clinical marker for tumor proliferation; 
however, its application is hindered by intratumoral heterogeneity. In this 
study, we used digital image analysis to comprehensively analyze Ki67 hete-
rogeneity and distribution patterns in breast carcinoma. Using Smart Pathol-
ogy software, we digitized and analyzed 42 excised breast carcinoma Ki67 
slides. Boxplots, histograms, and heat maps were generated to illustrate the KI 
distribution. We found that 30% of cases (13/42) exhibited discrepancies be-
tween global and hotspot KI when using a 14% KI threshold for classification. 
Patients with higher global or hotspot KI values displayed greater heteroge-
nicity. Ki67 distribution patterns were categorized as randomly distributed 
(52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling 
simulator indicated analyzing more than 10 high-power fields was typically 
required to accurately estimate global KI, with sampling size being correlated 
with heterogeneity. In conclusion, using digital image analysis in whole-slide 
images allows for comprehensive Ki67 profile assessment, shedding light on 
heterogeneity and distribution patterns. This spatial information can facilitate 
KI surveys of breast cancer and other malignancies. 
 

Keywords 
Ki67 Heterogeneity, Breast Cancer, Digital Image Analysis 

 

1. Introduction 

Breast cancer is the most common malignancy and leading cause of can-
cer-related fatalities among women worldwide [1]. In addition to histological 
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grading and staging, immunohistochemical markers, including hormone recep-
tors HER2 and Ki67, are essential in breast cancer diagnosis [2]. These biomark-
ers not only serve as treatment indicators but also offer valuable prognostic in-
sights. Ki67, a nuclear protein expressed in proliferative cells, serves as the 
foundation for determining the Ki67 index (KI), denoting the percentage of 
immunoreactive tumor cells among all tumor cells, and thereby serving as a 
measure of tumor proliferation [3]. The KI has been used for subtyping hor-
mone-positive breast carcinomas into luminal type A (low KI) and luminal type 
B (high KI), which predict prognosis and indicate suitability for chemoradiothe-
rapy [4] [5] [6]. Typically, a threshold of 14% is adopted to demarcate low and 
high proliferation categories. Therefore, it is critical to precisely quantify the KI. 
However, in daily clinical practice, KI assessment predominantly relies on the 
subjective estimation of pathologists. Despite meticulous adherence to the stan-
dard international protocol during counting, substantial intra- and inter-observer 
variations persist [6] [7]. 

Many factors contribute to observer variation [6], including pre-analytical 
considerations (specimen type and cold ischemic time), analytical aspects (anti-
bodies and autostainers), and interpretation factors (scoring method and area 
chosen). Pathologists often choose different areas for KI counting due to intra-
tumoral heterogeneity. Ki67 intratumoral heterogeneity presents a challenge for 
assessment and quantification and is a daily phenomenon encountered by pa-
thologists. In most breast cancers, Ki67-positive cells exhibit non-uniform dis-
tribution throughout the tumor, with peripheral tumor cells often displaying 
greater activity and higher KI. Some studies reported that hotspots tend to occur 
most frequently at tumor edges [8]. Conversely, to investigate the predictive 
value of Ki67 heterogeneity on prognosis, researchers have measured the KI gaps 
between hotspots and the average from sampled fields [9] [10] [11]. However, 
evaluating this heterogeneity has proven challenging due to the inability to ma-
nually obtain comprehensive KI informationacross the entire tumor face.  

In recent decades, due to advancements in deep learning and convolutional 
neural networks, digital image analysis (DIA) has found applications in automatic 
KI assessment. Both commercial and open-source image analysis software solu-
tions have become readily accessible [12] [13]. Compared to human evaluation, 
these algorithms are more efficient and reliable in quantification [14] [15]. Nu-
merous pathologists and researchers have used these tools to study KI in breast 
cancer patients. However, most studies choose to evaluate KI in limited regions 
(tissue microarray or hotspots), serving as proxies for the whole tumor [16] [17]. 
This approach is favored because a full-face tumor whole-slide image (WSI) typi-
cally includes thousands of high-power fields (HPF). The use of WSIs would 
consume substantial computational power and time for analysis. In 2016, re-
searchers applied DIA to breast cancer Ki67 WSIs to obtain a comprehensive 
Ki67 index. They also introduced sophisticated indicators to describe Ki67 hete-
rogeneity [18] [19]. Retrieving complete Ki67 profiles within WSIs, as opposed to 
obtaining a single Ki67 index number, is the first step in decoding heterogeneity.  
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In order to survey how Ki67 heterogeneity affects breast cancer subtyping and 
how many areas are adequate for Ki67 index estimation, in this study, we used 
DIA to assess comprehensive Ki67 profiles in breast cancer at the WSI level and 
to visualize intratumoral heterogeneity. In addition, we utilized this data to si-
mulate the impact of sample size and heterogeneity on KI estimation. 

2. Materials and Methods 
2.1. Case Collection 

We collected data from 50 excised breast cancer cases that were diagnosed in the 
Department of Anatomical Pathology at Far Eastern Memorial Hospital, New 
Taipei City, Taiwan area, between January 2020 and December 2020. Inclusion 
criteria encompassed only cases of breast invasive carcinoma of no special type. 
Mucinous carcinoma, metaplastic carcinoma and lobular carcinoma were not 
included. All patients are over 35-year-old and include histological grading 1 to 
3. Two cases were excluded due to the invasive area being less than 10 HPF. 
Consequently, our study analyzed a total of 42 cases. The clinical and pathologi-
cal details of the patients are shown in Table 1. 
 
Table 1. Case details 

Case number 42 

Age (year) 35 - 92 

Tumor size 0.3 - 4.1 cm 

1a 1 

1b 4 

1c 10 

2 27 

N status  

0 28 

1mi 2 

1a 8 

2a 3 

3a 1 

Histological Grade  

Grade 1 9 

Grade 2 20 

Grade 3 13 

Average image tiles/case 1924 (207 - 4215) 

Total tumor cells/case 297,520 (16,746 - 1,177,992) 

Global Ki67 index 15.57% (2.50% - 42.79%) 

Hotspot Ki67 index 26.93% (5.92% - 88.46%) 
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Figure 1. Ki67 index analysis and sampling simulation. (A) The tumor area in Case 24 was an-
notated, and the software cropped the region into tiles. The neural network identified positive 
tumor cells (PTC, red), negative tumor cells (NTC, blue), and stromal cells (yellow) in tile im-
ages and calculated the Ki67 index. (B) Tiles containing more than 100 tumor cells were in-
cluded, and the Ki67 data was summarized to generate a boxplot, histogram, and heat map. (C) 
The KI data was also used in sample simulation to generate a hit rate probability histogram for 
different sample sizes. The red line represents global Ki67, with the target range falling between 
the two green lines. 

2.2. Ethical Approval 

This study received approval from the Research Ethics Review Committee of the 
Far Eastern Memorial Hospital (No. 110012-E). All slides used in the clinical di-
agnosis setting were retrieved from the repository. These slides and images were 
kept anonymous and did not contain any personal information. Therefore, the 
requirement for informed consent was waived. 

2.3. Specimen Preparation and Ki67 Staining 

Ki67-immunostained slides, utilized in a routine diagnostic context, were sourced 
from the repository of the Anatomical Pathology Department at the Far Eastern 
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Memorial Hospital. The specimens were fixed in 10% neutral-buffered formalin 
6 for 72 h and subsequently embedded in paraffin. The tissues were cut into 5 
μm-thick sections and mounted on hydrophilic slides. The Ki67 immunostain-
ing procedure was performed using a Benchmark Ultra Automated Staining 
System (Ventana Medical Systems, Tucson, AZ, USA). The slides were heated to 
96˚C for 34 min to facilitate antigen retrieval and then subjected to incubation 
with the Ki67 antibody (SP6, Biocare Medical, Pacheco, CA, USA) at a 1:200 di-
lution. To visualize the immunoreaction, the ultraView Universal DAB Detec-
tion Kit (Ventana Medical Systems) was used, with hematoxylin serving as the 
counterstain. The Ki67 immunostained slides were scanned using a Hama-
matsu S210 microscope (Hamamatsu Photonics, Hamamatsu, Japan) at 40× 
magnification (resolution of 0.23 μm per pixel), and the WSIs were saved in 
NDPI format. 

2.4. Ki67 Index Analysis 

We employed SmartPathology software (ver. 1.2.0, Quanta Computer, Taipei, 
Taiwan area) for the WSI KI analysis (Figure 1). First, a licensed pathologist 
(CMH) identified the tumor and captured a rectangular area containing the in-
vasive component. The software then automatically segmented the field into 
image tiles (1936 × 1216 pixels) and saved each tile in PNG format with sequen-
tial numbering as filenames. The real size of each tile is 0.124 mm2, equivalent to 
one HPF [20]. Each case comprised 207 - 4215 tiles (1924 tiles on average). 
These tiles were analyzed using a Breast Cancer Model that identified cells and 
classified them into three categories: positive tumor cells, negative tumor cells, 
and stromal cells. The Breast Cancer Model was a mask region-based convolu-
tional neural networks algorithm. For evaluating Ki67 index in tumor area, the 
interclass coefficient between algorithm and manual counting could reach 0.99. 
However, for non-tumor or lymphocyte-rich area, the algorithm might misre-
cognize stomal cells as tumor cells. The KI was defined as the percentage of posi-
tive tumor cells among the total tumor cells. After all the tiles were inferred, the 
data from these tiles were compiled into a CSV file for each case. When compu-
ting the global KI (the percentage of positive tumor cells across the entire tu-
mor), we excluded tiles with fewer than 100 tumor cells. Due to the presence of 
outlier data (tiles exhibiting extremely high KI), we defined hotspots as tiles fea-
turing KI values at the 90th percentile (Pareto hotspots), rather than focusing 
only on those with the highest KI [18]. For subtyping, we adapted the Saint Gal-
len International Expert Consensus on the primary therapy of early breast can-
cer in 2011, they suggested 14% of KI as threshold to categorize tumors into two 
groups: low proliferative (<14%) and high proliferative (≥14%). 

2.5. Sampling Simulator 

To investigate how intratumoral heterogeneity impacts the accuracy of KI sam-
pling, that is, the number of tiles (or HPF) that pathologists should select to ap-
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proach the global KI, we used a Python-based sampling simulator. In this simu-
lator, varying numbers of tiles (n = 1, 2, 3…) were chosen to estimate the global 
KI, with a predefined target range of global KI ± 2.5%. If the average KI of the 
sampled tiles, KI (n), fell within the target range, it was classified as a “Hit”. The 
program conducted 10,000 iterations of the sampling experiment for each sam-
ple tile number (n), allowing us to compute the probability of achieving a “Hit” 
for each n, which we termed the “Hit rate (n)”. Using Case 24 as an example 
(Figure 1), when we randomly selected one tile (n = 1) to estimate the global KI, 
we found that in 1465 out of 10 000 tests, KI (1) fell within the target range, 
yielding a hit rate (1) of 0.1465. When the sample size was increased to 128 (n = 
128), the hit rate reached 0.9519, which was higher than 0.95. We repeated the 
simulation until the hit rate exceeded 0.95, at which point we recorded the sam-
ple size as n = 95. Theoretically, the higher the KI heterogeneity, the larger the 
number of sampling tiles required to achieve a 0.95 hit rate, leading to a higher 
value for n = 95. 

2.6. Statistical Analysis 

Statistical analyses were performed using SPSS version 21 for Windows (Chica-
go, Armonk, NY, USA). To statistically and spatially represent the KI distribu-
tion, we employed various visualization techniques, including boxplots, histo-
grams, and heat maps, which were generated using the Seaborn plugin (v.0.12.1) 
in Python (ver. 3.6.10). 

3. Results 
3.1. Cases Information 

The details of the 42 cases summarized in the KI data are presented in Table 2 
and Figure 2. The global KI ranged from 2.50% to 42.79%, while the hotspot KI 
ranged from 5.92% to 88.46%. Concerning the global KI, 23 cases were catego-
rized as low-proliferative tumors (<14%), whereas only 10 cases fell into the 
low-proliferative group based on hotspot KI. Therefore, 30% (13/42) of the cases 
showed discrepancies between the different classification methods. In addition, 
we calculated cellularity (tumor cells per tile), which ranged from 172 to 490 per 
tile. 
 

Table 2. Ki67 profile. 

Case Global KI 
KI group by 

global KI 
Hotspot 

KI 
KI tier by 
hotspot KI 

Cellularity 
(TCC/tile) 

n (95) 
Distribution 

pattern 

1 8.70% Low 11.56% Low 347 6 Random 

2 14.49% High 21.72% High 238 18 Peripheral 

3 10.66% Low 16.60% High* 490 29 Random 

4 25.86% High 36.15% High 408 61 Random 

5 3.74% Low 6.07% Low 295 17 Random 
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Continued 

6 8.30% Low 13.96% Low 292 17 Peripheral 

7 23.52% High 40.08% High 239 81 Peripheral 

8 12.53% Low 23.76% High* 172 46 Peripheral 

9 23.19% High 35.23% High 195 153 Peripheral 

10 7.96% Low 12.98% Low 262 17 Peripheral 

11 9.95% Low 15.59% High* 249 15 Peripheral 

12 11.11% Low 16.51% High* 241 182 Random 

13 26.53% High 43.01% High 437 110 Random 

14 11.65% Low 16.52% High* 344 15 Peripheral 

15 25.29% High 39.92% High 219 128 Random 

16 20.28% High 29.20% High 405 52 Central 

17 30.58% High 52.83% High 252 77 Random 

18 9.03% Low 15.45% High* 391 57 Random 

19 2.90% Low 5.92% Low 278 13 Random 

20 18.66% High 28.39% High 199 92 Peripheral 

21 42.79% High 76.81% High 271 318 Central 

22 8.40% Low 13.27% Low 337 47 Random 

23 6.08% Low 12.50% Low 293 12 Random 

24 29.98% High 46.70% High 307 128 Random 

25 15.97% High 88.46% High 270 373 Random 

26 13.27% Low 20.29% High* 341 40 Peripheral 

27 9.33% Low 16.93% High* 189 23 Random 

28 20.86% High 35.79% High 210 70 Peripheral 

29 16.09% High 27.33% High 261 60 Peripheral 

30 18.90% High 31.09% High 297 49 Peripheral 

31 4.91% Low 9.46% Low 207 5 Random 

32 7.01% Low 15.98% High* 190 21 Random 

33 25.74% High 38.47% High 377 61 Peripheral 

34 9.56% Low 17.35% High* 466 20 Peripheral 

35 39.99% High 62.20% High 230 153 Peripheral 

36 19.64% High 33.36% High 217 80 Peripheral 

37 10.86% Low 16.22% High* 263 19 Random 

38 13.92% Low 20.84% High* 228 46 Random 

39 18.51% High 31.35% High 337 73 Random 

40 11.07% Low 21.35% High* 424 28 Peripheral 

41 3.81% Low 7.03% Low 340 4 Random 

42 2.50% Low 6.94% Low 226 5 Random 

* means Cases with different KI tiers by global KI and hotspot KI. 
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Figure 2. Global KI and Hotspot KI of all cases. Using the global KI, 23 cas-
es were identified as low proliferative tumors (<14%), and of those, 13 cases 
were reclassified as high proliferative when assessed by the hotspot KI. 
 

 

Figure 3. Ki67 profiles and histograms. (A) The boxplot displays the Ki67 index distribution for all cases. (B) 
The KI histogram for Case 21 exhibits a bimodal distribution and heterogeneity. (C) The histogram for Case 1 
shows a homogenous distribution. 
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Figure 4. Hotspots and Ki67 distribution patterns. (A) Hotspot in Case 12. (B) Hotspot in Case 18. 
Some red blood cells and lymphocytes (arrows) were mistakenly identified as positive tumor cells (red) 
and negative tumor cells (blue). (C) The heat map for Case 22 shows a homogenous randomly-distributed 
pattern. (D) The heat map for Case 35 shows a heterogenous randomly-distributed pattern. (E) The heat 
map for Case 10 shows a peripheral pattern. (F) Case 33 shows central scar with low activity. (G)-(H) 
Case 21 and Case 16 feature central hotspots. 

 

 

Figure 5. Correlation between n (95) (A) and global KI and (B) hotspot KI. 
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3.2. Statistically Heterogenicity 

In Figure 3(A), a boxplot shows the distribution of intratumoral KI values in 42 
cases. Some patients exhibited a wide interquartile range (IQR), as seen in Cases 
13, 21, and 35, indicating a higher degree of heterogeneity in KI levels. In gener-
al, patients with a higher global KI also had a higher interquartile range. The 
histogram representing Case 21 (Figure 3(B)) exhibits a heterogeneous, bimodal 
distribution characterized by significant variation in KI values. In contrast, the 
histogram for Case 1 (Figure 3(C)) displays a homogenous distribution, with 
most tiles exhibiting similar KI values with narrow variations. Beyond the IQR, 
we observed outlier data points with extremely high KI values, most of which 
were attributed to the software incorrectly identifying red blood cells or lym-
phocytes as positive tumor cells (Figure 4(A) & Figure 4(B)). Therefore, we 
opted to use the 90th percentile KI (Pareto hotspot) instead of the highest KI to 
represent the hotspot KI. 

3.3. Spatial Heterogenicity 

We used a heat map to elucidate the spatial distribution of KI, which can be ca-
tegorized into three patterns based on the location of hotspots: random, peri-
pheral, and centered (Figures 4(C)-(H)). Among our cohort of patients, nearly 
half (52%, 22/42) had a randomly distributed Ki67 density. The peripheral type 
(43%, 18/42) showed increased proliferation activity at the tumor edges. Only 
two patients (5%, 2/42) displayed hot central zones. 

3.4. Sampling Simulation 

The results of the sampling simulation are presented in Table 2, with n (95) 
ranging from 4 to 373 (67 on average). Therefore, in most cases, pathologists 
must sample more than 10 tiles to estimate global KI. Generally, in accordance 
with our assumption, cases with greater heterogeneity (wider IQR) had a higher 
n (95). One exception to this trend was seen in Case 25, which displayed a low 
global KI and IQR but exhibited the highest n (95) among the 373 tiles. This re-
sult may have been caused by the presence of a large number of outlier data 
points. In addition, n (95) demonstrated a positive correlation with global KI 
and hotspot KI (Figure 5(A), Figure 5(B)). 

4. Discussion 

The Ki67 index has been used in the field of breast pathology for several decades, 
and Ki67 intratumoral heterogeneity is a well-known issue. Nevertheless, nu-
merous unresolved questions stem from this heterogeneity, including whether 
global KI or hotspot KI should be reported. Where should we define hotspots, 
and how do we locate them? Which threshold should be used to divide tumors 
into low- or high-proliferative groups? Does the degree of statistical or spatial 
heterogeneity matter, and how should we measure it? How many HPF or tumor 
cells should pathologists count? These questions pose a considerable challenge 
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for resolution, primarily due to the limitations faced by human pathologists in 
quantifying millions of cells or conducting a comprehensive evaluation of a sin-
gle Ki67 slide. Due to the advancements made in deep learning and computa-
tional capabilities, researchers are now able to apply DIA to WSI to address these 
questions. In this study, we used image analysis software to infer full-face tumor 
Ki67 slides and retrieved Ki67 profiles to generate boxplots and histograms that 
statistically visualize heterogeneity. Heat maps were employed to reveal the spa-
tial information and different Ki67 distribution patterns. Based on sampling si-
mulations, our findings suggest that more than 10 HPFs (approximately 1.24 
mm2) are required for global KI estimation. 

Due to the intratumoral heterogeneity of Ki67 in breast cancers, global KI and 
hotspot KI are correlated but significantly different. As noted in this study, set-
ting the threshold at 14% resulted in a reclassification of one-third of cases, up-
grading them to a highly proliferative category based on hotspot KI instead of 
global KI. For most pathologists, the Ki67 index has a similar mitotic count; 
therefore, we tended to evaluate focal hotspots rather than the whole tumor. 
Some researchers posit that the most proliferative areas represent tumor beha-
vior and predict prognosis more accurately [8]. However, most early studies on 
KI in breast cancer primarily relied on tissue microarrays (random samples) or 
genetic profiling rather than a comprehensive examination of full-face tumor 
sections [16] [21] [22]. Therefore, the use of global KI may align more consis-
tently with the results of these studies. Regardless of whether global KI or hots-
pot KI is employed, the primary challenge lies in the manual impossibility of 
conducting a thorough, full-face tumor Ki67 evaluation; pathologists can only 
sample some areas and count a limited number of cells (up to 1000). These 
comprehensive Ki67 profiles extracted from WSI can provide more information 
than a single percentage value, whether global a hotspot-derived. 

Hotspot identification is another often overlooked problem in pathology due 
to the absence of a well-defined practical framework. Intuitively, pathologists rely 
on subjective judgments to identify areas with the highest Ki67 positivity when ob-
serving low-power fields, designating these regions as hotspots [11] [23]. How-
ever, there is no consensus regarding the optimal size of such areas and the 
minimum number of cells required to qualify as a hotspot. In our study, we es-
tablished an image tile, similar to an HPF, as the fundamental unit for dividing 
the WSI and chose 100 tumor cells as the minimal requirement. Statistically, we 
could identify the tiles with the highest KI from the Ki67 profile, but these might 
be a few outliers that do not represent tumor behavior. Therefore, the concept of 
“Pareto hotspots” was adopted [18], and we considered that these areas might 
offer a more accurate reflection of tumor proliferation compared to sporadic, 
extreme hotspots. Spatially, we easily identified hotspots within the heat map, 
which clearly visualizes the Ki67 density. 

The next question pertained to determining the most appropriate threshold 
for clinical use. Many studies have proposed the separation of low- and high- 
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proliferation groups as follows: 10%, 14%, or 20% [4] [5] [24]. Recently, the 
Gallen/Vienna Consensus Conference on Early Breast Cancer Treatment Stan-
dards has recommended three categories: low (<5%), intermediate (5% - 30%), 
and high (30%) [25]. In addition to pre-analytical factors, inter-laboratory, in-
ter-observer, and even intra-observer variations hinder the threshold setup. 
Therefore, a more precise and reliable quantification method is required. Using 
DIA, we can not only obtain a comprehensive Ki67 profile, but the data also ex-
hibit greater accuracy and reproducibility compared to human estimates [8] 
[14]. The precise quantification of KI can solidify the Ki67 study, enabling the 
establishment of a threshold for patient classification and even considering KI as 
a continuous variable [2]. 

Some researchers have suggested that Ki67 intratumoral heterogeneity could 
be a prognostic factor, and various parameters have been used to indicate the 
degree of heterogeneity. The most commonly used parameter is known as the 
“heterogenicity score”, typically defined as the difference between the hotspot KI 
and the global KI (or lowest KI). Two studies found that heterogeneity scores 
were independently associated with prognosis and lymph node metastasis [10] 
[23]. However, the KI data in these two studies were obtained through manual 
counting in the selected fields. Plancoulaine et al. [18] used the comprehensive 
Ki67 profile obtained through DIA and proposed parameters to quantify hete-
rogeneity, including entropy and bimodality. Their findings revealed that Ash-
man’s D, an indicator of bimodality, was an independent predictor of overall 
survival [19]. Furthermore, Ki67 expression was quantified using the hexagonal 
tiling approach, and heat maps were generated to depict spatial heterogeneity. 
Taking inspiration from these trailblazing studies, we employed heat maps to 
visualize Ki67 density and initially classified the spatial distribution into three 
patterns: randomly distributed, peripheral, and central. The peripheral pattern 
conforms to the general assumption held by pathologists: the most proliferative 
cells are situated at the tumor edges, where they actively search for mitotic activ-
ity. A classic example of this pattern can be observed in tumors with central ne-
crosis, as they are so large that only peripheral tumor cells have sufficient blood 
supply to grow. However, nearly half of the tumors exhibited a randomly distri-
buted pattern, indicating that the hotspots were evenly distributed within the 
tumor. Only a minority of patients displayed proliferative centers. These differ-
ent patterns could be the result of differences in factors such as blood supply, 
immune responses, or the tumor microenvironment (hormones or growth fac-
tors). This spatial information provides a novel perspective for interpreting Ki67 
expression and understanding tumor behaviors. 

In the assessment of KI, the matter of sample size is another long-standing 
question. Early studies suggested a requirement of 500 - 1000 cells [21]. Accord-
ing to the protocol established by the International Ki67 Breast Cancer Working 
Group, a minimum of three HPFs (including more than 100 cells) from different 
Ki67 density areas is required for estimation. In our study, we conducted simu-
lations with various sample sizes to estimate the global KI, and most cases re-
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quired more than 10 HPFs. Reasonably, a higher global KI value corresponds to 
increased heterogeneity and a greater number of tiles (HPF) to be examined 
[26]. In clinical practice, it could be imprecise to use KI from core biopsy to 
represent KI in whole tumors, especially in cases of tumors with a high global 
KI. Therefore, it is necessary to repeat the Ki67 evaluation when excised speci-
mens are available [27]. Nevertheless, it is imperative to establish a comprehen-
sive Ki67 profile, given that sampled KI values from limited areas cannot represent 
tumors with high heterogeneity. 

There are several limitations to this study, the first of which is the absence of a 
correlation test between Ki67 and genetic profiles. The question of which para-
meters within the Ki67 profile play a more decisive role in predicting genetic 
subtypes remains unanswered. A technological challenge we encountered was 
outlier data owing to an imperfect algorithm. The software incorrectly identified 
lymphocytes or red blood cells as tumor cells. However, our team is working on 
enhancing and accelerating KI assessment by applying tumor masks [12] [28]. 
Another concern is the coexistence of ductal carcinoma in situ within the inva-
sive components. In theory, KI should only be counted in the invasive regions; 
however, we did not exclude in situ lesions. This issue could potentially be ad-
dressed through area-segmentation algorithms capable of distinguishing invasive 
lesions from in situ lesions. 

In next step, we are planning to solidify the result of study in advance. Firstly, 
epithelial masks will be applied to KI quantification for more accurate evalua-
tion. Also, the statistic analysis and heat map generation will be performed au-
tomatically and packaged into the software. Therefore, data generation will be 
more efficient. Secondly, more breast cancer cases are required and subtypes, 
such as luminal type or triple-negative type, should be separated into different 
group. This is because clinical utility of KI might work differently in subtypes. 
For example, in hormone-positive early breast cancer, KI is an indicator for ad-
juvant chemotherapy, but for triple-negative breast cancer, it could be a prog-
nostic factor. Lastly, overall or disease-free survival rate should be correlated 
with their comprehensive KI profiles and KI heat map patterns. Therefore, it is 
possible to figure out which parameters and thresholds have the most important 
clinical utility. 

In conclusion, using DIA, we are now capable of addressing Ki67 heterogene-
ity and revealing distribution patterns that were previously deemed implausible. 
Future studies should focus on more robust software to consistently generate 
spatial information in a wider range of cases, enabling the determination of pa-
rameters that accurately represent tumor behavior. The comprehensive Ki67 
profile holds the potential to revolutionize the approach to conducting prolifera-
tive activity surveys in breast cancers. 
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