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Abstract 
Insects in the Order Odonata are highly subject to infection by gregarine pa-
rasites. However, despite the important ecological roles that insects play in 
every ecosystem in which they exist, little research has been devoted to the 
description of insect immunity. Insects rely heavily on the rapid actions of 
innate immune mechanisms to prevent infection. We characterized the mela-
nization response in the hemolymph of green darner dragonfly (Anax junius) 
nymphs. Incubation of chymotrypsin-activated hemolymph with L-DOPA re-
sulted in volume- and time-dependent production of dopaquinone via the 
phenoloxidase (PO) enzyme, with biphasic accumulation of product. The PO 
activity was temperature-dependent, with a stepwise increase from 20˚C - 
35˚C and maximum activity measured at 35˚C - 40˚C. The formation of 
product was also inhibited in a concentration-dependent manner by diethyl-
carbonate, a specific inhibitor of PO activity, which indicated that the observed 
activity was due to the presence of PO enzyme. The rate of formation and 
quantity of melanin was dependent on exposure to different titers of bacteria. 
This is the first characterization of both PO activity and melanization response 
in green darner dragonflies. 
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1. Introduction 

All animals require host defense mechanisms to avoid infection and colonization 
by potentially infectious microbes. These immune mechanisms have the ability 
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to distinguish self from non-self tissues, can activate effector molecules to target 
potential infectious agents [1], and can be divided into two broad categories: in-
nate immunity and adaptive immunity. While the adaptive immune system gen-
erally exhibits high specificity, it often requires multiple exposures and can take 
several days to develop a full response. In contrast, innate immunity displays non-
specific activities but acts immediately upon exposure as a rapid, first defense 
against invasion of microbes. These two systems often interact to produce an ef-
fective defense against microbial insult. While invertebrates do not rely entirely 
on innate immune mechanisms for host defense, their adaptive mechanisms of 
immunity are generally believed to lack the complexity of those that are com-
mon in vertebrates [2]. However, recent studies have shown that insect immun-
ity may be more complex than first described [3]. Arthropods utilize a range of 
cellular and humoral defense strategies to prevent microbial infection. These 
means of protection are extremely efficient and effective at isolating, encapsu-
lating, and clearing large numbers of infectious microbes [4]. 

Arthropods utilize multiple methods of host defense including the produc-
tion of antimicrobial peptides, phagocytosis of microbes, and melanization [5]. 
The melanization response is probably the most rapid and nonspecific immu-
nological response. It involves the immediate deposition of melanin, an inso-
luble black polymer of dopaquinone, on the surface of microbes or parasites un-
til the insult is completely encased in a shell of melanin. This pathway employs a 
proteolytic activation of the zymogen prophenoloxidase (proPO) by a serine 
protease cascade which requires the interaction of a host pattern recognition 
protein, such as peptidoglycan recognition protein or β-1,3-glucan recognition 
protein, with pathogen target proteins [6] [7]. The activated phenoloxidase (PO) 
enzyme then catalyzes the oxidation of phenols to quinones which rapidly po-
lymerize, in a non-enzymatic process, to form melanin [8]. The most common 
substrate for the formation of melanin is tyrosine [9]. It is interesting that this 
immunological mechanism seems to be restricted to arthropods, as no known 
vertebrates or other invertebrates exhibit this means of defense [10]. Melaniza-
tion effectively neutralizes immunological threats from parasites, bacteria, fun-
gi, and viruses [11].  

The expression of phenoloxidase enzyme activity has been positively corre-
lated with the resistance against a variety of microbial pathogens [12]. In addi-
tion, host insects with high PO activities have been shown to have lower parasite 
loads [3] and increased survival of microbial infections [13]. Furthermore, insect 
strains that are deficient in the melanization response typically have decreased 
resistance to infection [14]. Therefore, PO activity and subsequent melanization 
are thought to be an integral part of insect immune defense, and the melaniza-
tion response has been detected and compared across a variety of damselfly and 
dragonfly species [15].  

Insects play important roles in a broad spectrum of ecosystems and habitats. 
They are important parts of the food web in virtually all ecosystems in which 
they exist [16]. Members of the Order Odonata (dragonflies and damselflies) can 
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often act as indicator species of the health and integrity of aquatic ecosystems, 
and sometimes also the adjacent riparian or littoral areas [17] [18]. They are also 
predators of insect disease vectors and agricultural pests [17]. It is important to 
understand resistance and susceptibility to infection and mechanisms of immun-
ity in this important group of invertebrates. The focus of this study was to pro-
vide a detailed characterization of PO activity and melanization in hemolymph 
of the green darner dragonfly (Anax junius) nymph.  

2. Materials and Methods 

Chemicals and biochemicals—sodium cacodylate, CaCl2, L-DOPA, and a-chy- 
motrypsin were purchased from Millipore-Sigma (St. Louis, MO). 

Collection of dragonfly nymphs—nymphs were collected in heavy emergent 
vegetation in shallow marsh habitats using insect collection nets. Eighteen nymphs 
were collected from fish research ponds on the campus of the University of Illi-
nois in Champaign, IL, and three late instar nymphs were collected from the 
wetland demo garden at Shangri La Botanical Gardens and Nature Center in 
Orange, TX. The nymphs were placed individually in cups full of water from the 
environment in which they were captured. The species of nymphs were posi-
tively identified using a specific manual for the identification of dragonfly larvae 
[19]. 

Collection of hemolymph—nymphs were maintained in natural marsh water 
(22˚C - 23˚C) aerated with a pump and air stone until hemolymph was to be 
collected (generally less than 12 hrs.). A 26 ga needle attached to a 1.0 mL sy-
ringe was inserted between the dorsal abdominal tergites of segments 7 and 8 to 
right side of the midline. Hemolymph was collected and transferred to a 500 mL 
microcentrifuge tube in an ice bath. The hemolymph was flash frozen in a dry 
ice/ethanol bath and frozen at −80˚C until ready for phenoloxidase or melaniza-
tion assays. 

Phenoloxidase assays—for the volume-dependent activity, various volumes of 
hemolymph (0 - 20 mL) were balanced with assay buffer (10 mM sodium caco-
dylate, 10 mM CaCl2, pH 8.4) to a total volume of 50 mL. The diluted hemo-
lymph was treated with 10 mL of α-chymotrypsin (1 mg/mL) for 20 min. at am-
bient temperature (~25˚C). This mixture was incubated with 40 mL of saturated 
L-DOPA in assay buffer in a 96-well plate, the reaction was allowed to proceed 
for 30 min., and the optical density was measured every 2 min. At 490 nm using 
a BioRad BenchmarkTM plate reader.  

To determine the effects of temperature on PO activity of hemolymph, 100 
mL of hemolymph were mixed with 500 mL of assay buffer (10 mM sodium ca-
codylate, 10 mM CaCl2, pH 8.4) were treated with 100 mL of α-chymotrypsin (1 
mg/mL) for 20 min at ambient temperature (~25˚C). The treated hemolymph 
(75 mL) was placed in wells of a microtiter plate and equilibrated at either 5˚C, 
10˚C, 15˚C, 20˚C, 25˚C, 30˚C, 35˚C or 40˚C for 10 min. The reaction was in-
itiated with 50 mL of saturated L-DOPA in assay buffer and the absorbance was 
measured at 490 nm after 30 min. using a BioRad BenchmarkTM plate reader. 
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Melanization assays—to measure melanization of hemolymph in the presence 
of different concentration of bacteria, 30 mL of hemolymph diluted with 75 mL 
of assay buffer (10 mM sodium cacodylate, 10 mM CaCl2, pH 8.4) were added to 
50 mL of different solutions of E. coli (107, 106, 105, 104, or 103 CFU/mL sus-
pended in sterile saline) in different wells of a 96-well plate. The optical density 
at 600 nm was measured immediately to provide a baseline absorbance, and then 
measured every 60 seconds to monitor melanization using a BioRad Benchmark 
PlusTM plate reader. 

Statistics and controls—each data point in each assay represents the mean ± 
standard deviation of four independent determinations. The concentration of 
dopaquinone was calculated using a molar extinction coefficient of 3600 M−1∙cm−1. 
The concentration of melanin was calculated using a molar extinction coefficient 
of 11 cm−1 (mg/mL)−1 [20]. 

3. Results 

The formation of dopaquinone (DOPA) by the phenoloxidase enzyme in the 
hemolymph of the green darner dragonfly nymph was volume- and time-depen- 
dent (Figure 1(a)). The formation of DOPA was biphasic, with an initial rapid 
formation of product for approximately 7 minutes, followed by a slower linear  
 

 

Figure 1. Volume-dependent formation of DOPA by hemolymph from green darner dra-
gonfly nymphs. A. PO activity increased in a biphasic manner with increased in hemo-
lymph volume. Results represent the means of four independent determinations. B. Ki-
netic analysis of the concentration-dependent production of DOPA by hemolymph from 
green darner dragonfly nymphs. The parabolic curve with the polynomial fit shows the 
nonlinearity of the increase in PO activity with volume.  
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accumulation of product. Inclusion of 2, 5, 10 or 20 mL of hemolymph resulted 
in the formation of 30.8, 55.3, 93.1, or 153.6 mM product after 28 min of incuba-
tion, respectively. The inclusion of assay buffer with no hemolymph resulted in 
no significant absorbance at 490 nm (<1.3 mM) at any time point, which indi-
cated that there was little or no spectrophotometric interference in the assay. 
When the formation of product was plotted against the volume of hemolymph 
used, a parabolic curve of the 2nd order polynomial fit resulted, with a R2 value of 
0.9968 and a y-intercept of 5.4435 mM (Figure 1(b)). 

Incubation of α-chymotrypsin-treated hemolymph with L-DOPA at different 
temperatures resulted in temperature-dependent formation of product. The en-
zymatic activities were relatively low (117.0 - 131.6 mM product accumulated) 
below 25˚C, with a stepwise increase from 20˚C - 30˚C. Peak activities of 177.1 ± 
17.1 and 177.1 ± 6.2 were measured at 30˚C and 35˚C, respectively (Figure 2).  

The PO-mediated accumulation of L-DOPA product in dragonfly hemolymph 
was measured at 352.6 ± 31.6 mM (Figure 3). The addition of diethylthiocarba-
mate (DETC), a specific inhibitor of PO activity, reduced activity in a concentra-
tion-dependent fashion. The activity was inhibited 24.4% ± 4.8%, 21.2% ± 4.6%, 
and 51.2% ± 7.5% by 2, 8, and 40 mM (DETC). 
 

 

Figure 2. Thermal profile of the concentration dependent production of DOPA by he-
molymph from the green darner dragonfly. Results represent the means ± standard devi-
ations of four independent determinations. 
 

 

Figure 3. Concentration-dependent inhibition of PO activity by diethylthiocarbamate in 
the hemolymph of the green darner dragonfly. Results represent the means ± standard 
deviations of four independent determinations. 
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Incubation of different titers of E. coli bacteria with the diluted hemolymph of 
green darner dragonfly nymphs resulted in different rates of melanization 
(Figure 4). The production of melanin was asymptotic, with linear production 
of product 6 - 7 minutes followed by a slowing rate of melanization. Incubation 
of 103, 104, 105, 106, or 107 bacteria/mL produced peak concentrations of 8.6, 
11.8, 14.4, 18.0, or 19.9 mg/mL melanin, respectively. 

4. Discussion 

Adaptive immunity is a more advanced system of host defense and is thought to 
have developed in early fishes (agnathans and gnathostomes, [21]), while innate 
immunity is more basal and is known to have been present in cephalochordates 
some 600 - 650 mya.  

Although invertebrates have immunoglobulin-like molecules that may represent 
precursors to modern host protection, they serve functions other than immuno-
logical defense [22] [23] [24] and lack the ability to rearrange to form a myriad 
of diverse antigen binding sites as in vertebrates [25]. However, several studies 
have identified diverse immunoglobulin-like proteins in insects [26] [27]. In lieu 
of an advanced adaptive immunity, these invertebrates exhibit well-developed 
innate immune systems [28] [29] [30]. In the absence of complex acquired im-
munity, the immune system evolved innate systems of pattern recognition for 
the detection of non-self substances as organisms developed systematic ways of 
recognizing recurring molecular microbial patterns distinctly different from host 
antigens [31]. One such mechanism of innate host defense involves the mono-
phenoloxidase enzyme, which catalyzes the oxidation of phenol to dopaqui-
none, which then spontaneously polymerizes in a process called melanization to 
deposit insoluble melanin and encapsulate microbes and parasites. This me-
chanism of immunological defense, which is thought to have evolved some 600 
mya [1] and before the split between protostomes and deuterostomes [32], is 
present in early invertebrates such as arthropods, mollusks, annelid, echino-
derms, tunicates, and cephalochordates [33], is a simplistic but effective way of 
 

 

Figure 4. Kinetic analysis of melanization in hemolymph of the green darner dragonfly 
exposed to different concentrations of E. coli bacteria. Results represent the means of four 
independent determinations. 
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isolating internal threats, thus insulating and protecting the host organism via 
physical separation by a sheath of melanin [10]. The measurement of melaniza-
tion can provide an indication of the degree of immune competence [34] [35] 
[36] and potentially the overall fitness [37] of an organism, as immunological 
threat can negatively impact other important physiological functions such as di-
gestion, growth, reproduction, etc. The activation of PO activity of hemolymph 
from the nymph of the green darner dragonfly is rapid and concentration-de- 
pendent (Figure 1(a)). 

Ectothermic animals have limited biochemical means of thermoregulation, and 
thus generally utilize behavioral mechanisms to exploit their external thermal 
environments. However, several studies have shown both behavioral and physi-
ological thermoregulation strategies in several species of dragonflies [38]. These 
animals can increase internal temperature by increasing wingbeat frequency to 
produce metabolic heat, derived from the flight muscles, which can increase tho-
racic temperatures that are substantially warmer than ambient air temperatures 
[39]. In addition, dragonflies can rest in different thermal environments (sun or 
shade) and use a variety of body and wing postures and orientations relative to 
the direction of solar radiant energy [39]. Like all ectothermic organisms, their 
physiology and biochemistry are temperature-dependent. The PO activity in 
dragonfly hemolymph was found to be maximal at 35˚C - 40˚C (Figure 2). This 
temperature range almost exactly matches the thermal body temperature prefe-
rences of several species of dragonflies reported by [38]. Rapid responses of the 
innate immune system are important to prevent colonization by potentially-in- 
fectious microbes, and thus maintaining body temperatures in this range may be 
important for immunological fitness of these organisms. It is also likely that, 
in addition to immune function, which other physiological systems (digestive, 
circulatory, respiratory, etc.) are also maximal in this temperature range. At 
lower temperatures (5˚C - 20˚C), microbes do not grow as rapidly, and thus at 
temperatures below 25˚C infection poses a smaller threat and thus the lower ac-
tivity of PO at these temperatures may be less immunologically important. 
However, dragonflies can rapidly increase thoracic temperatures by wing-whir- 
ring, which is a behavior during which dragonflies employ rapid contractions of 
wing muscles to produce metabolic heat [40] [41].  

The activation of PO activity, and ultimately melanization, relies on the initial 
detection of conserved patterns of molecular patterns expressed by microbes. 
These detection mechanisms include Toll-like receptors and their downstream 
proteolytic cascades [42]. Insects express a full complement of functional Toll-like 
receptors [43]. Although the Toll receptors have ancient evolutionary history as 
they appear in different metazoan groups 700 mya [44], insects underwent an 
expansion of this family of immune receptors some 250 - 300 million years later 
[45] [46]. It is interesting that activation of PO activity can be achieved in he-
molymph. It is known that activation of PO can be accomplished by soluble 
PPRs in insects [47]. The kinetics of PO activity (Figure 1(a)) was almost iden-
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tical to that of melanization (Figure 4) in the hemolymph of the green darner 
dragonfly nymphs. The melanization response shows a similar kinetic curve 
(Figure 4). The response of soluble PPRs to activate an immune response may 
be important for organisms that utilize an open circulatory system in which or-
gan systems are bathed in hemolymph. 

Some Odonate species are in sharp decline on large scales due to the use of in-
secticides [48], infection and disease [49], changes in agricultural practices [50], 
and habitat loss [51]. In addition, localized extirpations are also a problem [52]. 
Dragonflies seem to be particularly susceptible to parasitism by gregarine para-
sites [53] [54] [55]. In addition, some dragonfly species have been implicated as 
reservoir hosts of chytrid fungus (Batrachochytrium dendrobatidis), which has 
had far-reaching detrimental population effects on amphibian populations world-
wide [56]. Because these animals can be used as sentinel species to monitor the 
health of an ecosystem, it is important to understand their mechanisms of im-
munity. This is the first characterization of both PO activity and melanization in 
a species of dragonfly. These baseline data are important and can be used for 
comparison to those collected from animals in disturbed habitats, diseased pop-
ulations, or comparison to other dragonfly species. The data presented in this 
study should provide a good reference for future studies that focus on the inves-
tigation of the effects of anthropogenic disturbances on the immune systems of 
green darner dragonflies.  
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