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Abstract 
Neuromuscular diseases present profound challenges to individuals and health-
care systems worldwide, profoundly impacting motor functions. This re-
search provides a comprehensive exploration of how artificial intelligence 
(AI) technology is revolutionizing rehabilitation for individuals with neuro-
muscular disorders. Through an extensive review, this paper elucidates a wide 
array of AI-driven interventions spanning robotic-assisted therapy, virtual 
reality rehabilitation, and intricately tailored machine learning algorithms. 
The aim is to delve into the nuanced applications of AI, unlocking its trans-
formative potential in optimizing personalized treatment plans for those 
grappling with the complexities of neuromuscular diseases. By examining the 
multifaceted intersection of AI and rehabilitation, this paper not only con-
tributes to our understanding of cutting-edge advancements but also envi-
sions a future where technological innovations play a pivotal role in alleviat-
ing the challenges posed by neuromuscular diseases. From employing neu-
ral-fuzzy adaptive controllers for precise trajectory tracking amidst uncer-
tainties to utilizing machine learning algorithms for recognizing patient mo-
tor intentions and adapting training accordingly, this research encompasses a 
holistic approach towards harnessing AI for enhanced rehabilitation out-
comes. By embracing the synergy between AI and rehabilitation, we pave the 
way for a future where individuals with neuromuscular disorders can access 
tailored, effective, and technologically-driven interventions to improve their 
quality of life and functional independence. 
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1. Introduction 

Neuromuscular diseases, comprising ailments such as muscular dystrophy, spin-
al muscular atrophy, and cerebral palsy, pose formidable obstacles to individu-
als’ motor functions, necessitating innovative rehabilitation approaches. Amidst 
these challenges, the convergence of artificial intelligence (AI) and rehabilitation 
emerges as a promising frontier, reshaping the landscape of personalized treat-
ment. This research embarks on a comprehensive journey to explore the trans-
formative impact of AI technologies in the rehabilitation domain, aiming to ad-
dress the complex needs of individuals grappling with neuromuscular disorders. 
Over the past decade, rapid technological advancements have ushered in a new 
era, offering a spectrum of interventions ranging from robotic-assisted therapy 
to virtual reality rehabilitation. These interventions not only mitigate the limita-
tions imposed by neuromuscular disorders but also empower individuals to re-
gain control and independence over their motor functions. This paper serves as 
a guide through these advancements, meticulously dissecting their applications 
and implications within the context of neuromuscular diseases. 

At the heart of this exploration lies the intricate interplay of AI algorithms, 
machine learning models, and innovative rehabilitation technologies. By delving 
into the nuanced intricacies of these interventions, we aim to provide a holistic 
understanding of how AI-driven approaches can revolutionize rehabilitation strat-
egies for individuals with neuromuscular disorders. As we unravel the complexi-
ties of these technological advancements, this research not only offers a retros-
pective analysis but also sets the stage for envisioning a future where AI plays a 
pivotal role in crafting tailored solutions to address the unique challenges posed 
by neuromuscular disorders. Through this exploration, we seek to pave the way 
for enhanced rehabilitation outcomes and improved quality of life for individu-
als facing the complexities of neuromuscular diseases. 

2. Literature Review 

This comprehensive review meticulously explores the dynamic evolution of re-
habilitation robotics and orthotics over the past 15 years, tracing their develop-
ment from initial applications in manufacturing to their critical role in pa-
tient-centred healthcare interventions [1]. The review provides a historical con-
text, illustrating the significant shift from robots primarily used in industrial set-
tings to their reconfiguration for healthcare applications, specifically tailored to 
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address complex neuromuscular disorders. This transition underscores a broad-
er trend towards adapting technology for enhanced human benefit, particularly 
in medical rehabilitation. A focal point of this analysis is the examination of in-
novative robotic devices such as the iARM, WREX, and ARMON [2]. These de-
vices are dissected to reveal their functionalities and evaluated for their trans-
formative impact on the daily lives of individuals suffering from debilitating 
conditions like muscular dystrophy and spinal muscular atrophy [3]. The iARM, 
for example, offers enhanced mobility through a wheelchair-mounted robotic 
arm, facilitating greater independence for users [4]. Similarly, the WREX and 
ARMON provide vital support for limb movement, significantly improving the 
quality of life for patients with severe muscular limitations [5]. In addition to 
hardware advancements, this review delves into the integration of sophisticated 
software solutions, specifically the use of ensemble machine learning algorithms 
to forecast rehabilitation outcomes. This innovative, data-driven approach not 
only deepens our understanding of rehabilitation outcomes but also enables the 
customization of patient-specific therapies, thereby enhancing the precision of 
treatment plans [6] [7] [8] [9]. The predictive prowess of these AI models, vali-
dated through rigorous evaluation metrics such as root mean squared error 
(RMSE), highlights their capacity to significantly influence and transform the 
landscape of precision healthcare technologies in rehabilitation medicine. The 
inclusion of AI and machine learning not only augments the effectiveness of 
physical robotic systems but also propels the entire field toward more adaptive, 
responsive, and effective treatment methodologies [10]. This enriched perspec-
tive on rehabilitation robotics and orthotics, through both the lens of technolo-
gical evolution and advanced predictive analytics, offers a multifaceted under-
standing of their potential to revolutionize rehabilitation practices. The integra-
tion of these technologies represents a critical step forward in our ability to meet 
the complex and varied needs of patients with neuromuscular disorders, ulti-
mately paving the way for more personalized, effective, and technologically in-
tegrated healthcare solutions. 

3. Applications 
3.1. Robotics and Assistive Technology for Neuromuscular  

Diseases 

There is a description of treatments for persons with movement problems, as 
well as technology that may be utilized to alleviate symptoms. Muscular dystro-
phy, spinal muscular atrophy, cerebral palsy, and other movement disorders are 
examples. This study focuses on robotics and other assistive technologies used to 
treat and aid persons suffering from neuromuscular diseases such as muscular 
dystrophy (MD), spinal muscular atrophy (SMA), arthrogryposis multiplex con-
genita (AMC), and cerebral palsy (CP). These conditions make these people’s ex-
tremities weak, uncontrollable, stiff, or a mix of the three. People suffering from 
these disorders resort to compensating motions such as ballistic-or swinging- 

https://doi.org/10.4236/abb.2024.155018


R. de Filippis, A. Al Foysal 
 

 

DOI: 10.4236/abb.2024.155018 292 Advances in Bioscience and Biotechnology 
 

movements, tabletop aid, using both hands or tilting their head forward to eat 
food directly from the plate. A parent or caregiver may be expected to assist in 
the feeding process or in other daily life duties, which can strip people of their 
freedom. Robots, or those, and other technologies can help persons with im-
pairments live independent and dignified lives. Although robots might look 
mechanical, machine-like, and impersonal in appearance and movement, they 
can also be of great assistance if they are appropriately matched with the indi-
vidual and their condition. Over the last 10 - 15 years, there has been considera-
ble development in rehabilitation robotics as technology shrinks and improves 
and personal machines become more acceptable.  

Wheelchair-mounted, stationary, and commercial industrial robots have not 
seen widespread commercial success in healthcare due to a combination of 
high costs, limited adaptability, and the need for more personalized solutions 
[11]. The significant financial outlay for development, maintenance, and im-
plementation makes these robots less accessible, particularly in financially 
constrained healthcare settings. Moreover, robots initially designed for indus-
trial applications often lack the flexibility needed for the dynamic environ-
ments of healthcare, which require devices adaptable to the varied needs of in-
dividual patients and specific medical conditions [12]. Personalized medicine, 
which tailors’ treatments to individual patient characteristics, demands a level 
of customization that these robots currently do not offer [13]. Regulatory hur-
dles also play a role, as healthcare devices undergo stringent scrutiny to ensure 
patient safety, delaying the integration of robotic technologies into everyday 
clinical use. Additionally, there are technological limitations in terms of sensor 
sensitivity and the intelligence of autonomous systems, which can undermine 
the effectiveness of robots in complex medical scenarios [14]. Cultural and 
psychological barriers further complicate the acceptance of robotic aids in 
healthcare, as patients and providers often prefer human interaction, especially 
in therapeutic contexts. Overcoming these challenges will require focused ef-
forts on enhancing technological capabilities, reducing costs, ensuring safety, 
and building trust among users to integrate robotics more fully into healthcare 
systems. 

For many years, occupational therapists (OTs) have employed assistive devic-
es and assistive technology (AT) in environmental modification. This might en-
tail employing low-tech equipment like assistive gadgets such as swivel spoons 
and button hooks, adaptive equipment such as self-feeding gear and overhead 
slings, and augmentative communication devices [15] [16] [17]. 

3.2. Rehabilitation Robotics and Orthotics 

Robots were used in manufacturing environments, such as automobile assembly, 
for repetitive tasks that were labour-intensive and required a high degree of ac-
curacy. Towards the end of the century, the possibility of robots interacting with 
humans became a possibility, including advanced prosthetics, motorized feeding 
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devices, and sentry robots [18]. Another cause was the aging population as the 
baby boomer generation approached retirement age. Population growth is a 
global phenomenon.  

For example, robot technology in healthcare was more readily accepted in 
Japan than in many other wealthy countries. Robots originally appeared in re-
search labs [19] as assistive aids to help persons with upper extremity paraly-
sis. Later, wheelchair-mounted and fixed robots, as well as commercial indus-
trial robots, were created and repurposed for healthcare [20]. They were used 
to treat a wide range of motor disabilities, including neuromuscular illnesses 
including muscular dystrophy and spinal muscle atrophy. Despite having a 
significant impact on persons with neuromuscular illnesses, these devices did 
not achieve broad commercial success. A variety of elements are considered to 
be involved. 

In contrast, the rehabilitation robotics field has moved its emphasis in the 
previous 10 - 15 years toward treatment robots, with the patient as the primary 
benefactor. This has been pushed by the enormous number of stroke victims; 
science demonstrating the brain’s ability to adapt through neuroplasticity even 
in the chronic stage [21], and the desire to control healthcare expenditures. 
More projects focusing on cerebral palsy and robots have emerged in recent 
years [22] [23] [24]. The sections that follow are divided into assistive robots, 
therapeutic robots, and upper extremity orthoses, with an emphasis on devices 
that are currently on the market and employed therapeutically and as consumer 
products. 

3.3. Orthoses and Assistive Robots 

The iARM (previously known as the Manus) is a gadget that has been available 
for over 20 years. This is a wheelchair-mounted 7-jointed robot arm that helps 
persons with neuromuscular disorders to move about situations to have access 
to their surroundings and do a portion of the activities that their normal arm 
would perform.  

Someone can use the iARM to grab a drink or feed themself. A joystick or 
keyboard can be used to operate it. It may be operated in joint, programmed, or 
Cartesian mode, which moves the gripper in anXYZ configuration. The wheel-
chair battery powers the motors, and the iARM sits alongside the wheelchair. 
The iARM [25] is priced at $20,000. People with muscular dystrophy, spinal 
muscular dystrophy, spinal cord injury, cerebral palsy, and other motor disabili-
ties utilize the iARM. There are roughly 400 iARM devices in operation across 
the world. Upper extremity exoskeletons are utilized for those who still have 
some arm strength. This is common in persons with neuromuscular diseases in-
cluding MD, SMA, arthrogryposis, and other motor illnesses like ALS and SCI. 
These exoskeletons are mainly passive, which means they lack external power 
sources such as motors. They are lightweight and frequently mounted to wheel-
chairs. The WREX (Wilmington Robotic EXoskeleton) is one such exoskeleton. 
WREX is a mechanical linkage driven by elastic bands that may be added to a 
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wheelchair [26] [27]. The gadget glides alongside the arm, allowing for easy an-
ti-gravity motions. This is especially effective for persons with muscular dystro-
phy and spinal muscular atrophy when proximal muscles are weak and distal 
muscles are not. The WREX enables them to manoeuvre their hand in front of 
them and carry out regular tasks. The WREX comes in one size and may be al-
tered to fit different-sized persons, as well as the number of elastic bands, which 
can be varied based on the individual’s weight. A balanced forearm orthosis 
(BFO) or ball-bearing feeder is a mechanical linkage that attaches to a wheel-
chair and allows individuals to move their arms in the horizontal plane. They 
can move their hand to their mouth by pivoting around a fulcrum at the midline 
of their forearm. There is also a variation that permits elevation using an elastic 
band, however this is rarely utilized. The BFO was invented in the 1950s and is 
available for around $600 from Patterson Medical. The ARMON, which is mar-
keted in Europe, is a wheelchair-mounted passive exoskeleton that allows the 
arm to move against gravity. It is designed for persons with neuromuscular dis-
eases such as muscular dystrophy and SMA and is powered by adjustable 
springs. The ARMON differs from the WREX in that it is not a genuine exoske-
leton because it is derived from the wheelchair’s base. It has a wide range of 
gravity-free mobility. It costs around $3000. The DAS (Dynamic Arm Support) 
is another commercially available gadget. For persons who have arm weakness, 
this is a spring-loaded upper extremity orthosis. It may also be attached to a 
wheelchair and is sold in Europe. 

3.4. Using Ensemble Machine Learning, a Multifaceted Approach  
to Predicting Rehabilitation Outcomes 

In this groundbreaking study, a multidimensional strategy is employed to fore-
cast the prospective functional improvement of neurological (NP) and ortho-
paedic (OP) rehabilitation patients, underscoring the importance of precision 
medicine in patient-centric care. Leveraging a dataset of approximately 4050 
hospital discharges from IRCCS San Raffaele (2015-2018), crucial variables from 
the “Acceptance/Discharge Report for the Rehabilitation Area” (ADR) are me-
ticulously curated, handling missing values and outliers. Four tree-based ensem-
ble machine learning models (xGBT, LightGBM, CatBoost, and gradient boost-
ing) are utilized to evaluate functional ability post-discharge, while a custom- 
designed stacked ensemble technique combines the strengths of these models 
with simpler ones like ridge regression and kernel ridge. This approach enhances 
our understanding of rehabilitation outcomes and offers a novel tool for tailor-
ing patient-specific therapies. Evaluating predictive accuracy using root mean 
squared error (RMSE), the outstanding performance of the models is confirmed, 
with RMSE values of 6.58 for OP patients and 8.66 for NP patients, calculated 
using the equation 

( )2
1

1 ˆRMSE i
n

ii y y
n =

= −∑  

These results signify a significant advancement in the integration of artificial 
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intelligence and rehabilitation medicine, paving the way for precision healthcare 
technologies and individualized rehabilitation regimens [28] [29] [30] [31].  

Machine Learning Algorithms for Rehabilitation Outcome Prediction: 
Mathematical Formulation and Clinical Application 

1) Tree-Based Ensemble Models (xGBT, LightGBM, CatBoost, Gradient 
Boosting): In a tree-based ensemble model, such as XGBoost, LightGBM, Cat-
Boost, or Gradient Boosting, predictions are made by aggregating the outputs of 
multiple individual trees. Given a dataset ( ){ },i iD x y= , where Rm

ix ∈  repre- 
sents the features and Riy ∈  represents the target variable for n samples, the 
prediction ˆiy  for the i-th sample is obtained by summing up the predictions of 
K trees: 

( )1
ˆi ik

K
ky f x

=
= ∑  

Here, ( )k if x  represents the prediction made by the k-th tree for the i-th 
sample. 

This can be conceptualized as follows: for each sample xi, the model traverses 
through each tree k in the ensemble and obtains a prediction ( )k if x . These 
predictions from all trees are then aggregated to obtain the final prediction ˆiy  
for the sample xi. This representation emphasizes the sequential nature of 
tree-based ensemble models, where each tree contributes its prediction to the fi-
nal outcome. It also highlights the iterative training process where subsequent 
trees are trained to correct the errors made by the previous ones, ultimately 
leading to a more accurate ensemble prediction. 

2) Custom Stacked Ensemble Algorithm: At the second level of the custom 
stacked ensemble algorithm, a meta-learner based on simple ridge regression or 
kernel ridge regression is utilized. The input for this level is the matrix P pro-
duced by the first level. The optimization task involves minimizing a loss func-
tion L given by: 

( )2predicted 2
1 1i i ii i

n nL y y Bλ
= =

= − +∑ ∑  

Where, predicted is the predicted value obtained from the first level ensemble, yi 
is the actual ground truth value, Bi is the penalization term, λ is the regulariza-
tion parameter. In essence, ridge regression minimizes a residual sum of squares 
(RSS) plus a squared penalization factor to prevent over fitting and stabilize the 
solution. Additionally, because there are two distinct groups of patients, NP and 
OP, tailored models are utilized for each group. This implies that different 
learners in both the first and second layers are chosen based on their perfor-
mance on the metric of interest. Figures 1(a), Figures 1(b) provided illustrate 
examples of the models for OP and NP, showcasing slight differences between 
the models employed in the first and second layers. For instance, LightGBM is 
utilized in the first layer for OP, along with xGBT and CatBoost. However, for 
NP, Gradient Boosting is used instead of LightGBM.  
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(a) 

 
(b) 

Figure 1. (a) Illustration of customized models for OP model; (b) Illustration of 
customized models for NP model .  

3.5. ML in Low Back Pain Rehabilitation 

The main cause of global disability is low back pain (LBP) [32]. LBP prevalence 
peaks in the third decade of life, declining until around age 60 - 65 [33]. It is a 
significant health and socioeconomic concern, leading to workforce absentee-
ism, particularly among individuals engaged in high-intensity work [34] [35] 
[36]. LBP is characterized by recurrence rates ranging from 24% to 80% within 
one year, necessitating preventive measures to mitigate its effects. Despite ap-
proximately 90% of LBP cases lacking a known explanation [37], various treat-
ment modalities such as education, reassurance, analgesic medications, and non- 
pharmacological therapies are employed [38]. Machine Learning (ML), a sub-
field of artificial intelligence, offers computational methods for building and 
updating knowledge-based models in intelligent systems [39]. ML approaches, 
particularly supervised and unsupervised learning, have been increasingly inves-
tigated in medical sciences, including the prognosis and prediction of clinical 
outcomes in LBP [40]. Additionally, ML’s application in telerehabilitation, par-
ticularly through virtual coaching, shows promise in guiding users through ex-
ercises and skill acquisition [41]. 

Algorithmic Approach and Mathematical Formulation: 
Predictive Modeling for LBP: 

( )Risk Score Demographic Characteristics,Lifestyle Factorsf=  

( )Recurrence Probability Baseline Characteristicsg=  
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Utilize predictive modeling algorithms to assess the risk of developing LBP 
based on demographic and lifestyle factors, as well as predict recurrence proba-
bilities using individual baseline characteristics. 

Machine Learning in Medical Sciences: 

( )Prediction Model Clinical Markersh=  

Apply supervised and unsupervised machine learning algorithms to analyze 
clinical markers and their combinations for prognosis and therapeutic planning 
in LBP, enhancing overall patient care. 

Virtual Coaching in Telerehabilitation: 

( )Virtual Coach User Activity,Skill Acquisitioni=  

Implement virtual coaching algorithms to guide users through exercises and 
skill acquisition in LBP management, providing personalized support and en-
couragement. 

Mathematical Proofs and Justifications: 
Predictive Modeling for LBP: Prove the effectiveness of predictive modelling 

algorithms through cross-validation and performance evaluation metrics such as 
accuracy, sensitivity, and specificity, demonstrating their ability to accurately 
predict LBP risk and recurrence probabilities. 

Machine Learning in Medical Sciences: Justify the use of supervised and 
unsupervised machine learning algorithms in medical sciences by demonstrating 
their ability to identify patterns and extract valuable insights from clinical data, 
thereby improving diagnosis, prognosis, and treatment planning in LBP. 

Virtual Coaching in Telerehabilitation: Provide evidence of the effective-
ness of virtual coaching algorithms through user feedback, adherence rates, and 
improvements in patient outcomes, highlighting their role in promoting engage-
ment and facilitating self-management in LBP rehabilitation. By employing these 
algorithmic approaches and mathematical formulations, we can enhance our un-
derstanding and management of LBP, ultimately improving patient outcomes 
and reducing the burden of this debilitating condition. 

3.6. Robots for Upper Limb Rehabilitation 

End-effector robots, which have the benefits of simple structure, easy control, 
and great accuracy, initially debuted 30 years ago [42]. The bulk of end-effector 
robots were built around that time, and numerous rehabilitation experiments 
with human volunteers have taken place throughout the last two decades. Some 
end-effector robots are now being used in clinical robotic rehabilitation or ther-
apy. End-effector robots that are commonly used include MITManus, MIME, 
ARMGuide, GENTLE/S, NeReBot, EMUL, Braccio di ferro, ACT3D, which de-
picts a new end-effector upper limb rehabilitation robot named EULRR, which 
consists of a supporting module and a motion assistance module [43]. Two 
7-DOF manipulators were employed to support and help the patient’s arm in 
completing rehabilitation training. Each joint was outfitted with a torque sensor 
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and a position encoder for torque control. The assist-as-needed (AAN) control-
ler allows the patient’s arm to move freely inside a virtual channel while provid-
ing help if the arm deviates from the virtual channel. Wearable exoskeleton ro-
bots can aid numerous upper limb joints in performing safe and flexible rehabil-
itation training, which is becoming increasingly popular in clinics. 

In the context of robots for upper limb rehabilitation, machine learning (ML) 
and artificial intelligence (AI) play crucial roles in enhancing control systems, 
adapting to patient needs, and improving rehabilitation outcomes. One signifi-
cant challenge is ensuring trajectory tracking accuracy amidst uncertainties and 
disturbances. To address this, a neural-fuzzy adaptive controller based on radial 
basis function neural networks (RBFNN) can be employed: 

( )1Controller Output i i
N
i w x cφ
=

= −∑  

Here, x represents the input state, ci are the centers of the radial basis func-
tions, wi are the weights, and ϕ denotes the radial basis function. 

Additionally, to recognize and adapt to the patient’s motor intentions, ma-
chine learning algorithms (MLAs) can be utilized. These algorithms can analyze 
physiological and physical signals to infer motion intention and adjust training 
accordingly. One common approach is using support vector machines (SVMs) 
for classification: 

T
, , 1

1min
2w b ii

Nw w Cξ ξ
=

+ ∑  

Subject to:  

( )( )T 1i i iy w x bφ ξ+ ≥ −  

0iξ ≥  

Where w is the weight vector, b is the bias term, ξ are slack variables, and C is 
the regularization parameter. 

Moreover, for adapting control methods, intelligent or adaptive controllers 
can be employed, combining sophisticated control theory with MLAs. One ex-
ample is model predictive control (MPC) integrated with reinforcement learning 
(RL) algorithms: 

( ) 2 21
1 ref ref0

N
k kkJ u y y u u−
+=

= − + −∑  

Where J(u) is the cost function to be minimized, yref and uref are the reference 
trajectories for the outputs and inputs, respectively, and N is the prediction ho-
rizon. 

Finally, MLAs can facilitate quantitative evaluation of patient progress by 
preprocessing, learning, and categorizing patient data. One approach is using 
deep learning models, such as convolutional neural networks (CNNs), to process 
patient data and predict rehabilitation outcomes: 

( )ŷ f xθ=  

Where ŷ  is the predicted outcome, fθ is the CNN model parameterized by θ, 
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and x is the input data. 
Through the integration of these ML and AI techniques, robots for upper limb 

rehabilitation can offer personalized and adaptive therapy, leading to improved 
patient outcomes and enhanced rehabilitation effectiveness. Furthermore, most 
present robotic systems still use predetermined control methods, whereasintelli-
gent or adaptive controllers are better suited for tailored rehabilitation. Intelli-
gent control methods that combine sophisticated control theory and MLAs can 
be offered to better adapt to nonlinear systems and the dynamic environment. 
Finally, MLAs are appropriate for patient quantitative evaluation by preprocess-
ing, learning, and categorizing patient data during the healing process [39] [40] 
[41] [42] [43]. 

3.7. Artificial Intelligence and Rehabilitation Evaluation 

Artificial intelligence (AI), particularly machine learning, has revolutionized re-
habilitation evaluation, offering sophisticated approaches for assessing both up-
per and lower limb function. Techniques such as support vector machines (SVM) 
and artificial neural networks (ANN) have played pivotal roles in tasks like image 
and speech recognition, enhancing the accuracy and efficiency of rehabilitation 
assessment [44] [45]. Objective evaluation methods based on AI technology, such 
as surface electromyogram signal (sEMG) analysis, human motion trajectory 
tracking, joint motion range assessment, and maximum angular velocity evalua-
tion, have been investigated extensively. The sEMG enables non-invasive mea-
surement of muscle electrical activity during limb movement, providing valuable 
insights into muscle function and coordination. Meanwhile, human motion tra-
jectory tracking employs image processing technologies to analyze the trajectory 
of patients’ limbs, facilitating precise assessment of movement patterns and ab-
normalities. Joint mobility range measurement and maximal angular velocity 
evaluation in patients’ upper limbs serve as reliable indicators of rehabilitation 
progress, reflecting improvements in mobility and function. These objective 
evaluation approaches offer quantitative insights into patients’ progress and can 
aid clinicians in tailoring rehabilitation interventions to individual needs. Nu-
merous studies have demonstrated the efficacy of AI-based evaluation metho-
dologies in assessing rehabilitation success, underscoring their potential to en-
hance patient outcomes and optimize rehabilitation strategies [46]. 

Artificial intelligence (AI), particularly through the use of machine learning 
and neural networks, has proven to be highly efficient in evaluating rehabilitation 
effects [47]. The section highlights how AI technologies provide quantitative 
evaluations that surpass the accuracy and reliability of traditional methods. This 
advancement significantly improves the assessment of rehabilitation outcomes by 
enabling more precise tracking of patient progress and the effectiveness of treat-
ment protocols [48]. The enhanced analytical capabilities of AI not only facilitate 
a deeper understanding of patient responses to various therapies but also allow for 
the customization of rehabilitation plans to better suit individual patient needs, 
thereby optimizing recovery trajectories and outcomes [49]. 
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Algorithmic Approach and Mathematical Formulation: 
Surface Electromyogram Signal (sEMG) Analysis: 

( ) ( )activitysEMG Muscle Activationt f=  

Utilize machine learning algorithms to analyze sEMG signals and quantify 
muscle activity during limb movement, providing objective measures of muscle 
function and coordination. 

Human Motion Trajectory Tracking:  

( ) ( )Trajectory Image Processingt g=  

Apply image processing algorithms to track the trajectory of patients’ limbs 
during movement, enabling precise assessment of movement patterns and ab-
normalities. 

Joint Motion Range Assessment: 

( )jointRange Joint Positionh=  

Calculate the range of motion in joints using machine learning algorithms, 
providing quantitative measures of joint mobility and flexibility. 

Maximum Angular Velocity Evaluation: 

( )maxVelocity Angular Displacement,Timei=  

Determine the maximum angular velocity of limb movement using mathe-
matical algorithms, reflecting the speed and efficiency of rehabilitation progress. 

Proofs and Justifications: 
sEMG Analysis: Prove the effectiveness of sEMG analysis algorithms through 

correlation with clinical assessments and rehabilitation outcomes, demonstrat-
ing their ability to accurately quantify muscle activation and coordination. 

Human Motion Trajectory Tracking: Justify the use of trajectory tracking 
algorithms by comparing tracked trajectories with manual assessments by clini-
cians, validating their accuracy and reliability in assessing movement patterns. 

Joint Motion Range Assessment: Provide evidence of the reliability of joint 
motion range assessment algorithms through comparison with standardized clin-
ical measures, demonstrating their validity in quantifying joint mobility and 
flexibility. 

Maximum Angular Velocity Evaluation: Demonstrate the utility of maxi-
mum angular velocity evaluation algorithms by correlating measured velocities 
with patient-reported functional outcomes, highlighting their relevance in as-
sessing rehabilitation progress and functional improvements. 

By leveraging these algorithmic approaches and mathematical formulations, 
AI-based rehabilitation evaluation methodologies offer objective and quantita-
tive insights into patients’ progress, enabling personalized and effective rehabili-
tation interventions. 

3.8. Advances in the Evaluation of Motor Function Rehabilitation 

With the increased emphasis on evidence-based clinical treatment, it is more 
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critical than ever to create objective and efficient procedures for accurately as-
sessing Patients with motor dysfunction who have functional impairments. For 
realistic rehabilitation goal-setting and effective allocation of therapy resources 
following motor dysfunction, an accurate and quantitative assessment method 
for evaluating and forecasting patients’ functional state is required. Clinicians 
currently use a variety of subjective assessment scales to assess neurological defi-
cits, motor patterns, motor performance, balance, and activities of daily living. 
The reliability of these measures is primarily determined by physicians’ expe-
rience and skill. As a result, it is difficult to track functional changes during the 
recovery process and alter rehabilitation treatment accordingly. To augment and 
enhance conventional evaluation, objective assessment methods such as biome-
chanical testing, electrophysiological measures, and neuroimaging have been in-
creasingly developed and practically implemented.  

Biomechanical Testing: 

( )Muscle Strength Biomechanical Parametersf=  

Utilize ML algorithms to analyze biomechanical parameters and objectively 
evaluate muscle strength under isometric conditions, providing quantitative meas-
ures of motor impairments, particularly in stroke patients. 

Electrophysiological Measures: 

( )Neuromuscular Status Electrophysiological Datag=  

Implement AI techniques such as electromyography (EMG), mechanomyo-
graphy (MMG), and motor-evoked potentials (MEPs) to objectively assess neu-
romuscular status, aiding in the evaluation of motor function and recovery out-
comes. 

Proofs and Justifications: 
Biomechanical Testing: Prove the effectiveness of ML algorithms in biome-

chanical testing by comparing results with standardized clinical assessments, de-
monstrating their ability to accurately quantify muscle strength and motor im-
pairments. 

Electrophysiological Measures: Justify the use of AI techniques in electro-
physiological measures by correlating findings with clinical outcomes and re-
covery results, validating their utility in objectively evaluating neuromuscular 
status and predicting rehabilitation outcomes. 

To improve the accuracy of assessing patients with motor dysfunction who 
have functional impairments, healthcare professionals can integrate artificial in-
telligence (AI) technologies into their evaluation processes [50]. Specifically, the 
use of ensemble machine learning models and neural networks offers a way to 
enhance precision and objectivity [51]. These AI-driven approaches provide 
more accurate and detailed analyses of motor functions than traditional me-
thods, allowing for tailored treatments and better tracking of rehabilitation 
progress [52]. By leveraging these sophisticated algorithms, clinicians can gain 
deeper insights into the nuances of motor impairments, leading to more effective 
and personalized patient care. 
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By integrating ML and AI algorithms into the evaluation of motor function 
rehabilitation, clinicians can enhance the accuracy and objectivity of assess-
ments, leading to more personalized and effective rehabilitation interventions. 
These advancements pave the way for improved patient outcomes and optimized 
allocation of therapy resources in motor dysfunction rehabilitation. Muscle 
strength may be reliably evaluated under isometric situations using biomechan-
ics to determine the extent of motor impairments in stroke patients. Electro-
myography, mechanomyography, and motor-evoked potentials are electrophy-
siological methods that may be used in the clinic to objectively evaluate neuro-
muscular status. The existence or absence of motor-evoked potentials in paretic 
limbs after a few hours or days of motor dysfunction are often related to recov-
ery results [53]. 

3.9. Rehabilitation with Virtual Reality 

VR systems offer a multidimensional experience from an immersive, semi-im- 
mersive, or non-immersive viewpoint. In stroke therapy settings, individuals can 
engage with virtual simulated surroundings [54]. VR-based rehabilitation inter-
vention has been widely used in the treatment of neurological illnesses, with 
usually favorable results [55]. VR systems record users’ motions, which are sub-
sequently represented in various ways on the computer screen, a process known 
as movement visualization. The three basic types of movement visualization are 
indirect, abstract, and augmented reality [56]. Movement visualization helped 
stroke patients observe limb movement, which triggered the mirror neuron sys-
tem in the frontoparietal cortical region. Furthermore, fMRI revealed that whether 
the virtual limb was shown on the screen or not, mirror neuron activity was in-
creased in healthy participants during the movement observation task. These 
findings suggested a link between VR systems and the mirror neuron system. The 
VR system was usually complemented or combined with other stroke therapy 
treatments. The combination of kinetic-based VR with a cognitive method en-
hanced motor function and vocational performance in chronic stroke patients. 
Chronic stroke patients were given kinetic-based VR and physical therapy to test 
upper extremity function, and the findings were compared to those of a group 
that only received physical therapy; motor function and active range of motion of 
the upper extremities were dramatically improved. To stimulate appropriate con-
traction of wrist and digit extensors, FES of the wrist and finger extensors was in-
tegrated into a VR-based wearable system [57]. VR has also been incorporated 
into a BCI, which employed electroencephalography and synchronized electro-
myography of peripheral muscle activity to identify attempts at upper extremity 
movement in the brain. Patients with severe impairment benefitted the most 
from virtual movements of the upper extremity in VR based on the patient's voli-
tion. VR-FES and BCIVR both formed a neural loop by connecting the central 
and peripheral nervous systems, potentially facilitating cortical excitability and 
neuroplasticity. Similarly, constraint-induced mobility therapy was administered 
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to chronic stroke patients at home using a VR game, and the results were en-
couraging with no side effects [58]. VR-based technologies are beneficial as an 
additional therapy for movement disorders. When compared to isolated treat-
ments, the effect of rehabilitation approaches might be improved and enhanced 
using VR training systems to obtain better outcomes for individuals with neuro-
logical disorders. 

3.10. Home-Based Shoulder Rehabilitation Using Technology 

Numerous medical innovations are now in the works, with many of them in-
tended for usage in clinical or hospital settings due to their inherent complexity. 
Certain equipment and technologies, on the other hand, are quite simple to op-
erate, making them ideally suited for home usage and allowing patients to regain 
autonomy and independence in their rehabilitation journey [59]. Figure 2 de-
picts an overview of these fundamental technologies, which are divided into 
physical and virtual applications, each of which plays an important role in 
home-based rehabilitation. Wearable devices, often known as wearables, have 
emerged as a transformational tool in modern medicine within the area of phys-
ical technology. These devices include sensors that collect data from the patient 
and/or the environment, allowing for continuous monitoring outside of stan-
dard healthcare settings. Wearables offer event prediction, prevention, and in-
tervention through the use of powerful computer algorithms, transforming the 
sector [60]. 

Since the 1990s, the incorporation of rehabilitation robots has been a vital part 
of therapy, providing a helpful aid in giving treatment to patients. These robots 
use electronic interfaces to help people do activities, providing not just physical 
assistance but also emotional encouragement and incentive. Numerous studies 
have shown that robot-assisted training improves arm function and overall per-
formance in daily tasks. Exoskeletons, which are wearing robotic systems meant 
to augment and increase human physical capabilities, have also gained populari-
ty, particularly among those with limited mobility [61]. The use of machine 
learning in virtual rehabilitation systems has revolutionized process automation, 
enabling real-time adaptability and individualized treatments based on user and 
environmental information. Deep learning, in particular, has aided progress in 
picture identification and behavior prediction in the field of rehabilitation. There 
has been an increase in the usage of virtual and augmented reality systems, indi-
cating a change toward a more e-health-focused approach in both medical and 
social rehabilitation [62]. These devices may recreate realistic scenarios, giving 
vital assistance to people with impairments throughout the recovery process. 
Notably, the literature contains several examples of virtual and augmented reali-
ty technology being successfully used to improve rehabilitation results. These 
technologies, by immersing users in interactive and lifelike worlds, provide new 
pathways for treatments and allow individuals to engage in meaningful and im-
mersive rehabilitation experiences [63].  
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Figure 2. Technologies used for home-based shoulder rehabilitation.  

4. Conclusions 

In conclusion, this paper traverses the landscape of robotics and assistive tech-
nologies within the realm of neuromuscular diseases, showcasing the evolution 
from compensatory motions to the integration of advanced devices that signifies 
a paradigm shift in enhancing the quality of life for affected individuals. The 
convergence of artificial intelligence (AI) and machine learning (ML) algorithms 
further propels the field towards personalized rehabilitation, marking a signifi-
cant stride towards precision healthcare. Through the application of ensemble 
machine learning techniques, rehabilitation strategies can be tailored to the 
unique needs of individuals, offering unprecedented levels of customization and 
effectiveness. 

The integration of AI, ML, and virtual reality holds immense promise for the 
future of rehabilitation, promising even more effective and tailored solutions. By 
harnessing the power of AI-driven algorithms, rehabilitation devices can adapt 
in real-time to the changing needs and abilities of patients, providing dynamic 
and responsive assistance. Additionally, virtual reality technologies offer immer-
sive environments for therapeutic interventions, enabling individuals to engage 
in rehabilitative activities in a safe and controlled manner. As the field continues 
to advance, the synergy between robotics, AI, ML, and virtual reality promises to 
revolutionize rehabilitation practices, offering hope for improved outcomes and 
increased autonomy for individuals with neuromuscular disorders. By embrac-
ing these cutting-edge technologies and innovative approaches, we can pave the 
way towards a future where individuals facing neuromuscular challenges can 
lead fulfilling and independent lives, empowered by personalized and effective 
rehabilitation interventions tailored to their unique needs. 
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