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Abstract 
Artificial intelligence, often referred to as AI, is a branch of computer science 
focused on developing systems that exhibit intelligent behavior. Broadly 
speaking, AI researchers aim to develop technologies that can think and act in 
a way that mimics human cognition and decision-making [1]. The founda-
tions of AI can be traced back to early philosophical inquiries into the nature 
of intelligence and thinking. However, AI is generally considered to have 
emerged as a formal field of study in the 1940s and 1950s. Pioneering com-
puter scientists at the time theorized that it might be possible to extend basic 
computer programming concepts using logic and reasoning to develop ma-
chines capable of “thinking” like humans. Over time, the definition and goals 
of AI have evolved. Some theorists argued for a narrower focus on developing 
computing systems able to efficiently solve problems, while others aimed for 
a closer replication of human intelligence. Today, AI encompasses a diverse 
set of techniques used to enable intelligent behavior in machines. Core disci-
plines that contribute to modern AI research include computer science, 
mathematics, statistics, linguistics, psychology and cognitive science, and 
neuroscience. Significant AI approaches used today involve statistical classi-
fication models, machine learning, and natural language processing. Classifi-
cation methods are widely applicable to problems in various domains like 
healthcare, such as informing diagnostic or treatment decisions based on 
patterns in data. Dean and Goldreich, 1998, define ML as an approach 
through which a computer has to learn a model by itself from the data pro-
vided but no specification on the sort of model is provided to the computer. 
They can then predict values for things that are different from the values used 
in training the models. NLP looks at two interrelated concerns, the task of 
training computers to understand human languages and the fact that since 
natural languages are so complex, they lend themselves very well to serving a 
number of very useful goals when used by computers. 
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1. Introduction 
1.1. Artificial Intelligence in Gerontology 

The reduction in cognitive abilities usually complicates the adherence to regi-
men on medications, diets, exercises, and appointments. Although there are spe-
cific moments throughout the day when patients are prompted to move, such as 
rising for work or sitting down for a meal, many older people may no longer be 
employed or have lost their partners. Traditional reminder tools like medication 
organizers or notes listing follow-up appointments or instructions for monitor-
ing physiological and cognitive signs at home rely on patients remembering to 
consult these tools. Patients must remember that the organizer or notes exist and 
what each medication is intended for. They must also recall how to complete any 
self-checking procedures as instructed. Unfortunately, cognitive impairment can 
interfere with this type of memory-based self-management, even with the aid of 
analog reminder systems. 

However, even in the absence of the pathological cognitive decline, many pa-
tients may have difficulties in accepting and functioning within the environment 
that offers the vast array of the latest technologies in the sphere of the HCITL de-
velopment. Making the task even more complicated, various illnesses and disor-
ders are often prevalent in old people, which might be cured with even more and 
other kinds of medication. They further complicate the situation in terms of the 
cognitive load, which makes it even more difficult to achieve optimal scheduling 
of the related actions. Certain everyday tasks that may seem simple for younger 
individuals accustomed to technology can sometimes prove difficult for older 
adults without similar experiences. Members of generations who came of age prior 
to the widespread adoption of personal digital devices, computers, smartphones, 
and other networked technologies may face challenges with processes reliant on 
such modern tools. A lack of familiarity with personal digital appliances, com-
puters, smart phones, and other mobile or networked information devices dur-
ing formative years can potentially impact an individual’s ability to incorporate 
such technologies into daily living as they age [2]. Some of the technological 
challenges as observed among the older people are also due to lack of interest or 
maybe due to irritation resulting from constant new releases, new interfaces, 
new information presentation methods and change of passwords [3]. 

1.2. EHRs Analysis and Associated Prediction 

There are fission Federal, state, and local activities center on enhancing overall 

https://doi.org/10.4236/aar.2024.135007


S. Arefin, G. Kipkoech 
 

 

DOI: 10.4236/aar.2024.135007 87 Advances in Aging Research 
 

black market as well as other areas of health care. Such initiatives are driven by 
the growing dependency on EHRs which were heralded to enhance the integra-
tion of patient records for better and increased collaboration across various 
players in the delivery of patient care. Moreover, since this data is to be captured 
in structured formats, and since the ultimate goal is to capture new medical data 
as it happens in real time, medical records may be more easily analyzed using 
analytics. For instance, recent works done in the University of New Mexico, and 
Vanderbilt point out that the future risk of type 2 diabetes mellitus can be a pre-
diction by using ML on EHR data [4]. 

The authors employed ML and feature selection to build a model for predict-
ing diabetes using data from EHRs—the process of identifying and choosing in-
puts relevant to the predictive model. The first reason why prediction is so es-
sential in diabetes is due to the fact that for DM-II, clinical diagnosis could be 
made several years from onset of the disease which may be between 4 - 7 years 
and by this time some of the complications especially vascular may have already 
developed. Thus, we can assert that the identification of risk factors for a partic-
ular behavior should occur at a relatively early stage, which may, in turn, prevent 
the development of further complications and potentially lessen the rates of 
morbidity/mortality. 

1.3. Cognitively Impaired-Reminder Systems  

Advances in human-computer interaction systems driven by AI development 
offer potential benefits. For example, AI can enable devices to provide reminders 
or instructions tailored to individuals’ unique needs, rather than relying solely 
on calendar-based triggers. Context-aware and adaptive approaches may con-
sider additional real-time factors like changes in cognitive status from condi-
tions such as dementia [5]. 

Effective reminder systems require reasoning about temporal relationships, as 
the timing of activities and events is crucial. Recent works have explored adaptive 
models using AI techniques for temporal reasoning and reinforcement learning. 
Unlike traditional calendars and alarms that remind based on predetermined 
schedules, adaptive approaches allow for flexibility by taking into account fluid 
contextual factors. Temporal constraint reasoning allows modeling of temporal 
relationships between events, including attributes like sequencing, durations, and 
conditional dependencies [6]. Reinforcement learning enables systems to learn 
mapping situations to actions through trial-and-error, with numerical rewards 
signaling successful task completion for machine learning algorithms [7]. To-
gether, these techniques may facilitate development of personalized digital tools 
sensitive to individual circumstances like memory impairment.  

2. Temporal Reasoning 
2.1. Situation Recognition and Real Time Monitoring 

Forecasting should be considered a critical form of discourse, an important ca-
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pability of practical reason that enables intelligent action and planning in the 
human world, as well as in the world of artificial, cognitive or AI agents—that is, 
entities “capable of exhibiting intelligent behavior in complex environments, for 
a long periods of time” [8]. To successfully model such kinds of AI agents, rea-
soning about time is quite important; it isn’t simply about the time that befalls 
upon an agent and how long it and other agents may take to respond and act, 
but is also about sequences and temporal orderings of these actions. When any 
temporal factor influences the capability of some monitor or assist agent then 
deciding as to which action is best for application at that precise period means that 
the time constraints involved should not be over-specified as to leave no solutions 
or actions available, yet they also should not be underspecified with many poten-
tial solutions or actions possible. When developing agents to monitor events in re-
al-time—such as the onset of a medical condition, gradually changing behavior 
indicating increasing stress levels, or potentially life-threatening situations—then 
timing is paramount. The suitable information or decision must be provided 
quickly enough to be helpful [9]. This underscores the importance for some sys-
tems to access comprehensive electronic health record data, including in re-
al-time, in order to effectively support time-sensitive tasks like acute event re-
sponse. The ability to access detailed, current patient information assists with 
making well-timed determinations and interventions. 

2.2. Event Recognition 

The description and impact of events are central to most narrative texts, includ-
ing in healthcare. In this domain, AI systems aim to support timely care provi-
sion and decision-making by identifying and categorizing events based on past 
occurrences and current contextual factors. 

However, precisely defining what constitutes an event can be complicated, as 
perceptions may vary depending on purpose. A key challenge in automated 
event recognition is how to model events such that reasoning about temporal 
relationships both within and between events can be performed effectively. Log-
ic-based representation of event structures offers benefits such as formally spec-
ifying declarative structure and enabling scalable refinement supported by ma-
chine learning techniques [10]. 

Logical temporal modeling typically associates temporal terms with specific 
time points or propositions. Low-level events are identified as higher-level pat-
terns. Representing sequential relationships via temporal constraints facilitates 
efficient event recognition compared to non-logical approaches. Techniques like 
the Chronicle Recognition System employ discrete time instances marked by 
chronological order and other attributes describing persistence, absence or repe-
tition [11]. Event features can be temporal or non-temporal in nature, with 
temporal characteristics including instantaneous occurrence or duration as spec-
ified by constraint modeling [12]. High-level events are defined through inter-
connected lower-level event graphs, forming temporal constraint networks im-

https://doi.org/10.4236/aar.2024.135007


S. Arefin, G. Kipkoech 
 

 

DOI: 10.4236/aar.2024.135007 89 Advances in Aging Research 
 

portant for applications like healthcare monitoring.  

2.3. AI to Support Patient Functional Independence 

Improvements in life expectancies resulting from increased life spans in public 
health, nutrition and medicine have led to the aging of the world population 
(Beard et al., 2012). It is also important to emphasize that many seniors continue 
to be active and viable members of society. However, for many people in the 
group, physical disabilities limit the function of even the simplest movements 
without help. Hence, failure to maintain independence in the later years in life 
should be a cause of concern. Research conducted in Britain has shown that old-
er people in Britain are more concerned about loss of independence, 49 percent, 
than they are about dying, 29 percent [13]. 

A particular patient may experience focal motor and sensory symptoms while, 
at the same time, his higher brain functions may be unaffected. BMI systems aim 
at using preserved brain capability to supplement the losses or injuries of im-
paired patients, through developing two-way functional link between specific 
brain cells and the tools that offer motor movements and sensations [14]-[16]. 
For example, patients with quadriplegia due to an accident or a neurodegenera-
tive disease may be able to regain some measure of use of their limbs, and con-
trol a motorized wheelchair or a robotic limb through a BMI that translates their 
brain signals [17]. 

3. Neural Signals Translating 
3.1. Machine and Brain 

Computers and peripheral devices can interface with active components of the 
nervous system’s residual function—intact brain regions or other nerves that 
may include part of the affected system [18]. These systems employ certain kinds 
of motor or sensory motion that cause enhanced electro-coupling in the neural 
areas involved in these particular actions. For instance, movement of limb flex-
ors and extensors indicates that neuron electrical activity occurs in particular 
areas of the cerebral motor region. While the direct correspondence between 
electrical conductivity in a piece of the brain and a certain action can be highly 
complicated and, at times, challenging to predict, scientists have designed nu-
merous ML algorithms that approximate this functional relationship. The algo-
rithms that were discussed earlier learn the relationships between a patient’s 
brain signals and motor functions by adjusting their internal parameters to the 
optimal settings based on a training data set for which the brain signal and in-
tended movement are already identified.  

3.2. Noninvasive Body Mass Indexes 

Synchronous BMIs do not physically infringe on the biological tissue while re-
cording neuronal activity. The most frequently used noninvasive technique is 
electroencephalography (EEG), where electrodes are mounted on the subjects 
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scalp to pick up electrical voltage changes caused by neural firing in the brain 
[19]. Application of age-based BMI has resulted in many advanced develop-
ments: a wheelchair control [20] and control of a mobile robot. For example, 
Galan et al. in 2018 proposed EEG based system designed to let patients perma-
nently control the movement of motorized wheelchairs. The system integrated 
an intelligent wheelchair capable of perceiving the user’s environment, along 
with a basic classifier utilizing EEG signals to determine intended movement di-
rections—left, right or forward. Some common motor behaviors, such as arm 
raises, occur frequently with discernible patterns of associated neural activity. 
Through prior exposure, algorithms may learn to quickly predict impending ac-
tions rather than relying solely on conscious steps like finger counting. The fast-
er a system can respond, the smoother the resulting interaction. In one study 
where two participants mentally maneuvered a simulated wheelchair on a com-
puter monitor from a start point to a target destination following their planned 
route, both achieved over 80% accuracy after just one day of training with the 
system. This demonstrates the potential for EEG-based control to rapidly learn 
intended movements. 

3.3. Invasive Body Mass Indexes 

However, the EEG signals obtained from the sensors placed over the scalp are 
preferred due to being non-invasive, portable and can be collected at any loca-
tion, but these are significantly noisy [21]. Consequently, a large portion of the 
recent BMI work has been conducted using signals that are acquired from the 
motor cortex within microelectrode arrays (MEA) that are implanted onto the 
brain’s surface [22]. These direct recordings are better than the noninvasive 
procedures [22]. However, to have an MEA, brain surgery is needed. Intracorti-
cal BMIs have shown that, to the surprise of non-primates, nonhuman primates 
as well as paralyzed humans can control computers, electronic wheelchairs, and 
robotic arms by imagining movement. More recent work by researchers at Bat-
telle and Ohio State University showed that signals recorded intracortically can 
enable a quadriplegic subject to control a paralyzed limb typically using an ex-
ternal muscle stimulation cuff [23].  

3.4. Computarised Diagnosis 

Computer-aided diagnosis (CAD) has been an active area of research since at 
least the 1980s, when publications on automated medical image analysis began 
increasing. CAD aims to assist clinicians in diagnosis by analyzing images, iden-
tifying relevant features, segmenting regions of interest, and classifying images 
using various computational techniques, including machine learning [24]. His-
torically, CAD systems primarily analyzed images, but recent AI advances now 
enable incorporating other health data sources to develop more personalized di-
agnostic models. Even first-generation non-AI CAD systems introduced in the 
1980s found clinical use by physicians [25]. Modern CAD leveraging AI can 
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perform early computerized screening of medical images from modalities such 
as CT, X-ray, MRI, PET and ultrasound to detect abnormalities indicative of 
conditions like cancer [25]. By fusing multi-omics data using powerful algo-
rithms, AI-enhanced CAD systems show promise for more accurate initial risk 
stratification and referral prioritization. 

3.5. Chest Pathology Identification 

Chest X-rays contain abundant and subtle details critical for interpretation. 
Thus, machine learning models supporting radiologist analysis of chest radio-
graphs warrant investigation. Deep neural networks excel at processing raw im-
age data through multilayer feature abstraction and have proven effective for 
such tasks. However, deep learning typically requires vast annotated datasets, 
which are rare in healthcare. Despite this limitation, the promise of transferring 
models pre-trained on non-medical images is evident [26]. For example, a CNN 
pretrained on the large ImageNet dataset achieved diagnostic performance when 
fine-tuned on only 93 chest x-rays, demonstrating potential for leveraging 
non-clinical resources until medical image databases expand sufficiently for na-
tive deep learning. This shows potential for deep learning models to benefit ra-
diology even with limited specialized data availability.  

3.6. Cardiovascular Disease 

It is, therefore, the age group that records the highest CVD mortality rates; ap-
proximately 66% of all recorded deaths are of patients with this disease but aged 
75 years and above. According to the national statistics of 2009, men and women 
aged 65 years or older, the leading cause of death were diseases of the heart and 
cancer in both genders; stroke; and, CLRD among females and CLRD and stroke 
among males [27]. 

Indeed, high-risk patients who are at a higher risk of having a cardiovascular 
event in the next two years can be identified early by evaluating the amount of 
calcification in the coronary arteries. Deep convolutional networks, which were 
AI-based on models of biological procedures, were trained on 20 low-dose chest 
CT images for coronary artery calcium scoring as well as detection of coronary 
calcification [28]. To train the network, out of 1028 LDCCS, a total of 797 scans 
were used, and only 231 scans were used to evaluate the performance of the 
network. The method’s detection sensitivity, per scans of coronary calcification 
was 97%. 2%. The percentage of agreement by the RAS on the risk category as-
signed to each subject was 84.4%. In general, automatically detected incidence 
rate was in good concordance with manually calculated cardiovascular score.  

3.7. Dementia 

Alzheimer’s disease is the most common cause of dementia worldwide, resulting 
in profound cognitive impairment more prevalent in elderly populations. Alz-
heimer’s and other dementias currently affect one in three older adults in the 
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United States, costing an estimated $236 billion in 2016 alone [29]. Globally, it 
was estimated that approximately 46 million people had dementia in 2015, with 
projections that this figure may double to over 82 million by 2050 unless effec-
tive treatments are developed [30]. 

Early and accurate diagnosis of Alzheimer’s has been a focus of research 
aimed at conducting clinical trials for medications that may provide benefit in 
earlier disease stages. Modest progress has been made in the last three years 
through applying advanced machine learning techniques to incorporate new and 
improved MRI biomarkers and blood-based indicators for predicting cognitive 
decline earlier. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a 
seminal longitudinal study tracking cognition, function, brain structure and 
biomarkers in healthy elderly controls as well as Mild Cognitive Impairment and 
Alzheimer’s disease patient groups. This work has been instrumental for devel-
oping techniques for early detection and monitoring of disease progression.  

3.8. Anatomical Structures Classification 

On a deeper level, for deciphering deep numerical attributes of medical images 
that are essential for training diagnosis and detection algorithms, sophisticated 
AI systems rely on annotation—labeling several organs and anatomical areas. 
Given the enhanced possibility of hundreds of thousands of images, manually 
annotating images would be laborious. However, machine learning approaches 
can numerically evaluate certain visual features. ML has automated organ classi-
fication by extracting image texture features into a “bag of visual words” repre-
sentation [31]. Of course, the kind of document deconstruction can remain at 
the basic “bag of words” level; a word collection suffices to characterize a docu-
ment even without considering word frequencies or order. It offers a brief, 
measure-based document fingerprint. This technique was generalized to “bag of 
visual words” for images [31], with each represented as a point in vector space 
containing words describing characteristics. While simple, bag-of-words model-
ling extracts summary information sufficient for initial medical image analysis, 
where fully detailed annotation remains challenging.  

3.9. Macular Degeneration 

The AMD disorder results in permanent vision impairment, thus being a preva-
lent concern amongst older persons. Apart from the two-dimensional fundus 
photograph, the three-dimensional imaging by OCT is used in the diagnosis of 
the AMD. Interpretation of the OCT volumetric is lengthy and challenging es-
pecially when it is in the initial stages where most changes may be minor. More 
specifically, intermediate AMD patients are likely to experience severity in their 
condition and hence early detection of AMD is important to prevent vision loss. 
In this paper, it has been revealed that there are opportunities for the usage of 
unsupervised ML approaches for detection of AMD. In this regard, for the de-
velopment of an automated and fully-automated segmentation methodology, a 
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method adopting an unsupervised feature learning approach was proposed 
which can handle the entire image without the requirement of an accurate 
pre-segmentation of the retina, as described in [32]. 

3.10. Clinical Decision Support 

Its forms reflect the collection and analysis of clinical information for diagnostic 
and therapeutic purposes by clinicians. Diagnostic tests, including regularly 
measured vital signs like blood pressure and body temperature, occasional aux-
iliary tests such as chest X-rays, and subjective experiences reported directly by 
the patient, are now complemented by an ever-growing list of data. These in-
clude genomic biomarkers and Sensors that have the ability to track endlessly 
different and enormous number of health indicators, data captured by mobile 
phones and environmental conditions among others. This has been said to have 
produced what has now been referred to as the “data age” of medicine [33]. But 
in this new age, just tapping into these data can unlock value of up to $454 bil-
lion to the health care system in the U.S. [34] However, there is no that all these 
new data are without some challenges in availability. Indeed, identifying signal 
and noise can sometimes be challenging, on which aspect of data collection in-
fluential insights are carried and which aspects are noisy and unimportant [35]. 
A notable example of poor predictive performance occurred with Google Flu 
Trends, which failed to accurately track actual influenza cases during the 2012 
winter season despite successfully forecasting prior years [36]. Undoubtedly, 
challenges exist in effectively capturing and leveraging vast streams of infor-
mation traversing the internet or large healthcare networks. However, the po-
tential advantages of obtaining enriched, real-time data to power clinical deci-
sion aids integrating AI-derived insights have generated significant interest and 
research efforts. While predictive failures can occur, continued work aims to re-
alize faster, timelier analytics benefiting diagnosis and care through more so-
phisticated use of widespread digital records and online activities as new sources 
of epidemiological clues. 

3.11. Machine Assistance in the Use of EHRs for Health  
Improvement 

In terms of research, there are new approaches and methods connected with 
EHRs as well as differences in how the study of health care quality and the effec-
tiveness of health care interventions can be done and can potentially be im-
proved at the level of the individual patient [37]. Evidently, the abundance of 
precise and extensive health information could be highly complementary to the 
growth of AI technologies. Several problems are obvious. First, EHRs are in-
tended to provide records to be used clinically and the requirements of research 
uses (for example, use in health outcomes research) conform well to the data 
contained in an EHR. Second, to be adopted in EHR clinical environments, AI 
technologies implementing corresponding systems have to achieve high accura-
cy and necessarily possess the ability of interpretability by healthcare providers. 
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Third, the majority of significant clinical data is recorded in the free-form clini-
cian narratives or autobiographies. Machine learning is already applied in 
healthcare domains like EHR analysis, showing potential for even deeper inte-
gration to enhance areas like predictive analytics, personalized care, and auto-
mated reporting. Further AI development aims to optimize intelligence gained 
from comprehensive EHR data. 

3.12. HERs-Data Source 

Electronic health records (EHRs) have become widespread in U.S. healthcare. 
Use of the Basic with Clinician Notes standard rose substantially according to 
the Office of the National Coordinator, from just 4% of hospitals in 2008 to 83% 
in 2015. Nearly all hospitals now utilize some form of EHR. The Basic with Cli-
nician Notes standard added functionality like physician notes/assessments and 
test result documentation. While more comprehensive standards incorporating 
actual medical images exist, far fewer hospitals currently implement them. 

As such, many healthcare providers still document patient visits using less 
feature-rich EHR systems. Continued advancement of standards has the poten-
tial to further unlock the value of EHR data through more integrated analytics 
and clinical decision support. This could help address the gap between top per-
formers leveraging comprehensive records and those with more limited docu-
mentation. Some EHR systems are EHR Enterprise systems which have data 
more real-time; such advanced EHR Enterprise systems are in the possession of 
some medical providers who offer better opportunities for enhancing the state of 
clinical monitoring and the options of prediction. Certainly, as has been already 
stated, it is relatively recent that many organizations began to implement EHR 
systems and therefore many patient histories are yet to be included in the EHRs.  

3.13. Data from Patient History 

EHR data obtained appropriately for research presents various opportunities for 
advanced analytics, as it includes electronic medical codes that are nearly always 
present as well as electronic concepts that can be derived through natural lan-
guage processing, along with clinical notes from physicians and nurses that vary 
in structure from free-form to predefined, in addition to diverse clinical data 
sources such as medical images, lab results, and sensor readings, and when com-
bined through proper techniques, this comprehensive clinical data encompassed 
within EHRs can be mined for relationships and utilized to develop predictive 
models with the goal of enhancing patient care and outcomes, while of course 
always adhering to strict privacy and consent standards when handling sensitive 
health information. 

3.14. Unstructured Text-NLP 

Clinical notes are especially valuable as they contain important clinical descrip-
tions and details that are not always fully captured or consistently represented 
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within billing codes, as the narrative nature of some codes could potentially lead 
to inconsistencies or an orientation toward institutional needs rather than pa-
tient-centered documentation as noted previously, [38] and these discrepancies 
coupled with the absence of specific clinical information in codes only further 
highlight the importance of the unstructured narrative notes which serve as a 
critical source of granular data like precise vital signs documented in the 
free-text but not included in diagnostic or billing codes required for reimburse-
ment. Effective extraction of meaningful insights from clinical notes has relied 
on advancements in natural language processing techniques involving computa-
tional methods that map the human language representations within notes into 
standardized machine-readable formats, showing promise for more complete 
transformation of clinical narratives into forms suitable for subsequent predic-
tive modeling, decision support, and other analytical applications. 

However, trying to apply NLP for analyzing the clinical notes has unveiled to 
be a rather challenging task mainly due to the fact that clinical notes in Eng-
lish-speaking areas are not written in classical English and clinicians have a way 
of developing their own terms, abbreviations, and acronyms. Further, clinicians 
have many terms for one concept, and all of these terms contribute to the confu-
sion [39]. So, there is much more data within the clinical notes than just the cat-
egorical diagnoses. As has been mentioned before, for instance, temporality in 
clinical narrative is crucial in establishing the sequence of events and has elicited 
interest in numerous studies. 

3.15. Images and Sensor Data 

It is also feasible for EHRs to include links or references to images as well as any 
other data from other forms of sensors. Interestingly, the modern techniques in 
handling of images and the capability of its identification has also significantly 
enhanced during the recent years, primarily due to the enhancements in the 
deep learning techniques which are form of many layered neural networks that 
belong to the class of statistical models of artificial intelligence and is capable of 
processing images at different levels of detail [40]. Among these technologies, it 
is worth noting that they not only enhance the image processing of machines but 
also perform better than people in the task of image classification. By using both 
image processing and NLP methods, the textual content related to the images 
can be mined in order to possibly determine the existence of an object or a pa-
thology within the images, and, in fact, the existence of textual descriptions de-
rived from images is also possible [41]. Despite the interest in applying deep 
learning to the problem of medical imaging, the progress has been comparatively 
slower compared to other domains of use due to the challenges encounters in 
sourcing the training data. However, it can also be noted that training these al-
gorithms using EHR data can be beneficial due to their vast data volume. Collec-
tively, these technologies serve as effective tools not only for aiding the radiolo-
gists in the analysis of the images but also as enabling platforms for enhancing 
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investigations in difficult areas like diagnosis of neurodegenerative diseases such 
as Parkinson’s and Alzheimer’s diseases. 

This versatility indicates that deep learning could be integrated to process 
several forms of data detected through EHRs, garnered from standard tests and 
monitoring in the hospital or from outpatient wearable devices that are becom-
ing progressively popular. However, an area that can certainly be considered the 
greatest in potential may have still remained untouched, namely, only now ex-
tensive DNA sequences are being studied with the help of deep learning ap-
proaches [42]. Just like imaging could open venues into large scale datasets to 
train new algorithms and discover additional genotypes for diseases, treatments 
and patient outcomes, evaluating health records could empower similar abilities 
for a broad range of areas. 

3.16. Use of EHRs for Clinical Support and Treatment 

On one level, there are several things that one can point to immediately when 
discussing EHRs and systematic review, since EHRs consist of rich, pa-
tient-specific data that can clearly be used to support systematic review, which is 
the foundation of evidence-based practice (EBP). Various sources argue that the 
highest level of evidence for EBP has always been provided by randomized con-
trolled clinical trials. In the case of any chosen medical intervention or practice, 
such studies are then put together systematically in the form of a systematic re-
view. Nevertheless, these reviews are also lengthy, time taking sometimes over a 
decade to disseminate into practice and do not ensure the health populations 
that a clinician is likely to serve in practice [43]. But EHRs are not the infor-
mation gathering from directed studies; on the contrary, they provide users with 
the results of clinical data on numerous and heterogenic populations. Another 
major challenge in this type of studies is the discrepancy between the label-based 
information EHR contains (currently, codes like ICD-10) and the actual treat-
ment to be investigated in the study [44]. For example, there are definitions of 
diabetes based on certain numbers of different lab results, but none of them may 
state why a certain patient is identified with diabetes ICD-10 code in their billing 
summary. Nevertheless, on some subjects like acute myocardial infarction, EHRs 
have already been demonstrated to be valuable, as they provide the regular ac-
cess to the more extensive pool of subjects than it would be possible to enroll in 
controlled clinical trials [45]. Furthermore, in view of deep preprocessing, there 
are some efforts to apply deep learning for preprocessing EHRs for identifying 
the clinical concepts in order to reduce the “semantic gap” between research 
concepts and clinical concepts [46]. 

3.17. AI Application in Cancer Research 

Cancer remains a major public health concern, currently ranking as the second 
leading cause of death in the United States. Projections indicate cancer may soon 
surpass heart disease as the primary cause of mortality in the coming years. 
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Available data from 2010-2012 estimates lifetime cancer risk at 43% for males 
and 38% for females [47]. While the overall incidence of cancer has seen little 
change over the last 20 years, mortality rates have dropped significantly. A 22% 
reduction in cancer deaths was observed between 1991 and 2011. This decline 
stems from factors such as fewer Americans smoking, improved prevention 
through screening, earlier detection, and advancements in treatment approach-
es. 

Genomics plays an important role in several areas that are helping to reduce 
the burden of cancer. Advances in genomics aid prevention through risk assess-
ment and screening. It also supports more precise detection and diagnosis. Ge-
nomic insights increasingly guide targeted treatment selection and monitoring 
as well. Continued progress in these domains holds promise for further improv-
ing outcomes and quality of life for those facing cancer. 

3.18. Analytics and ML in Cancer Research 

In an earlier approach science has recognized that DNA as the framework of life 
forms [48]. Before delving into the detailed application of statistical and/or ML 
techniques in molecular biology today and into the future, some context is 
needed concerning DNA and the processes and mechanisms important for its 
replication and function that have become critically dependent on these mathe-
matical tools. It is therefore possible herein to discern these relationships as es-
sential in formulating and identifying the various ways of preventing and treat-
ing specific cancers depending on the individual risk [49]. 

Replication of DNA. A whole copy is to be found within the nucleus of every 
live human cell. Cells, for instance, are known to grow and then divide after 
some time has elapse. This requires that there be a duplicate copy of DNA made 
in the nucleus so that after division both or the new cells will contain a complete 
DNA set. It is in this way that most of the changes which may lead to the for-
mation of cancer are initiated, or in other words, the natural replication process 
is where numerous mutations are created [50]. Molecular biologists and cell bi-
ologists, biochemists, and the broad scientific community have amassed a wealth 
of knowledge on the process/mechanisms by which the DNA content of the cell 
is translated into function. The human genome comprises 20,000 to 25,000 genes 
Human genome as mentioned earlier is made up of DNA, the DNA which spe-
cifically has the instructions for building and maintaining the human body. A 
gene is an assigned section of DNA that contains information regarding the way 
a particular trait is going to be manifested. Cancer results from changes in on-
cogenes, tumor-suppressor genes and microRNA genes all of which result in the 
development of impaired cells and uncontrolled proliferation.  

3.19. Cancer Research Connection with ML Examples 

Machine learning approaches have been widely applied to study cancer risks, 
progression, and prognosis. For instance, support vector machines (SVMs), de-
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cision trees, and naïve Bayes classifiers were once used to analyze 98 marker sin-
gle nucleotide polymorphisms (SNPs) across 45 breast cancer genes in 174 pa-
tients and controls. [51] Three SNPs were found to indicate high breast cancer 
risk. SVMs produced the best results, accurately classifying 69% of patients and 
controls. The involvement of SNPs across different chromosomes supports the 
notion that cancer arises through additive effects of weak risk alleles. 

In machine learning, models are classified as supervised, unsupervised, or 
semi-supervised based on the availability of “response variables” (e.g. patient 
class) during training. Supervised learning uses fully labeled data, while unsu-
pervised learning has no labels. Semi-supervised techniques leverage some la-
beled examples alongside unlabeled data, assuming unlabeled observations pro-
vide useful structural information. For the SNP study, patient class labels com-
prised the response variables, and SNP genotypes served as explanatory variables 
to train classification models and predict cancer risk. Further refinement of ma-
chine learning algorithms may continue improving risk assessment).  

3.20. Smart Medication Development and Optimization 

Some of the recent points most useful in medication delivery include; Target 
drug delivery for cancer patient; where medication is delivered directly to the 
tumor [52]. AI is also being employed to determine the best ways to deliver the 
drugs as well. For instance, while administering the drugs, it becomes hard to 
establish the right concentration of the particular drug and the period of time it 
will be effective in curbing the disease at the same time reducing side effects.  

In this regard, an example of applying the proposed ML methods to solve this 
problem in the context of infectious diseases was presented in vitro experiments 
with Giardia lamblia, a protozoan parasite [53]. With only four combinations of 
concentrations of the drug and states of pathogens, they achieved 73 percent ac-
curacy of the effectiveness of a particular dose of the drug and with nine, the rate 
of accuracy was over 97 percent of the actual results. This is rather a useful 
method for the given task because it needs very little supervision from the physi-
cians, and can be adjusted to shift in the pathogens’ population. 

3.21. Smart Drug Development 

The information available on the impact of chemical entities has been ascending 
steeply due to HTS and HCS. So many compounds to think of when screening 
for the desired target makes it very impractical to make complete sense of the 
data without very many experiments. For instance, if there are only twenty 
compounds to account for, then attempting each compound in isolation and 
then with every other compound would mean over a million experiments (pre-
cisely 2 to power twenty or 1,048,576 experiments). However, there is also in-
ter-individual variability, that is, the reaction can vary given the circumstances 
such as age, diseases, genetic predisposition, and even the place in which the 
drug is used, which adds to the possible outcomes. Current practice demands 
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that a scientist selects a subset of experiments to be run, which he/she believes 
are likely to deliver maximum information with minimal cost. This process 
comes with several drawbacks; for instance, the scientists are unable to make 
predictions when there exist potential interaction complications. 

Active learning approaches for drug development seek to maximize the in-
formation gained from each experimental trial. As described by [54], active 
learning methods first construct a predictive model incorporating relevant in-
teraction terms based on existing data. This model relates variables like perturb-
agen, target, and cell type to an outcome of interest, such as phenotype. 

Rather than randomly selecting new experimental conditions, the active learn-
ing model is utilized to strategically choose trials that have the potential to most 
improve model predictions where current uncertainty exists. For example, if the 
model response is highly variable for certain untested perturbagen-target-cell 
type combinations, those experiments may be prioritized to refine that area of 
the model. Experiments expected to confirm existing predictions are depriori-
tized. 

This aims to enhance the model’s ability to predict phenotypic responses to 
new chemical-target-cell contexts using the smallest number of additional ex-
periments. Advanced these methods by integrating AI techniques to further au-
tomate the experiment selection and conduct of optimization trials [55]. Their 
automated, robotic pipeline required far fewer experimental iterations than a 
traditional manual trial-and-error approach to map chemical-protein interaction 
effects. 

By leveraging predictive models to strategically select the most informative 
new experiments, active learning seeks to accelerate target evaluation and drug 
discovery. Automating these processes through integrated AI and robotics also 
aims to minimize human involvement and associated costs. However, further 
research is still needed to fully realize these time and resource efficiencies at 
scale for real-world drug development programs. Continued technological pro-
gress holds promise to increasingly streamline the optimization of potential new 
therapies. 

3.22. Literature Knowledge Extraction Using AI 

Major fields in aging are expanding equally at an alarming rate and as a result, 
there appears to be tremendous pressure of evaluating distinct, sometimes even 
opposite findings and conclusion made in the literature. This is no longer suffi-
cient for meeting knowledge needs tomorrow: precisely because ordinary docu-
ment retrieval has been so powerfully addressed by the Google, National Library 
of Medicine, and others for ordinary documents. It is here that big-picture 
thinking really fails: Often what is required is not a “document” per se, but those 
assertions and claims and pieces of data that may be linked; rendering these may 
require other contextual or explanatory knowledges found in the texts identified 
in an earlier stage, and which may not be easily seen as associated with the orig-
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inally given documents. 
Language itself, the conduit of human knowledge and intelligence, was among 

the first subjects of AI endeavor, which subsumes NLP. While it has been possi-
ble to formulate ideas of language understanding and generation since the 
mid-century, the technical realization of natural language interaction has be-
come possible only recently due to the limitations of computational power. With 
regard to situation-specific, large-scale, complex written documents, however, 
we have only been able to somewhat peer into the idea of humanlike reasoning 
of passages. 

3.23. Computational Linguistics 

Computational linguistics is an area of study that has established two main ap-
proaches for understanding language: statistical and knowledge-based methods. 
[56] Machine learning plays a role in both, and effectiveness may rely on aspects 
of each. Statistical techniques focus on inferring patterns and associations be-
tween linguistic elements like words, phrases, concepts, and topics based on 
their distributions and relationships across language samples. This supports 
tasks such as topic modeling to determine a document’s implicit and explicit 
“aboutness” or related concepts. 

Knowledge-based approaches leverage formal representations of expertise re-
garding a topic’s logical structures and conceptual details. This guides identifica-
tion of nuanced semantic features that may be difficult to discern through statis-
tical analyses alone. While both incorporate machine learning techniques, statis-
tical computational linguistics analyzes top-down probabilistic patterns while 
knowledge-based methods apply bottom-up domain-specific understandings. 
Integrating aspects of each may unlock complementary insights relative to their 
individual strengths and limitations. Continued research refining these method-
ologies promises to further advance capabilities for language interpretation 
across domains. 

4. Extracting Knowledge 

In the context of the study of aging, geriatrics, and gerontology, certain sub-
languages may be employed in the textual sources that report results for de-
scribing and analyzing the details of the various fields of research within the 
domain. Semantically-driven methods involve the identification and utilization 
of knowledge about a certain topic, typically expressed by the use of on-time 
domain ontologies. An ontology in this context is an “abstract specification of 
what entities there are in a certain domain of discourse, whereby what is referred 
to here is the formal definition of the types of entities, their attributes, and their 
relations” [57]. The primary benefit of ontologies when it comes to comprehend-
ing scientific literature is that ontologies can also determine the logical properties 
of various types of entities described in the body of the literature in that particular 
field. I was able to show that by converting all contextual knowledge into an on-
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tology, appropriate knowledge base is created which can be used to answer ques-
tions regarding the research itself and by using such type of queries that may in-
corporate inferential problem solving—specifically deductive one. 

Depending on the design of the semantic tagging output, the knowledge de-
rived from literature can be captured in the form of a graph, where interconnec-
tions and viz., sections 2 and 3, overlooks. Knowledge graph-based approaches 
to computational linguistics provide researchers with a networked view of lan-
guage that facilitates examining relationships between concepts as well as poten-
tial knowledge gaps within literature corpora. [58] Rather than solely utilizing 
such tools for traditional literature reviews summarizing findings from large 
bodies of texts, the capability of knowledge graphs to link encoded elements of 
published evidence through logical inferences opens up new opportunities. By 
systematically connecting reported results across an extensive knowledge base, it 
may enable an integrative process of deriving presently undisclosed hypothetical 
conclusions for advancing initial discovery beyond conventional structured lit-
erature reviews. The chaining of logical inferences across many supported re-
search findings could aid hypothesis generation by surfacing relationships not 
explicitly stated within individual sources. This method therefore presents an 
exploratory analysis technique with prospective value for accelerated knowledge 
discovery through leveraging the prospective reasoning of knowledge graphs 
over significant language data. 

5. Access and Affordability 

Access and affordability are major concerns regarding the use of AI and machine 
learning technologies in elderly healthcare. As the costs of developing and im-
plementing these new tools are significant, it is important to consider how the fi-
nancial burden will be distributed and who will be responsible for covering the 
costs. For aging populations, many of whom live on fixed incomes, out-of-pocket 
costs could act as a barrier to accessing important diagnostic and treatment ap-
proaches enabled by AI. Ensuring equity of access across different communities 
will be vital so that geographic and socioeconomic disparities in care are not ex-
acerbated. 

However, with proper planning, AI and digital health solutions also hold prom-
ise for expanding access to specialized care. Technologies like telehealth could 
help bridge geographic gaps by allowing elderly patients to connect with top 
specialists regardless of physical location. Remote patient monitoring through 
wearable devices and home health sensors has the potential to improve out-
comes and quality of life for seniors living with multiple chronic conditions. But 
realizing this promise requires overcoming infrastructure barriers like limited 
broadband access in some areas. It also necessitates strict privacy and security 
measures to protect sensitive health data and build trust among elderly popula-
tions. Addressing issues of cost, access, and data protection proactively can help 
ensure that AI and ML benefit healthy aging in an equitable and socially inclu-
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sive manner. 

6. Conclusion 

Here we have provided and explicated some of the impacts that AI could have 
on the health and quality of life of the elderly. AI technologies are relatively 
young but are developing and have vast potential in one way or another in el-
derly care for instance in medication alerts or any other care scheduling and 
administration to acceleration and coordination for medication development 
and usage or even computational algorithms to deliver accurate doses of the 
same depending on the specific individual for the elderly. For clinical providers, 
the potential of AI in this role is a valuable opportunity for algorithms to effec-
tively mine large amounts of data, as well as to seek out new information, im-
prove decision support systems, and help physicians diagnose diseases and 
manage patients’ records from multiple disparate systems. Remaining an im-
portant field of future research and development, brain-machine interfaces have 
the promise to return motor functionality to older adults with neurological defi-
cits. Similarly, as adjunct “thinkers” to those who suffer from cognitive disorders 
or their carers there is another rather active branch of work across the field: AI 
cognitive agents. Despite the current state of affairs still containing many ques-
tions that need to be faced in the future years (see Chapter 1), these technologies 
seem to progress year after year and, as such, bring some promises that one day, 
these tools could become clinically feasible—at least—and, maybe, even stand-
ard—to offer some degree of control and autonomy to impaired individuals. 
However, the biggest obstacles to turning these efforts to the next level for utili-
zation in the context of an aging society are not related to certainly not in scien-
tific, engineering or medical potential but rather how to bring these into safe, 
sustainable, ready-to-use stability in practice. 
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