
Journal of Software Engineering and Applications, 2017, 10, 677-692
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

A Structural and Generative Approach to
Multilayered Software Architectures

Georges Edouard Kouamou1, Willy Kengne Kungne2

1Department of Computer Engineering, National Advanced School of Engineering, Yaounde, Cameroon
2Department of Computer Science, Faculty of Science, University of Yaounde I, Yaounde, Cameroon

Abstract
The layered software architecture is the model commonly adopted for the de-
velopment of information systems since it favors the modularity and the sca-
lability of the systems. On the other hand, the emergence of model engineer-
ing aims to raise the level of abstraction to allow developers to reason on
models, and less in code. The research question is to combine the two ap-
proaches to facilitate the work of developers. The proposal resulting from this
study is based on a set of concepts defined using the UML profiles. These
concepts include services, business components, and data persistence. Then
the Kruchten model is adopted to represent the development cycle according
to several views, each view being represented by UML diagrams derived from
the previously defined profiles. Finally, rules are available for checking in-
ter-view consistency, from refinement to code generation. The result is a step
towards the definition of a domain specific ADL and a development process
as much as it includes the expected characteristics of such a language, namely:
the fundamental concepts, the support tools and the multiview development.

Keywords
ADL, Architectural Style, Model Driven Engineering, UML, Service, Software
Development Process

1. Introduction

The software architectures describe in a symbolic and schematic manner the
various constituent elements of computer systems, their interrelations and their
interactions. The architectural styles specify the nature of the components, the
connectors, the topological distribution of these components, indicating their
relations and a set of semantic constraints. The development of software archi-
tectures in the software industry has led to the development of a generation of

How to cite this paper: Kouamou, G.E. and
Kungne, W.K. (2017) A Structural and Ge-
nerative Approach to Multilayered Software
Architectures. Journal of Software Engineer-
ing and Applications, 10, 677-692.
https://doi.org/10.4236/jsea.2017.108037

Received: May 2, 2017
Accepted: July 8, 2017
Published: July 11, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

DOI: 10.4236/jsea.2017.108037 July 11, 2017

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.108037
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.108037
http://creativecommons.org/licenses/by/4.0/

G. E. Kouamou, W. K. Kungne

languages so-called Architectural Description Language (ADL).
An ADL is a language that provides functionality for modeling the conceptual

architecture of a software system. An ADL provides a concrete syntax and a
conceptual framework for characterizing architectures. It should explain the ba-
sic concepts of the software architectures that are: components, connectors and
configurations. To be valued, an ADL must provide a set of support tools for the
development of architectures and their evolution [1]. In this context, multiple
architectural views must be offered to developers through which they appreciate
the consistency of the system being built. However, most of the known languag-
es in this domain have not been imposed on software developers and builders for
two reasons: 1) they require advanced knowledge in formal theories, 2) they are
limited only to the description of the architecture and its verification, without
worrying about the implementation of the functionalities of the application [2].

UML provides simple graphical notations with understandable semantics for
specifying, viewing, modifying, and building the necessary documents for soft-
ware development. Recent developments in this modeling language have expli-
citly introduced the fundamental concepts of software architectures. It thus po-
sitions itself as a candidate for the massification of software architectures [3].
First because it is accepted by the software manufacturers and the academic mi-
lieu. Then it is commonly used by most developers. In this situation, it is impor-
tant to be able to represent the whole development cycle within an ADL. Al-
though UML through the diagrams it offers, presents the different abstractions of
the system to be designed and it complies with the various architectural views as
defined by the Kruchten model [4], it does not define a process of refinement to
lead to the implementation. Apart from the transformation of the class diagram
into code that is automatic, the refinement process for new architectural con-
cepts in UML is usually done manually. From these facts, UML considered alone
does not offer all the features that are expected of an ADL.

In this paper, we propose a framework for the construction of software archi-
tectures based on UML, which we combine with the Kruchten model to satisfy
certain missing characteristics, in particular the definition of architectural views.
Once this choice is adopted, we focus on the development of the refinement
mechanisms to ensure the coherence between views and to transform the con-
ceptual elements into structural components of the application. We will take in-
to account the use case view that materializes the services offered by the system,
and the logical view that includes the structural elements to derive the imple-
mentation view in a layered architectural style. For this purpose, we define a
UML profile and transformation rules described with Atlas Transformation
Language (ATL) [5].

The remainder of this article is organized as follows. Section 2 presents a state
of the art on software architectures and the study of some ADLs in order to posi-
tion our preoccupation with the existing ones. In Section 3 we propose the mod-
els underlying our approach to design a domain specific ADL. This approach is
based on the use of UML metamodels through the Model Driven Architecture

678

G. E. Kouamou, W. K. Kungne

(MDA) approach advocated by the OMG. Section 4 details the experimental
framework in which a tool is implemented to support the proposed approach.
Next the section 5 presents the validation of this tool which is carried out on the
construction of the back-end of an application for managing registration in a
university. Section 6 presents the conclusion and some thinking for future stu-
dies.

2. Background
2.1. ADL

An ADL provides a concrete syntax and a conceptual framework for characte-
rizing architectures. Each ADL must rely on a set of fundamental concepts
namely components, connectors and configurations. In addition to these con-
cepts, an ADL must have some minimal features which are mainly support tools:
architecture editor, refinement, code generator and architecture evolution man-
agement [1]. In the literature, we distinguish three approaches in the definition
of ADL.

The first approach consists of native languages specifically designed to specify
software architectures: Wright, Darwin, Rapide. The fundamental concepts
mentioned above are the elementary entities they offer. If they offer the main
characteristics among those expected of an ADL in this case specification edi-
tors, static and dynamic analysis tools, sometimes code generators in a pro-
gramming language, the main disadvantage of these Languages remain their he-
terogeneous terminology and their restriction to specific communities or appli-
cation domains [6].

The second approach consists to extend a common programming language by
incorporating the basic concepts of ADLs. ArchJAVA is an illustration [7]. If
these ADLs allow the user to remain in his familiar language by exploiting his
usual environment, this approach has the disadvantage of covering only the im-
plementation view.

The third type consists of the languages that can be used as a common inter-
change format for architecture design tools. Acme is an illustration [8]. They are
used to exchange one architecture format to another. Therefore they can be used
as a pivot language between two architectures defined in two different ADLs.
Some may provide a basis for developing new ADL. The principle is based on a
simple structure that takes up the basic structure of all the ADLs and the proper-
ties allowing to define auxiliary information, which supplement the description
of the architecture. Their principal shortcoming is the absence of mechanisms
for analysis and code generation [6].

2.2. UML as an Approach to the Dissemination of ADL

UML is a modeling language based on graphical symbols to represent a system.
It provides users with different diagrams that put together, form a complete
modeling of the system. UML does not impose any design methodology, that is,
UML does not impose a particular way for the use of the diagrams it offers. Each

679

G. E. Kouamou, W. K. Kungne

diagram must respect the syntax defined in its specification. Starting with ver-
sion 2.0 UML improves its component diagram which explicitly takes into ac-
count the basic concepts of an ADL.

UML has a well-defined syntax. It is widely adopted by developers and its
evolution is supported by several manufacturers. Each diagram can be used in
one of the views of the Kruchten architectural model [4]. This symbiosis be-
tween UML and the 4 + 1 views model promotes an architectural design method
to which it will be necessary to associate support tools to build a true ADL [9].
Taking this into account, the concept of architectural style in the method should
be made explicit and the coherence between the different diagrams should be
ensured.

3. Modeling Approach

The traditional IT organizational structures of the most companies closely
matches the layered architecture style. Nowadays this style is adopted for most
Enterprise Information Systems consisting of four standard layers: presentation,
business, persistence, and database [10]. This purpose of the approach is to de-
velop a specific language dedicated to the description of layered software archi-
tectures.

With regard to the characteristics as defined by [11], it is essential to have
within the same ADL several views presenting different aspects of the architecture
of the system. Krutchten’s 4 + 1 views model allows to appreciate all the views of
the system throughout the development. Each view can be represented by UML
diagrams. In order to manipulate these models, OMG standardizes a model dri-
ven approach so-called Model Driven Architecture (MDA) which introduces
UML extension mechanisms.

3.1. Kruchten Model

During the software development process, each step presents a different abstrac-
tion from the system to be designed. These different abstractions in Figure 1 de-
rive the notion of view in the process model.

Figure 1. The 4 + 1 views model.

Process View

Implementation View

Deployment View

Logical View

Use Case view
End-Users
Functionality

Analysts/Designers
Structure

Programmers
Software management

System engineering
System topology,

Delivery, installation,
communication

System Integrators
Performance,
Scalability,

680

G. E. Kouamou, W. K. Kungne

The logical view includes the structural elements (classes, components) of the
design. It is the view that is at the heart of reuse. The process view captures the
dynamics and timing of design aspects. The physical or deployment view de-
scribes how the software is mapped to the hardware and reflects its distributed
configuration. The implementation view describes the organization of the sys-
tem source code. Finally, the central view shows the use cases that represent the
functional requirements of the application.

Each view of this model is represented by UML diagrams. The central view
(use case view) is illustrated by the use case diagram, the logical view can be
represented by the class and component diagrams, the process view can be
represented by the activity diagram, State Chart diagram, Interaction diagram.
The implementation view can be represented by the class diagram and also the
component diagram since a UML component is a database, a source file, a Dy-
namic Link Library (DLL) and the deployment view can be represented by the
deployment diagram.

Recent versions of UML aim to increase the level of abstraction by advocating
model engineering [12]. This is equivalent to making the UML models perennial
and allowing them to be free from the execution platforms. Among the new
characteristics introduced are [13]:
• The elaboration of a Document Type Definition (DTD) for UML2.0 accord-

ing to the XMI standard. It shows the importance of XMI which is the stan-
dard par excellence capable of exchanging models.

• Component-based development: UML2.0 supports the component paradigm,
it defines profiles to support Corba Component Model (CCM) and Enter-
prise Java Bean (EJB) component model and it enables profiles for other
component platforms.

These characteristics favor the definition of reusable architectures and their
storage in XMI format. The MDA approach intervenes in the definition of mod-
els and also in their transformations.

3.2. The MDA Approach

MDA is a set of modeling and model transformation techniques standardized by
the OMG [14]. This approach advocates the use of models in the different phases
of the development cycle of an application. Specially, it aims to develop model
requirements, model analysis and design and code models. The transformations
make it possible to link these different models.

3.2.1. Requirements Model
The first thing to do when building an application is to specify the client's re-
quirements to define what services are offered by the future application. Re-
quirements are specified in a requirements model called Computation Indepen-
dent Model (CIM). It allows to clearly express the links of traceability with the
models that will be built in the other phases of the development cycle of the ap-
plication. With UML, a requirements model can be summarized as a use case
diagram.

681

G. E. Kouamou, W. K. Kungne

3.2.2. PIM Analysis and Design Models
It is during analysis and design that the software architecture of the application
is realized. In the MDA approach, this phase also uses a Platform Independent
Model (PIM). PIMs assure the transition from the requirements model (func-
tionality) to the implementation model so-called Platform Specific Model
(PSM).

3.2.3. PSM Code Models
Code generation begins after the PIM is obtained. This phase is tricky because
the code patterns and the source code of the application can be confused.

3.2.4. Transforming Models
The transformations of models allow the mapping from one model to another.
Because the transformation is at the heart of MDA, OMG has standardized
Query/View/Transformation (QVT) whose ATL is an implementation in the Ec-
lipse environment [15]. This language allows to describe rules to transform a
model into another one as well as query queries making it possible to convert a
model into text.

3.3. The Steps of the Proposed Approach

The approach includes three steps that are similar to analysis, design and im-
plementation. The first step concerns the requirements analysis that lists the ex-
pected services. These services are grouped in the boundary layer between the
clients and the business application. The introduction of a service layer aims to
satisfy the needs of the modern information systems characterized by the adop-
tion of Service-Oriented Architecture (SOA) principles [16]. The second step
deals with the identification of business components that implement the services
identified during the requirements analysis. Because these components manipu-
late persistent entities, they must be identified and gathered to create the struc-
ture of the database in the third step.

The approach consists of three views. Each view represents a different aspect
of the system and contains a modeling formalism to represent its elements.
These three views are:
• The central view (Service view): this is the view allowing to specify the user

requirements in the form of use cases.
• The logical view: this is the view used to specify the class models as well as

the business components.
• The implementation view: it is the view to check the consistency between the

two other modules, to transform and refine their models to have a skeleton of
code for which we preferred, without harming the generality, the technology
Java for experimentation.

3.3.1. The Service View
This view describes the use cases that are the services provided by the applica-
tion. Its modeling formalism is presented by the UML metamodel of Figure 2.

The meta-class Service allows to specify the functionalities of the application

682

G. E. Kouamou, W. K. Kungne

as a services. It is composed of a set of exceptions represented by the Exception
meta-class. The services are performed by actors represented by the meta-class
Actor. In order to regroup the services by packages we defined a meta-class Ser-
viceSet which gathers a set of services. This meta-model characterizes a CIM for
an application that translates the functional requirements into the framework of
services.

3.3.2. The Logical View
This view describes the database model in the form of a class diagram as well as
the business components. A business component specifies the provided services
and the required services as methods signature i.e. with their input and output
parameters. Figure 3 describes the model formalism for this module. This figure
contains the following classes:

Figure 2. Service meta model.

Figure 3. Meta model of the logical view.

683

G. E. Kouamou, W. K. Kungne

• Entity: coupled with Relationship describes persistent entities that require a
Data Base Management System (DBMS) for their storage. Attribute and Id-
Class respectively represent the concepts that describe respectively the
attributes and the keys of the different tables.

• Business: describes the interfaces of the business components. The services of
these components are represented by Methods that have parameters (Para-
meter) that can be input parameters (Input Parameter) or output parameters
(Output Parameter). The services declared in the cohesion ADL Service
module are implemented by the methods of this module.

• Direction, Cardinality and Type Primitive are enumerated types. They define
new types.

The models conforming to this formalism are considered as PIM in the sense
that they are independent to the implementation platform.

3.3.3. The Implementation View
This third view makes it possible to:
• Check the consistency between the other two views.
• Transform the obtained PIM model into PSM close to the EJB3 components.
• Refine the previous PSM to obtain a code skeleton in Java including a layer of

web services to manage client heterogeneity, an EJB component layer and a
data access layer.

Consistency check
It consists in ensuring that each identified service is implemented at the level

of the business. Let’s consider C the set of business components and S the
set of registered services. Let us define on C the “use” relation. Two business
components 1c and 2c are related if one uses at least one service provided by
the other. Groups are thus formed which are similar to equivalence classes
whose constituent elements are subsets of components which interact with one
another. Let us note []C the new set constituted by these groups.

Let’s define the application: [] [] { }: ; , 1if C S f c s S i k→ = ∈ = ⋅⋅⋅ which iden-
tifies the set of services implemented by a group of components.

1) If there is an element of C that does not belong to any equivalence class and
does not implement any service of S then this business component is irrelevant.
A warning message is generated containing these irrelevant components so that
the designer can take corrective action.

2) If an element of []C has no image in S, then this group is irrelevant. In
this case, the business components that constitute it appear in the warnings file.

3) If f is surjective then any service s S∈ has an implementation in C.
Otherwise, the service with no antecedent is reported in the warnings log.

This rules ensures consistency between the service view and the logical view.
The coherence intra-view (logical) is ensured by the associations defined be-
tween the entities of the metamodel.

Transformation and refinement of models
After the step of checking the consistency, if the set difference is empty, we

transform the obtained model by federating the two models from the first two

684

G. E. Kouamou, W. K. Kungne

views (service and logic) into a model of code conforming to the formalism
represented in Figure 4. As the JEE platform is chosen for the validation of the
approach, it only remains to refine the models in order to deliver the Java code
skeleton consisting of EJB3 components. The ATL script used for this purpose
has 10 rules and 17 helper.

1) Refinement of the service layer. The transformation program contains rules
that map a SetService to an EJB3 Component for the Service Layer and the me-
thods for the interface and implementation of the EBJ3 component are obtained
by transforming the Business Class methods (Figure 3) that perform the Servic-
es that make up the SetService. The model is decorated with JAX-WS annota-
tions (Java Annotation XML-Web Service). The Web Services will have to allow
interoperability with presentation layer whatever its nature (Web, Desktop, An-
droid, etc…).

2) Refinement of the business layer. The business layer contains EJB3 compo-
nents constructed from the formalism presented in the logical view. In the latter,
the Business class is transformed into the EJB3 component and its methods are

Figure 4. Metamodel towards EJB3 components.

685

G. E. Kouamou, W. K. Kungne

transformed into methods for the interface and the implementation of the EJB3
component.

3) Refinement of the Data Access Object (DAO) layer. The DAO layer is built
from the Entity, Attribute, IdClass, and RelationShip classes of the logical view.
It of a sublayer containing of the entities that will be mapped to the tables in the
database and another sub-layer (Data Service) that provides creation, modifi-
cation, deletion, and persistent feature search services. The DS layer encapsulates
the services offered by the DAO layer and presents them to the business layer.

Since the EJB3 components for these two layers provide basic services for in-
serting, deleting, creating, and searching data entities, they will be closely refined
from the Entity.

4. Experimentation Framework

To facilitate the creation of software architectures according to the approach and
the reference style described in this paper, the support tools are built as an Ec-
lipse plug-in using the following software: Eclipse Modeling Framework (EMF),
Graphical Modeling Framework (GMF) and ATL.

4.1. Presentation of the Tools Used

EMF is a modeling framework that includes code generation from a data model.
This is a Java implementation of a subset of the OMG MOF standard. To avoid
ambiguities with MOF, the EMF models conform to the eCORE meta-model.
We use EMF to construct the formalism of our models. Each view corresponds
to a formalism represented by an .ecore extension file. However EMF does not
offer graphic tools for modeling that is why GMF is also used. GMF is a frame-
work allowing to create, from a data model, a graphics editor based on the Ec-
lipse platform. This tool is composed of EMF and GEF. GEF is composed of two
parts:
• Graphical Definition Model: represented by the extension file .gmfgraph al-

lows to specify the graphic elements of the model.
• Tooling Definition Model: represented by the .gmftool extension file is used

to specify the elements of the palette.
In order to link EMF models to GEF, GMF assembles through the mapping

model, a file with the gmfmap extension. For each element of the Graphical De-
finition Model, it is assigned a node and an action as well as the corresponding
class of the data model. After this step, you can generate a new .gmfgen file, ga-
thering all the information in the project.

ATL allows to specify the transformation rules for models from the service
and logical views to obtain the implementation view. Once the different views
are modeled (logical view and service view), their representation are merged into
a unique XMI. The XMI file that results from this merging is transmitted to the
refinement module whose code is written in ATL which checks the consistency,
transforms and generates the corresponding structured Java code.

686

G. E. Kouamou, W. K. Kungne

4.2. Case Study: A University Registration Application

The on-line registration application allow the students of a university to register
from a computer (Laptop, Desktop) or a mobile terminal (phone, PDA, etc.).
For this purpose, they must be able to pay their registration fees, complete the
registration forms, get the medical form from an authorized doctor, and upload
the documents which justifies their status. Then the “Registration Agent” must
be able to consult and manage the students’ files in order to validate or reject a
file.

Some constraints: 1) the payment of fees will be done by a mobile or electronic
means of payment, 2) any person must subscribe to the service in order to have a
user account on the platform. The components of the different views are sum-
marized in Table 1.

Once the services are identified, they are assigned to the business components
that can perform them. Service behavior is entirely delegated to the business
components. In anticipation of interactions with client devices that may be of a
varied nature, we consider this layer of services as adapters capable of ensuring
compatibility between the system and the user interfaces [17].

The cartography of the business components is defined by factoring behaviors
at the service level. This technique avoids having a large number of components
in proportion to the services. Other components are added by necessity, for ex-
ample if the system requires an external component. This is the case of the Pay-
mentManager component, which requires an electronic payment API to manage
the financial transactions. Each component includes boxes that each materialize
the service provided. In addition to the signature of the service, there are the ex-
ceptions that are taken into account.

The graphical representations of the constituents of the various views, shown
in Figures A1-A3, are supplemented by textual properties, given by the design-
er, which describe the inter-view and intra-view relationships. These properties
are data provided to instantiate the components from the metamodel. About the
relationships between the entities, the developer gives a name, the cardinalities,
and the direction. Concerning the business component, one needs to define the
operation signature (its name and the type of each parameter), the exceptions

Table 1. Summary of the views.

Services Business Components Entities

Login
Logout

Session Manager
User Account

Role

Subscribe User Manager User Account

Upload Document Upload Manager Document

Create File
Fill Registration Form

Consult File
Save File

File Manager Registration Form

Pay Registration Fees Payment Manager Payment

The details and graphical overview are shown in Figures A1-A3.

687

G. E. Kouamou, W. K. Kungne

that can be thrown. At the level of services, the association with the business op-
eration that must implement each of them is required.

5. Evaluation

The tool in its current state allows to generate the back-end code of a given ap-
plication. Figure 5 shows the corresponding architecture of the generated code.
The Service layer, DataService layer and DAO layer are generated integrally
therefore do not need to be completed. Only the instructions of the business
layer are written manually because, at this stage of thinking, the dynamic view is
not taken into account.

Automatic generation as well as the proper organization of the code have an
impact on the productivity of the developers and the quality of the final software
for many reasons:
• The reduction of the programming delay since the programmer deals only

with the business components.
• The lisibility of the application code.
• The improvement of the reuse and the extensibility of the software because of

the adoption of a component-based approach.
Among the 4 layers, 3 are fully generated, i.e. 75%. These are the DAO, Data-

Service and Services layers. The 4th layer contains the technical requirements
and the beans corresponding to the service calls. On this basis, we estimate that
the development team will be responsible for writing 20% of the volume of the
code needed to implement an application. This code corresponds to the bean
body instructions.

6. Conclusions and Further Works

Software architectures have proven importance in the software development
process. Among the architectural styles reference, layered architectures are pre-
dominant especially for structuring information systems, because they favor the
modularity, flexibility and scalability of systems. However many platforms like
JEE are based on the layered architecture model, but they leave it up to the de-
velopers to organize the code manually from the conceptual model.

This study proposes an approach and a support tool for the design of multi-
layered software architectures. The approach combines the 4 + 1 process model

Figure 5. Architecture of the generated application.

688

G. E. Kouamou, W. K. Kungne

from Krutchten and the use of UML diagrams to facilitate its dissemination. The
importance of this work resides in the definition of a domain specific language
dedicated to the specification of layered architectures, the assistance to the de-
velopment team which will focus more on the models and will be less interested
in the structure of the code.

The resulting tool is built in the form of an Eclipse plug-in. It consists of three
modules: the first one allows to specify the requirements of the application to be
constructed in the form of use cases, the second serves to describe the models of
classes and components of the application and finally the transformation mod-
ule including ATL rules allows to obtain the implementation view from the files
obtained from the first two modules. The validation of the model and the expe-
rimentation of the prototype are carried out through the application of online
registration in an academic institution.

The tool whose the design is presented in this article does not take into ac-
count the dynamic and the deployment view of the Kruchten model in order to
complete all the views of a software system. These aspects will be taken into ac-
count in future versions in order to have a comprehensive tool that facilitates the
work of the development team throughout the development process. The dep-
loyment aspect is all the more important as most current systems are distributed.
It would be interesting if the resulting environment supports the placement of
the constituents on the different nodes of the network.

The basis of our reflection integrates ubiquity and distribution as fundamental
aspects of modern systems such as state in [18]. The ubiquity deals with the
presentation layer where the work carried out by [19], will be helpful to think on
a generic metamodel that will enable us to build the front-end for Information
systems, that is independent to GUI libraries and device platforms (desktop,
Web, Android…). For this purpose, we are thinking on coupling the MVC mod-
el to the layered style where the model is represented by the backend conforming
to the layered structure mentioned in this paper, the controller acts as an adapter
to ensure the compatibility between the presentation layer and the services layer.

References
[1] Medvidovic, N. and Taylor, R. (2000) A Classification and Comparison Framework

for Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 126, 70-93. https://doi.org/10.1109/32.825767

[2] Kouamou, G.E. (2012) Coherence of Views in the Specification of Software Archi-
tectures. ARIMA, 14, 205-216.

[3] Medvidovic, N., Rosenblum, D.S., Redmiles, D.F. and. Robbins, J.E (2002) Model-
ing Software Architectures in the Unified Modeling Language. ACM Transactions
on Software Engineering and Methodology, 11, 2-57.
https://doi.org/10.1145/504087.504088

[4] Kruchten, P. (1995) Architectural Blueprints—The “4+1” View Model of Software
Architecture. IEEE Software, 12, 42-50. https://doi.org/10.1109/52.469759

[5] Randak, A., Martínez, S. and Wimmer, M. (2011) Extending ATL for Native UML
Profile Support: An Experience Report. Proceedings of the 3rd International
Workshop on Model Transformation with ATL, Zürich, Switzerland, CEUR-

689

https://doi.org/10.1109/32.825767
https://doi.org/10.1145/504087.504088
https://doi.org/10.1109/52.469759

G. E. Kouamou, W. K. Kungne

WS.org, Vol-742, Jul 2011, 49-62.

[6] ACCORD (2002) Etat de l’Art sur les Langages de Description d’Architecture.
INRIA.
https://pdfs.semanticscholar.org/5fb0/c9409a903b296aa86b4e49dc59e7eaff0ef3.pdf

[7] Aldrich, J., Chambers, C. and Notkin, D. (2002) ArchJava: Connecting Software
Architecture to Implementation. Proceedings of the ISCE, Orlando, Florida, 19-25
May 2002, 187-197. https://doi.org/10.1145/581339.581365

[8] Garlan, D., Monroe R. and Wile, D. (1997) Acme: An Architecture Description In-
terchange Language. Proceedings of CASCON’97, November 1997, Toronto, On-
tario, 169-183.

[9] Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A. and America, P.
(2007) A General Model of Software Architecture Design Derived from Five Indus-
trial Approaches. Systems and Software, 80, 106-126.
https://doi.org/10.1016/j.jss.2006.05.024

[10] Richards, M. (2015) Software Architecture Patterns. O’Reilly Media, Inc.

[11] Taylor, N., Medvidovic, N. and Dashofy, E.M. (2009) Software Architecture: Foun-
dations, Theory, and Practice. John Wiley & Sons Publishing, Hoboken.

[12] Muchandi, V. (2007) Applying 4 + 1 View Architecture with UML 2. Sparx Systems.

[13] Blanc, X. (2005) MDA in Action. Model Driven Software Engineering, Eyrolles.

[14] Kleppe, A., Warmer, J. and Bast, W. (2003) MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley, Boston.

[15] Bézévin, J., Jouault, F. and Valduriez, P. (2004) An Eclipse-Based IDE for the ATL
Model Transformation Language. Nantes.

[16] Razavian, M. and Lago, P. (2010) A Frame of Reference for SOA Migration. In: Di
Nitto, E. and Yahyapour, R., Eds., Towards a Service-Based Internet. ServiceWave
2010. Lecture Notes in Computer Science, Vol. 6481, Springer, Berlin, Heidelberg,
150-162. https://doi.org/10.1007/978-3-642-17694-4_13

[17] Lorenz, A. (2013) Architectural Patterns for Applications with External User Inter-
face Elements. Pervasive and Mobile Computing, 9, 269-280.

[18] Nabi, F. and Mullins, R. (2011) Moving from Traditional Software Engineering to
Componentware. Journal of Software Engineering and Applications, 4, 283-292.
https://doi.org/10.4236/jsea.2011.45031

[19] Belangour, A, Sadik, S. and Abbar, A. (2017) Towards a Platform Independent
Graphical User Interface. American Journal of Software Engineering and Applica-
tions, 6, 5-12. https://doi.org/10.11648/j.ajsea.20170601.12

690

https://pdfs.semanticscholar.org/5fb0/c9409a903b296aa86b4e49dc59e7eaff0ef3.pdf
https://doi.org/10.1145/581339.581365
https://doi.org/10.1016/j.jss.2006.05.024
https://doi.org/10.1007/978-3-642-17694-4_13
https://doi.org/10.4236/jsea.2011.45031
https://doi.org/10.11648/j.ajsea.20170601.12

G. E. Kouamou, W. K. Kungne

Annex

Figure A1. The service requirement model.

Figure A2. Business components represented by an Instance of the PIM.

691

G. E. Kouamou, W. K. Kungne

Figure A3. Data models from persistent classes.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

692

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	A Structural and Generative Approach to Multilayered Software Architectures
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. ADL
	2.2. UML as an Approach to the Dissemination of ADL

	3. Modeling Approach
	3.1. Kruchten Model
	3.2. The MDA Approach
	3.2.1. Requirements Model
	3.2.2. PIM Analysis and Design Models
	3.2.3. PSM Code Models
	3.2.4. Transforming Models

	3.3. The Steps of the Proposed Approach
	3.3.1. The Service View
	3.3.2. The Logical View
	3.3.3. The Implementation View

	4. Experimentation Framework
	4.1. Presentation of the Tools Used
	4.2. Case Study: A University Registration Application

	5. Evaluation
	6. Conclusions and Further Works
	References
	Annex

