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Abstract 
We reviewed a nonlinear dynamical model in 2n-variables which has conservative nonlinear in-
teractions defined in terms of Noether’s theorem in dynamics. The 2-variable (n = 1) conservative 
nonlinear model with external perturbations produced a possible explanation for problems such 
as the 10-year cycles of Canadian Lynx and snowshoe hare, interactions of microbes, stability and 
conservation law of nonlinear interacting systems. In this paper, the atto-fox (10−18-fox) problem 
on the LV nonlinear equation, properties of 4-variable conservative nonlinear interactions differ-
ent from nonconservative nonlinear interactions are examined and emphasized. Properties of the 
4-variable (n = 2) conservative interaction model and a method to construct numerical solutions 
are discussed by employing the 2-variable solution. The periodic times of component variables 
and the net periodic time defined by superposition of component variables are discussed in order 
to study stability of the net 4-variable system. With symmetries and conservation laws, nonlinear 
analyses would be useful to study microscopic and macroscopic complex systems. 
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1. Introduction 
The concepts of stability, conservation law, symmetry are important in order to understand natural phenomena 
in physical, biological and engineering systems [1]-[6]. In our previous study, we proposed a conservative 
nonlinear dynamical model in 2n-variables which is primarily for nonlinear competitive interactions. The model 
provided a method for studying the relation between a conservation law and stability of a 2n-dimensional 
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competitive system and restoration phenomena [7] [8]. 
Though symmetry and conservation laws have important information on nonlinear systems [9] [10], it is not 

possible to know at the outset what kind of conservation laws and nonlinearity should exist in complicated 
interacting systems, such as ecosystems of mammals [11] [12], microbes [13], systems of cells and organs [14] 
[15]. Nonlinear dynamical systems are characterized by self-interactions, dissipative structure, nonlinear coope- 
rative phenomena. They are highly evolved and interacting systems. 

Complex systems in natural sciences from microbiology to ecology, economy and environmental sciences are 
regarded as realizations of nonlinear dynamical interactions. Nonlinear phenomena are difficult to handle 
because of their complex interactions and structures, self-organizations, spontaneous emergence of order, which 
exhibit no simple laws or orders. However, complex systems constitute cells, organs, and living animals which 
make stable systems. There may be some conservation laws corresponding to the stability observed in micro- 
biological systems. This is a motive that we applied nonlinear analyses based on Noether’s theorem to dynamics, 
and interesting results for complex phenomena are discussed [7] [8]. 

Our approach to nonlinear phenomena based on conservation laws is briefly reviewed for 2-variable model 
( 1n = ), and the solution of 2-variable nonlinear equation is used to construct a solution of the 4-variable ( 2n = ) 
conservative nonlinear equation. The approximate periodic amplitude and time of 4-variable nonlinear solutions 
are employed to explain stability of the net 4-variable system. The analysis of nonlinear systems with con- 
servation laws would help understand complex systems on a fundamental level. 

The conventional nonlinear approach is reviewed in Section 1.1, and the atto-fox problem of Lotka-Volterra 
(LV) type nonlinear equation is explained in Section 1.2. Then, a new approach with conservation law and 
stability is explained in Section 1.3. In Section 2, the time-dependent perturbations and restoration from the 
perturbation are discussed with applications to the 10-year cycle of Canadian lynx and snowshoe hare and 
food-web of microbes in Okanagan Lake. In Section 3, the conservative nonlinear 2-variable model is extended 
to the 4-variable conservative model and properties of the 4-variable calculations are discussed. Conclusion and 
remarks are in Section 4. 

1.1. Conventional Nonlinear Differential Equations for Interacting Systems 
It is often explained that a model of interacting populations is written in general as,  

( )

( )

d ,
d
d , ,
d

x xf x y
t
y yg x y
t

=

=
                                    (1.1) 

where ( ),f x y  and ( ),g x y  are two autonomous differential equations which indicate that the time variable t 
does not appear explicitly in the functions ( ),f x y  and ( ),g x y  with the condition ( )0,0 0f =  and  
( )0,0 0g = . The meaning of functions depends on problems, where the nonlinear equations are applied, and this 

model is known as a general differential equation often called Kolmogorov’s predator-prey model [16]. 
The simple and important applications in the field of ecology are those of Malthus (1959) for a population 

analysis, A. Lotka (1925) [17] and V. Volterra (1926) [18] for predator-prey differential equations known as 
Lotka-Volterra (LV) equation. The nonlinear equations have been applied to vast fields, such as biological 
pattern formations [19]-[21], restoration phenomena from injuries [22]-[24], epidemiology [25], branching pro- 
cesses of growth and extinction of populations [26], the 10-year cycle of Canadian lynx and snowshoe hare 
[27]-[33], the food chain of microbes in a lake [34] [35], economy and Lanchester strategic management [36] 
[37], and so forth. 

The mathematical expressions of ( ),f x y  and ( ),g x y  in differential Equation (1) have been proposed and 
physical meanings of ( ),f x y , ( ),g x y  and stability as an equilibrium are investigated in terms of limit cycles 
and atractors of Lyapunov functions [38] [39]. Lyapunov functions are scalar functions denoted as ( )1 , ,V t x y  
and ( )2 , ,V t x y , instead of ( ),f x y  and ( ),g x y  in (1), and nonlinear functions are generalized to include t 
with the condition ( )1 ,0,0 0V t =  and ( )2 ,0,0 0V t = . There are two types of Lyapunov functions which are 
strict Lyapunov (having negative definite time derivative along trajectories) and non-strict Lyapunov functions 
(negative semi-definite time derivatives along trajectories) [38]. The notion indicates how strongly a nonlinear 
system approaches to its equilibrium state when t →∞ . In other words, a nonlinear interacting system in the 
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Lyapunov type corresponds to a dissipative system or a nonconservative system leading to an equilibrium after a 
long time. This property is different from 2n-variable conservative nonlinear differential equations [7] [8]. 

1.2. Note on the Atto-Fox (10−18-Fox) Problem on the Lotka-Volterra Equation 
The typical Lotka-Volterra (LV) equation used in applications is given by the following simple nonlinear 
equation:  

( )

( )

d
d
d ,
d

x x y
t
y y x
t

α β

γ δ

= −

= − +
                                 (1.2) 

where x and y are the population number of prey and predator respectively; d dx t  and d dy t  represent 
variations of populations with respect to time. The constants, , , ,α β δ γ , are arbitrary nonlinear coefficients 
whose interpretations depend on problems at hand, and different nonlinear terms are readily included in the 
equation. It is not generally possible to obtain an analytical solution to the nonlinear differential equation, and a 
solution to (1.2) must be obtained by numerical computations with given coefficients as shown in the Figure 1 
and Figure 2. 

However, the nonlinear LV equation of the type (1.2) has an intrinsic problem known as atto-fox (10−18-fox) 
problem [40] [41] which is readily explained in the Figure 2. As we know in a common sense, living animals  
 

 
Figure 1. The values of nonlinear coefficients are, 0.35α = , 

0.0035β = , 0.25γ = , 0.0020δ =  with initial values, 

( )0 200x =  and ( )0 500y = .                                                                               

 

 
Figure 2. The x y−  phase space solution.                                                                               
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interact with other animals through reasonably large integer numbers, however, the lower left of the Figure 2 
shows that the small numbers such as ( ) ( ), ~ 1,90x y  at certain time t can interact with each other and continue 
to live, which is absurd and meaningless. 

More specifically, the LV equation (2) is invariant with the scale change:  

( ) ( ) ( ) ( ), ,X t ax t Y t by t= =                               (1.3) 

where a and b are arbitrary numbers. The equation for ( )X t  and ( )Y t  with bβ β′ =  and aδ δ′ =  is 
given by:  

( )

( )

d
d
d .
d

X X Y
t
Y Y X
t

α β

γ δ

′= −

′= − +
                                 (1.4) 

Hence, the solution ( ) ( )( ),x t y t  in Figure 2 can be equivalently constructed in the phase space ( ) ( ),X t Y t . 
Because of the arbitrariness of a and b, if we choose, for example, 1810a =  and 1b = , the solution can be 
expressed as ( ) ( )1810x t X t−=  and ( ) ( )y t Y t= . The solution ( ) ( )( ) ( ) ( )( )18, 10 ,x t y t X t Y t−=  is obtained, 
and the atto-fox (10−18-fox) problem is proved. The LV equation of the type (1.2) has a serious potential problem 
when it is applied to real biological and ecological problems. 

The problem of LV equations may be summarized as: 
(a) the LV Equation (1.2) is too simple to apply to ecological and interactive systems. 
(b) there are no restrictions on the nonlinear coefficients, , , ,α β γ δ , whose values would be only determined 

by experimental data through numerical simulations. However, the arbitrariness of nonlinear coefficients 
produces a serious problem (the atto-fox problem). 

(c) density-independent external perturbations should be included in numerical simulations in order to include 
changes of climate, temperature, seasons and landscape and so forth. The external perturbations are independent 
of ( )x t  and ( )y t . 

Hence, it is necessary to find a new approach to resolve (a)-(c), which restricts values of nonlinear coef- 
ficients and numerically simulates real data with external perturbations. 

1.3. A New Approach with Conservation Laws and Stability 
It may seem natural to assume that a nonlinear system eventually dissipates energy (or an activation of the 
system) and arrives at an equilibrium state in the long run. However, the equilibrium state evolved as a 
dissipative process should be a maximum entropy state, and if the state needs to be activated, it needs some 
external inputs of energy. Hence, a nonlinear system demands certain external density-independent inputs or 
external perturbations which are not included in Lotka-Volterra and Kolmogorov type nonlinear Equations (1.1) 
and (1.2). 

There are numerous examples of stable dynamical systems from microbiological systems such as DNA and 
RNA, amino acids and proteins, cells and organs, to macroscopic systems such as the 10-year cycle of Canadian 
lynx and snowshoe hare, wolves and caribous, creatures in marine coral reefs. The stability suggests that some 
conservation laws and symmetries are inherent from complex microbiological systems to macroscopic ecological 
systems. Hence, it could be possible to investigate conservation laws corresponding to a biological stability, 
which leads to a fundamental assumption for the model of conservative binary-coupled interactions [7] [8] based 
on Noether’s theorem in dynamical systems [42]-[47]. 

The meaning of a conservation law in biological complex systems may be very different from conservation 
laws in physics described by way of a Lagrangian or a Hamiltonian. It is difficult to use direct mechanical 
concepts and analogies such as potential and kinetic energy, but it should be useful to employ the concept of 
conservation law and symmetry in terms of Noether’s theorem in order to investigate conservation laws 
corresponding to biodiversity. Conservation laws and stability in biological systems could be employed to 
protect, understand and sustain the biosphere. 

By employing the 2-variable conservative nonlinear model [7], it is possible to numerically simulate 
biological data such as the 10-year cycle of Canadian lynx and snowshoe hare, microbe food-web in the 
Okanagan lake [8]. We review briefly the 2-variable conservative nonlinear interactions, because solutions of 
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the 2-variable model is used to construct the solution of the 4-variable conservative nonlinear model. 
The Lagrangian of 2-variable conservative nonlinear system is described with the following Lagrangian,  

( )2 2 2 2
1 1 2 2 1 2 3 1 4 5 1 2 6 2 7 1 2 8 1 2 .x x x x x x x x x x x xα α α α α α α α= + + + + + + +                (1.5) 

From (1.5), we get the following nonlinear differential equation,  

( ){ }2
1 4 5 1 6 2 8 1 2 7 1

21

1 2 2 ,x x x x x x
d

α α α α α= + + + +                       (1.6) 

( ){ }2
2 3 1 4 5 2 7 1 2 8 2

12

1 2 2 .x x x x x x
d

α α α α α= + + + +                       (1.7) 

The parameter 21d  is given by 21 2 1 12d dα α= − = − . 
The conserved function, Ψ, of this system is given by,  

( )2 2 2 2
3 1 4 5 1 2 6 2 7 1 2 8 1 2 .x x x x x x x xα α α α α αΨ ≡ + + + + +                      (1.8) 

The Psi-function, Ψ, may correspond to the Hamiltonian or the Lagrangian in a mechanical system, however, 
one should note that the Ψ-function does not have any velocity (time-derivative) terms, showing no individual 
mechanical energy terms. The terms of the Ψ-function look like potential energy terms in order to conserve the 
Ψ-function as a constant value, whereas the interpretation of the function depends on nonlinear systems. 

The solutions 1x  and 2x  are rapidly changing in time as shown in Figure 3 (ND1) and Figure 4 (ND2), 
which are computed as examples with parameters and initial starting values explained in each figure captions. 
One should be careful that solutions are sensitive to the value of chosen nonlinear parameters and initial starting 
values. The nonlinear parameters and initial values cannot be changed arbitrary and should be chosen carefully 
by numerical simulations with external perturbations. 

The solutions in the phase space, 1x  and 2x , are shown in Figure 5, which are closed lines denoted as ND1 
and ND2. The closed line in the phase space of solutions show that solutions respectively have definite periodic 
time. Though solutions ( 1 2,x x ) are rapidly changing in time, the conserved function, Ψ, of nonlinear solutions is 
constant in time as shown in Figure 6. When the solution of conservative nonlinear equation cannot exist or be 
found with given parameters, the Ψ-function diverges or is simply not constant. This is helpful to examine the 
accuracy of numerical solutions to conservative nonlinear differential equations. 

In widely used nonlinear differential equations, the eight interaction terms on the right-hand sides of (1.6) and 
(1.7) require eight independent parameters ( 12d  and 21d  are common factors and irrelevant). However, in case 
of the nonlinear interactions, regarding ( 4 5α α+ ) as one parameter, we have only five independent parameters at  

 

 
Figure 3. Numerical simulation of 2-variable ND1. The parameters of 2-variable 
ND1: 1 1.0α = , 2 2.0α = , 3 0.01α = − , 4 0.5α = , 5 0.5α = , 6 0.01α = − , 

7 0.01,α = −  8 0.01,α = −  initial values are 1 10.0,x = −  2 10.0.x = −                                                                                
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Figure 4. Numerical simulation of 2-variable ND1. The parameters of 2-variable 
ND2: 1 1.0α = , 2 2.0α = , 3 0.1α = − , 4 0.5α = , 5 0.5α = , 6 0.1α = − , 

7 0.01α = − , 8 0.01α = − , initial values are 1 10.0x = , 2 10.0x = .                                                                               
 

 
Figure 5. Numerical solutions of 2-variable ND1 and ND2.                                                                               

 
the beginning in order to solve (1.6) and (1.7). This is helpful for numerical simulations of real data. The 
property of the 2n-variable conservative nonlinear equation is essentially different from properties of Lotka- 
Volterra and Kolmogorov equations. 

We would like to answer some questions concerning difficulties on nonlinear differential equations in order to 
elucidate applicability of the 2n-variable conservative nonlinear differential equations. 

(Question 1) There may be infinitely many periodic solutions in the nonlinear model that depend on the 
values of nonlinear coefficients, 1 8, ,α α , and initial starting values, ( ) ( )1 20 , 0x x . 

(Answer) This is restated as that solutions should be transformed in any form of solutions in the phase space, 
1 2,x x , resulting in the atto-fox problem or a physically meaningless problem. It may be correct for simple LV 

type nonlinear equations. However, one should be careful with the 2-variable conservative interaction model. 
The nonlinear coefficients and initial values in the 2-variable model are restricted as (1.6) and (1.7) by con- 
servation law constantΨ = , and positivity 0ix ≥  can be added as a constraint if necessary. Nonlinear 
coefficients and initial starting values are restricted in certain values and not entirely free adjustable parameters. 
The phase space solutions in Figure 5 of the 2-variable nonlinear model cannot be transformed continuously to  
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Figure 6. Numerical solutions of conserved quantity Ψ of 2-variable ND1 and 
ND2. Note that Ψ is constant in both cases.                                                                               

 
those of the atto-fox (10−18-fox) solutions. 

When initial starting values and nonlinear coefficients are inconsistent, one obtains no solutions and the 
Ψ-function diverges [8]. At present, we do not know of any theoretical relations among values of nonlinear 
coefficients and initial starting values in conservative nonlinear equations. The consistent values of initial 
starting values and nonlinear coefficients should be determined from numerical simulations by including 
external perturbations. The Ψ-function can be used to check accuracy of numerical solutions. 

(Question 2) Selecting initial conditions of scarce prey and plentiful predators, unphysical solutions to nonlinear 
equations could occur. For example, 1x  may decrease even if it is zero when 2x  is positive and increasing, 
and 2x  may decrease or increase even if 1x  is negative. This means that non-existing prey can be eaten by 
predators, and predators can increase or decrease by eating or interacting with negative prey. 

(Answer) This is a typical surmise derived from LV type nonlinear equations, but the assumption is not 
correct at all with the conservative nonlinear model. Because nonlinear coefficients are not entirely free 
parameters, it is not possible to find solutions by selecting any nonlinear coefficients and initial conditions of 
scarce prey and plentiful predators, and atto-fox type problems are restricted. A specific numerical example is 
shown in the paper [8]. The solutions to 2n-variable conservative nonlinear equations are different from those of 
conventional, nonconservative nonlinear equations. The (Question 2) is correct if one is solving simple non- 
linear equations with no constraints on nonlinear coefficients. 

2. Time-Dependent Perturbations, Restoration from Perturbations 
Lotka-Volterra and Kolmogorov equations are not sufficient to study nonlinear systems because they do not 
include density-independent external perturbations, such as climate and seasonal changes, pesticides and 
herbicides, hunting, forest fires and storms, etc. These external factors are density-independent and they are not 
expressible as (1.1). Hence, it is necessary to simulate density-independent and time-dependent external factors, 
and they are introduced as piecewise continuous, constant perturbations in the nonlinear equations discussed in 
detail in the papers [7] [8]. 

2.1. Piecewise Continuous External Perturbations 
In order to investigate numerical responses of a system to external perturbations, piecewise continuous constants 
are introduced by using θ-function such that  

( ) ( ){ } ( ), 1, 2 ,i i start endc f t t t t iθ θ= − − − =                          (2.1) 

where ( )t tθ ′−  represents a step function:  
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( ) ( )
( )

1, ,
0, ,

t t
t t

t t
θ

′ ≥′− =  ′<
                               (2.2) 

and coefficients ( )1, 2if i =  are positive or negative constants to express strength of external perturbations. 
An execution of an external perturbation to ( 1 2,x x ), is shown in Figure 7 and Figure 8. The phase space 

solution denoted as St 1 (state 1) jumps to the solution Sp 1 (starting-point 1)-Ep 1 (end-point 1) when the 
external perturbation is switched on at the moment Sp 1, and goes back to the solution St 2 when the 
perturbation is switched off at Ep 1. 

The instant that an external perturbation is added to conservative nonlinear equations, the solution jumps to 
possible another conserved system. When the perturbation was switched off (see, Ep 1 in Figure 8), the system 
recovered the original state or a possible stable state. 

We gradually changed the strength and duration time of a negative external perturbation. The system advanced 
to unstable states and disintegrated, ( ) ( )1 2,x t x t → −∞ , corresponding to the extinction of species. The system 
cannot find solutions, ( ) ( )1 2, 0x t x t > , which is shown by a non-constancy of Ψ. Hence, there is a threshold for 
the negative external perturbation to each component, which makes the component amplitude negative and 
diverge, resulting in extinction of species [8]. 

The strength and duration time of negative external perturbations which make the system unstable were 
evaluated numerically. The threshold of negative perturbation is related to the amplitude and periodic time of 
each component, ( ) ( )1 2,x t x t , and if the strength and duration time of an external perturbation are not large 
compared to the amplitude and periodic time of species, the nonlinear interacting system converges to a possible 
stable solution. It should be possible to recover a complex interacting system with the assistance of external 
perturbations if we know the standard rhythm [7] [8] or approximate amplitude and periodic time of component 
variables. 

The threshold of strength and duration time of negative perturbations is important information to regulate 
nonlinear complex systems. The 2-variable conservative nonlinear model indicates that if we know the relation  

 

 
Figure 7. The ( 1 2,x x ) phase-space transition with the negative perturbation as in (a). Solid line, St 1, (State 1) is 
the initial state, and St 2 (State 2) is the recovered state after the end of perturbation. Dashed line is phase-space 
during Sp 1 (starting-point 1)-Ep 1 (endpoint 1).                                                                               
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Figure 8. Conservation law Ψ of 2-variable ND with one perturbation. Ψ changed 60000Ψ   to 30000Ψ   
by introducing perturbation. It recovers after Ep 1 (end-point 1).                                                                               

 
between stability and rhythm of interacting systems and exert appropriate external perturbations at a correct time, 
it could be possible to save species from extinction. 

2.2. The 10-Year Population Cycle of Canadian Lynx and Snowshoe Hare 
As a specific example, the 2-variable nonlinear model with perturbations is applied to analyses of the 10-year 
cycles of Canadian Lynx and snowshoe hare [27]-[33]. The 2-variable conservative nonlinear model with 
external perturbations can successfully simulate the reported data of the Lynx-hare, and we found that there is a 
stable cycle, the standard rhythm, inferred from the analysis of conservative nonlinear interactions. It is possible 
to understand the stability and standard rhythm of the 10-year cycles of Canadian Lynx and snowshoe hare in 
terms of a conservation law of a prey-predator system [8]. 

The standard rhythm is discussed in the paper [8], which explains stable population cycles, such as the 10- 
year cycle of Canadian lynx and snowshoe hare and microbes’ food-web in Okanagan Lake. The population 
cycles simulated by the current conservative nonlinear interaction are stable and show recovery and restoration 
from external perturbations as long as the environmental systems for living and interacting animals are not 
seriously damaged. Figure 7 is a numerical example of recovery and restoration phenomena. 

The current conservative nonlinear model is applied to the data of food-web in Okanagan Lake [34] [35]; 
mysis introduction to the Lake is known as an effective method to enhance ecological interactions among 
microbes and other creatures so as to increase fisheries’ production. The maximum and minimum density- 
amplitude of microbes are also well simulated with the 2-variable conservative nonlinear model, and the results 
suggest that stability and periodic restoration phenomena in ecosystems may be a manifestation of a conser- 
vation law with external perturbations. 

The important property of the 2-variable nonlinear model with conservation law is that coupled systems can 
have certain recovering strength to external perturbations. As a predator needs a prey for its food, a prey needs a 
predator for the control and conservation of their own species. The conservation law and the standard rhythm of 
species are considered to be naturally constructed by species to live for a long time in nature. Therefore, the 
rhythm and stability of population cycle as a whole in an ecosystem would be interpreted as a manifestation of 
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the survival of the fittest adapted to the balance in an ecosystem. 
The stability and conservation law are constructed by species in mutual dependency or cooperation to survive 

for long-time periods in severe environmental conditions. The standard rhythm should be regarded as the result 
of strategy for species to live in nature. Whatever roles they have to play, the species that can fit and balance 
with other creatures can survive in nature. A strong predator cannot even survive if it ignores the law of the 
standard rhythm and conservation law of nature constructed by other members and the environment. The 
conservative BCF nonlinear model with perturbations enables one to examine a fundamental law of nature in a 
form of differential equations. We hope that this study will help understand both activities of animals and 
humans in natural life. 

3. The 4-Variable Dynamical Model 
Based on the reviews and discussions, we extend the 2-variable conservative model to the 4-variable model for 
applications to more realistic interacting systems. Several examples can be found in microbiology and medical 
fields [14] [15]. Statistical methods are normally used to investigate correlations among physical data (mor- 
phogens, responses of cells, concentrations, populations, etc.). Dynamical analysis can be possible by applying 
the 4-variable conservative nonlinear differential equation. 

A morphogen is considered a substance governing the pattern of tissue development in the process of mor- 
phogenesis, or a signaling molecule that acts directly on cells to produce specific cellular responses depending 
on its concentration. When morphogens are identified, a dynamical method based on the 2-variable or 4-variable 
conservative nonlinear dynamical analyses could be possible in microbiology. 

However, the 4-variable nonlinear differential equations have too many nonlinear parameters to be set at the 
beginning, and they are difficult to solve and apply to numerical simulations. Therefore, we discussed a strategy 
to construct solutions to 4-variable, 6-variable, … , conservative nonlinear differential equations. The construc- 
tion of 2n-variable solution is based on the solution of 2-variable solutions. 

The 4-variable conservative nonlinear model for complex systems is described as:  

( ) ( ) ( ){

}

1 6 13 1 14 2 10 15 3 16 18 4
21

2 1
21 1 22 1 2 23 1 3 24 1 4 26 3 4

21

1 2

2 ,

x x x x x
d

cx x x x x x x x x
d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +



                  (3.1) 

( ) ( ) ( ){

}

2 5 1 6 13 2 7 9 3 8 17 4
12

2 2
21 1 2 22 2 23 2 3 24 2 4 25 3 4

12

1 2

2 ,

x x x x x
d

cx x x x x x x x x
d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +



                   (3.2) 

( ) ( ) ( ){

}

3 8 17 1 16 18 2 12 19 3 20 4
43

2 3
24 1 2 25 1 3 26 2 3 27 3 28 3 4

43

1 2

2 ,

x x x x x
d

c
x x x x x x x x x

d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +



                  (3.3) 

( ) ( ) ( ){

}

4 7 9 1 10 15 2 11 3 12 19 4
34

2 4
23 1 2 25 1 4 26 2 4 27 3 4 28 4

34

1 2

2 ,

x x x x x
d

cx x x x x x x x x
d

α α α α α α α

α α α α α

= + + + + + +

+ + + + + +



                   (3.4) 

where coupling constants, 1 2 28, , ,α α α , and 12 1 2 21 2 1 12,d d dα α α α= − = − = − , and 34 3 4d α α= − ,  
43 4 3 34d dα α= − = −  represent interaction strength among species ( 1 2 3 4, , ,x x x x ). The numbering of nonlinear 

coefficients, iα , is chosen for our convenience by starting from a lagrangian to generate (3.1)-(3.4). It is ex- 
plained in the Appendix. 

The external perturbations are expressed as arbitrary, piecewise continuous constants, 1 2 3 4, , ,c c c c , which 
represent strengths of external effects (such as, temperature changes, reductions of species by huntings or 
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fishings, etc., as cases may be). They are pulse-like constants expressed by step-functions. 
The 4-variable conserved nonlinear equation is derived from Euler-Lagrange equation in Lagrangian 

dynamics. The Noether’s theorem in dynamics is employed to obtain the conservation law in complicated non- 
linear systems. Hence, coefficients of the right-hand side of (3.1)-(3.4) are restricted such that the system has 
conserved quantities. 

In conventional 4-variable nonlinear differential equations of the type (3.1)-(3.4), nine terms in the right-hand 
side are supposed to be independent and adjusted freely. Hence, the number of nonlinear coefficients basically 
adds up to 40 parameters ( 9 4 36× =  and 4 parameters, 1 2 3 4, , ,c c c c ). In the current nonlinear equation, coef- 
ficients of the type, ( 6 13α α+ ),  , can be handled as one parameter, and the number of independent para- 
meters adds up to 22. There are still many free parameters, however, admissible solutions would be confined 
further when initial starting values and positivity, ( ) ( ) ( ) ( )1 2 3 40, 0, 0, 0x t x t x t x t> > > > , are included. These 
conditions and the conservation law, const.Ψ = , are helpful for numerical simulations. 

In order to make the 4-variable nonlinear equation useful for numerical simulations, we propose a strategy to 
construct a 4-variable solution by employing 2-variable solutions. 

1) One should construct two sets of 2-variable numerical solutions independently by dividing interactions of 4 
variables ( 1 2 3 4, , ,x x x x ) as 2-variables ( 1 2,x x ) + 2-variables ( 3 4,x x ). The two sets of the 2-variable conservative 
nonlinear solutions, ( 1 2,x x ) and ( 3 4,x x ), should be prepared from respective data. External perturbations could 
be included to create reasonable numerical simulations in the 2-variable form [7] [8]. 

2) The 2-variable numerical simulations, ( 1 2,x x ), are regarded as solutions for (3.1) and (3.2) by assuming 
coefficients related to 3x  and 4x  as zero. Similarly, the 2-variable solutions, ( 3 4,x x ), are also regarded as 
solutions for (3.3) and (3.4) by assuming coefficients related to 1x  and 2x  as zero. Hence, the value of 
coefficients in the 4-variable solution (3.1)-(3.4) are almost fixed at the beginning. 

3) The next step is to weakly couple the set of 2-variable solutions by using the 4-variable solution (3.1)-(3.4). 
The weak coupling of ( 1 2,x x ) and ( 3 4,x x ) can be performed by changing cross-coupling coefficients (assumed 
zero) slowly from 0 to 0±   ( ~ 0.001 ). We have four coupling coefficients, 23 24 25 26, , ,α α α α , and four 
coefficients from linear terms, ( ) ( ) ( ) ( )10 15 16 18 7 9 8 17, , ,α α α α α α α α+ + + + , which can be regarded as four para- 
meters. Hence, in the 4-variable conservative nonlinear equation, we are supposed to change eight parameters to 
numerically simulate data in question. By referring to combinations of data: ( 1 3,x x ), ( 1 4,x x ), ( 2 3,x x ) and 
( 2 4,x x ), reasonable eight parameters should be searched in numerical simulations by trial and error. 

The coupling constants, 23 24 25 26, , ,α α α α , and four coefficients of linear terms characteristically change 
amplitude and wave-shape. Even if coupling constants are small, one would encounter divergences when 
nonlinear parameters and initial conditions are not compatible, which can be specifically perceived by checking 
the value of Ψ function. The Ψ-function is very useful to check the existence of solutions. 

Following theoretical discussions of invariant variational method in dynamics, the Ψ-function for the 4- 
variable conserved nonlinear dynamical system is expressed as, 

( ) ( ) ( ) ( )
( ) ( )

2
5 1 6 13 1 2 7 9 1 3 8 17 1 4 10 15 2 3

2 2 2 2
11 3 12 19 3 4 14 2 16 18 2 4 20 4 21 1

2
22 1 2 23 1 2 3 24 1 2 4 25 1 3 4 26 2 3 4

2 2
27 3 4 28 3 4 1 2 2 1 3 4 4 3.

x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x c x c x c x c x

α α α α α α α α α

α α α α α α α α

α α α α α

α α

Ψ = + + + + + + + +

+ + + + + + + +

+ + + + +

+ + + + + +

           (3.5) 

The physical quantities ( 1 2 3 4, , ,x x x x ) change in time, but the sum of the combination given by (3.5) is 
constant in time. The strategy to find a solution, (1)-(3), and experiences with nonlinear differential equations 
help obtain a numerical solution to the system of nonlinear differential equations. A set of solution to (3.1)-(3.4) 
and the value of Ψ-function are shown in Figures 9(a)-(d). 

The 4-variables ( 1 2 3 4, , ,x x x x ) are time-changing as in Figure 9(a), but Ψ-function is constant in time as 
shown in Figure 9(b), which confirms numerical solutions are accurate. The phase spaces of solutions for 

( ) ( )( )1 2,x t x t  and ( ) ( )( )3 4,x t x t  are shown in Figure 9(c) and Figure 9(d), respectively. One can see that the 
phase space of solutions is confined in each volume of phase space. The other phase spaces of solutions are also 
shown in Figures 10(a)-(d). 

The Results of the 4-Variable Conservative Nonlinear Model 
The 2-variable nonlinear solution ( ) ( )( )1 2,x t x t  shows a recurrence time, T, defined by ( ) ( )x t T x t+ = , and 
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the simple closed line as Figure 5 indicates that the recurrence time of solution (periodicity) is finite. However, 
trajectories of solutions in the 4-variable conservative nonlinear model in Figure 9(c), Figure 9(d) and Figures 
10(a)-(d) are not closed lines, but they enclose a finite area in each phase space. The solutions, 1 2 3 4, , ,x x x x , 
oscillate within a finite, closed surface of phase space and exhibit approximate periodic time, ( ) ( )~i i ix t T x t+  
( 1, 2,3, 4i = ) produced by nonlinear interactions. 

It is well known in linear differential equations that the net response (amplitude) y at a given place and time is  
the sum of independent responses ( 1 2, , , kx x x ): 

1
k

iiy x
=

= ∑ , which is known as the superposition principle.  
The superposition principle does not hold in nonlinear systems. However, we examined the net amplitude  
defined by 4

1 2 3 41 iiy x x x x x
=

= = + + +∑ , because the net amplitude may have important information for the  
total system. 

In our conservative nonlinear interactions, we found that component solutions approximately produced a 
periodic shape of the net amplitude. The shape of the net amplitude is very complicated but oscillates at an 
approximate pitch like a resonance produced by a tuning fork on resonance box. 

The approximate periodic times of each variable 1 2 3 4, , ,x x x x  in Figure 9(a) are respectively within 
400 500iT   ( 1, 2,3, 4i = ). The net periodic time nT  is found from the resulting periodic shape of the am- 
plitude, y, shown in Figure 11. The approximate net periodic time of the system is ~ 1000nT  in the current 
example as observed in Figure 11. One can examine that the almost similar shape of wave pattern within 

~ 1000nT  is repeated, which is also checked by changing time-span longer in the numerical calculations. 
 

 

 
Figure 9. The solutions of 4-ND system and phase-space with respect to time. Figure 9(a) represents solutions and Figure 
9(b) is the conservation law Ψ with respect to time. Figure 9(c) and Figure 9(d) are phase-space of solutions of 1x  and  

2x , 1x  and 4x , respectively.                                                                                                                                                             
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Figure 10. The phase-space of 4-variable ND model for another combination of solutions. Figure 10(a) represents phase-space of 

1x  and 3x , Figure 10(b) is a phase space of 1x  and 4x . Figure 10(c) and Figure 10(d) are phase-space of solutions of 2x  and 

3x , 2x  and 4x , respectively.                                                                                                 
 

 
Figure 11. The sum of amplitude: 1 2 3 4x x x x+ + + . The approximate periodicity ~ 1000T  can be observed from the data.                   
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Hence, conservative nonlinear interactions of component variables lead to a longer periodic time and a net 
stable system against external perturbations. In ecosystems, it could be interpreted so that living animals tend to 
have interactions with other animals as much as possible for their species to live long. The approximate periodic 
time of components and the net periodic time in nonlinear interactions may be one of important properties to 
understand stability of nonlinear interacting systems. 

Our strategy of constructing solutions of nonlinear differential equations is to find a class of solutions having 
approximate periodic times. This may be true, and we investigated the class of solutions because the amplitude, 
y, and net periodic time, nT , are important physical observables to understand nonlinear dynamical systems. 
Therefore, it could be understood that the stable periodicity, the standard rhythm, discussed in papers [7] [8] is 
the consequence of an approximate periodic phenomena of conservative nonlinear interactions. 

The ten-year cycles of Canadian lynx and hare, interactions of microbes and other stable cycles are considered 
as examples of the approximate periodicity of nonlinear interacting systems. Hence, a possible condition to 
sustain stability of complex symbiotic systems can be examined by applying a conservative nonlinear dif- 
ferential equation. 

The remarkable properties derived from conservative nonlinear interactions are summarized as follows: 
1) The net periodic oscillation and time can be approximately defined in the conservative nonlinear interactions, 

and the net periodic time is longer than the periodic time of component variables: n iT T>  
2) The 4-variable system becomes more stable than the 2-variable system against negative external per- 

turbations. Nonlinear interactions of diverse component variables seem to maintain stability of the net system 
against negative external perturbations. 

These results are different from those discussed in dissipative, nonconservative nonlinear interactions in many 
literatures which discuss limit cycles and attractors. The conservation law and durability of a conservative 
nonlinear system against external perturbations could be a key to understand stability of complex systems. The 
pattern simulations combined with external perturbations are possible for conserved nonlinear interactions, and 
it may be helpful to understand characteristic periodicities and responses of complex interacting systems. 

4. Conclusions 
In physics and engineering applications, it is standard to analyze physical quantities caused by heat conduction, 
electromagnetic and mechanical problems by way of the superposition principle [52] [53]. The superposition 
principle does not hold in nonlinear systems, and nonlinear interactions generate chaos in dynamical systems 
[54]. However, by applying the 2-variable solutions, we extracted periodic solutions to complex systems des- 
cribed with conservative nonlinear interactions. The superposition of component solutions exhibited an 
approximate net periodic amplitude and time, which is important to examine complex systems. 

We reviewed characteristic properties for the 2-variable conservative nonlinear differential equation which 
generalizes Lotka-Volterra type prey-predator, competitive interactions, and explained that the atto-fox problem 
found in a simple Lotka-Volterra equation is not intrinsic to nonlinear differential equations. The 2-variable and 
4-variable conservative nonlinear equations with external perturbations are useful to simulate real data num- 
erically. 

The conservative nonlinear interaction with external perturbations numerically suggested the existence of the 
standard rhythm (the 10-year population cycle) of Canadian lynx and snowshoe hare. The analysis of the 2- 
variable conserved nonlinear equation indicates that nonlinear interactions could be a manifestation of strategy 
to live and thrive in nature [7] [8]. It is also confirmed in the 4-variable nonlinear model that the approximate 
periodic time of the net system is longer than each periodic time of component variables. A system in diverse 
interactions could be more stable than a simple system of 2-body interaction. 

It is naturally observed that many complex systems from microscopic to macroscopic world seem to maintain 
stable structure, recoveries and self-organizations [48]-[51]. The conservation laws and symmetries could be a 
key to understand stability of complex systems. We employed the concept of conservation law or symmetry of 
Noether’s theorem in dynamics. A conservative nonlinear interaction is defined with nonlinear interactions 
generated by a function Ψ which may be considered as Hamiltonian or Lagrangian in dynamical systems. The 
Ψ-function can be used to check the accuracy of a numerical solution to the corresponding nonlinear differential 
equation [7] [8]. 

The solution of the 2-variable model is applied to construct solutions of the 4-variable conservative nonlinear 
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equations. It is difficult to find an appropriate numerical solution for the 4-variable nonlinear differential equation, 
which tends to make numerical analyses hard to carry out. However, we showed a strategy to find a solution by 
employing the 2-variable solutions, which helps construct solutions and accomplish numerical analyses ri- 
gorously by employing Ψ-function. This approach can be extended to the 6 and 8-variable conservative non- 
linear equations. 

The conservative nonlinear model has not been actively applied yet, though it revealed certain properties of 
the 10-year cycles of lynx and hare, microbe interactions. We are searching for ecological data or medical 
applications as microscopic interacting systems, such as diabetes or other chronic diseases exerted by multiple 
interacting factors. Collaborations to analyze big data with the current model are anticipated. 

The nonlinear differential equation approach is useful to understand physical phenomena. We hope that the 
4-variable conservative nonlinear equation may find useful and practical applications from microscopic complex 
systems to macroscopic ecosystems. 
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Appendix 
Nonlinear Parameters in 4-Variable Lagrangian 
The numbering of nonlinear coefficients, iα  in the 4-variable Lagrangian in the Section 3, is shown in order to 
avoid complications. The nonlinear coefficients are numbered as:  

1 1 2 2 1 2 3 3 4 4 3 4 5 1 1 6 1 2 7 1 3

8 1 4 9 3 1 10 3 2 11 3 3 12 3 4 13 2 1

14 2 2 15 2 3 16 2 4 17 4 1 18 4 2 19 4 3

20 4 4 21 1 2 1 22 1 2 2 23 1 2 3 24 1 2 4

25

x x x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x x x

α α α α α α α
α α α α α α
α α α α α α
α α α α α
α

= + + + + + +

+ + + + + +

+ + + + + +

+ + + + +

+

   

3 4 1 26 3 4 2 27 3 4 3 28 3 4 4 1 2

2 1 3 4 4 3.
x x x x x x x x x x x x c x

c x c x c x
α α α+ + + +

+ + +

              (5.1) 

and the nonlinear Equations (3.1)-(3.4), are derived from the lagrangian (5.2) by way of Euler-Lagrange equation:  

( )
( ) ( ) ( )
( ) ( )

1 1 2 2 1 2 3 3 4 4 3 4 6 13 1 2

7 9 1 3 8 17 1 4 10 15 2 3

2 2
12 19 3 4 16 18 2 4 5 1 11 3

2 2 2 2 2
14 2 20 4 21 1 2 22 1 2 27 3 4

2
28 3 4 23 1 2 3 24 1 2 4 25 1 3 4

26 2

x x x x x x x x x x

x x x x x x

x x x x x x

x x x x x x x x

x x x x x x x x x x x
x

α α α α α α

α α α α α α

α α α α α α

α α α α α

α α α α
α

= + + + + +

+ + + + + +

+ + + + + +

+ + + + +

+ + + +

+

   

3 4 1 2 2 1 3 4 4 3.x x c x c x c x c x+ + + +

                  (5.2) 

The numbering of nonlinear coefficients of parentheses, ( ) ( )6 13 7 9, ,α α α α+ + 
, can be respectively handled 

as one independent parameter. The coefficients, 1 2 3 4, , ,α α α α , are related to overall factors and become trivial 
in numerical calculations for (3.1)-(3.4). Hence, the number of nonlinear coefficients for the 4-variable con- 
servative nonlinear equation is 22. It should be noticed that if one directly starts from 4-variable nonlinear 
nonconservative differential equations in the same type, one is naturally directed to introduce 40 nonlinear 
coefficients. 

The number of 4-variable nonlinear parameters is still large, but if 2-variable numerical solutions are used to 
construct the 4-variable solution, one is supposed to control only 8 parameters. The method of solution is ex- 
plained in the Section 3.1. 
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