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ABSTRACT 

This article shows the efficacy of TWIST, a methodology for the design of training and testing data subsets extracted 
from given dataset associated with a problem to be solved via ANNs. The methodology we present is embedded in al- 
gorithms and actualized in computer software. Our methodology as implemented in software is compared to the current 
standard methods of random cross validation: 10-Fold CV, random split into two subsets and the more advanced T&T. 
For each strategy, 13 learning machines, representing different families of the main algorithms, have been trained and 
tested. All algorithms were implemented using the well-known WEKA software package. On one hand a falsification 
test with randomly distributed dependent variable has been used to show how T&T and TWIST behaves as the other 
two strategies: when there is no information available on the datasets they are equivalent. On the other hand, using the 
real Statlog (Heart) dataset, a strong difference in accuracy is experimentally proved. Our results show that TWIST is 
superior to current methods. Pairs of subsets with similar probability density functions are generated, without coding 
noise, according to an optimal strategy that extracts the most useful information for pattern classification. 
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1. Introduction 

Validation protocol and input selection are some of the 
most relevant problems in pattern recognition for ma- 
chine learning. The two most important problems are: 

a) how to generate an optimal pair of training and test- 
ing set statistically representative of the assigned prob- 
lem; 

b) how to select the minimum number of input features 
able to maximize the accuracy of the dependent variables 
(target) in a blind test. 

We will show that the TWIST algorithm (Training 
with Input Selection and Testing) is not only a useful 
scientific way to approach these two problems but is su- 
perior. Therefore this article is going to present: 

1) the TWIST methodology; 
2) standard methods; 
3) how we test TWIST: a) by showing it is not noise; b) 

use it on a medical problem that has been solved via dif- 
ferent machine learning algorithms; 

4) report on the results followed by a discussion. 

2. Validation Protocol 

The issue of the Validation Protocol (VP) is well known 
in machine learning literature. We can distinguish dif- 
ferent types of procedures: K Fold Cross Validation, 
Leave One Out (a limit case of the first one), Boosting, 5 
× 2 Cross Validation, Training set and Testing set split- 
ting, and others [1]. In any case, all these procedures 
represent different statistical strategies to generate tasks 
for machine learning training and testing. But any single 
distribution of the source dataset in a training set and in a 
testing and/or a validation set is always processed by a 
random splitting that record (observation) of the source 
dataset. The reason for the random criterion is a statisti- 
cal one. Because the source dataset represents all the 
knowledge that we have of an assigned problem, we need 
to generate two subsets of data more or less equivalent 
each other, from a statistical point of view. Consequently, 
if this is true, the training session will represent a good 
learning set for the learning machine and the results of 
testing session will be representative of the machine 
learning capability to generalize for the whole dataset. 
We maintain that this is a valid and necessary criterion,  *Corresponding author. 
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but it is not the only one. A second criterion that we feel 
is necessary is that for a given analysis we are perform- 
ing on the dataset, each record should contain only those 
variables that affect the analysis. 

The usual approach is a single criterion, the random 
criterion that aims to optimize the following cost func- 
tion: 

       1 2 0
tr ts globalf d f d f d    



     (1) 

where: 

 1
trf d  and    1

trf d

are equal to the probability density function of testing 
and training subset, respectively, and 

  0
globalf d  

is equal to the probability density function of the global 
dataset. 

This means that the random criterion aims to generate 
two subsets with, more or less, the same probability den- 
sity function, and, additionally, each one of these subsets 
should be statistically equivalent to the global dataset. 

The random criterion tries to attain the optimal cost 
function value as defined by Equation (1). But to opti- 
mize this cost function we should consider every possible 
combination of each record split into the two subsets and 
then for any combination to measure and to compare the 
probability density function of each subset. There is no 
evidence that the random criterion can optimize this cost 
function. Moreover, there are on the order of N factorial 
possible ways to divide up a database of N records which 
for a database with 100 records is already prohibitive. 
How- ever, constraints are imposed which brings the 
complex- ity down but nevertheless, it is very hard to 
compute the global optimum of Equation (1). 

Now, given a dataset D of N records, the number of 
possible samples d of k records is given by: 
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But the effective space of solutions is smaller, because 
we have to consider two different constraints: 

a) the training and the testing subsets distribution is 
symmetrical (AB = BA); 

b) the number of records in both subsets can be no 
fewer than the number of the classes (C) of a task (for 
example, a pattern recognition or a classification task). 

Consequently, the effective space of the solutions of 
the binomial permutation becomes: 

 &

1 !
 

2 !

N C

T T
k C

N

k N k





 


!
         (3) 

where: 
N = Number of Records; 

&T T  = Number of effective Training-Testing distri- 
butions; 

k = Number of records in Training or Testing sub sets; 
C = Number of the Classes for the pattern recognition. 
For example, let us compute the number of splits for a 

dataset of 10 records (N = 10) where we have two classes 
(C = 2) in a pattern recognition analysis. In this case the 
global space of the solutions is 210, while the space of the 
acceptable solutions is 
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Table 1 and Figure 1 relate the details of this exam- 
ple. 

The difference between the global space and the effec- 
tive space of possible splitting of an assigned dataset is 
fundamental in pattern recognition analysis. This is be- 
cause any machine learning needs to have the number of 
records, both in Training set and in Testing set, equal or 
bigger than the number of the classes to be learned and 
validated. 

Let us compute again, the number of splits given a 
dataset of only 4 records and 2 classes: Dataset = 
{a,b,c,d}, where {} is the set of the records. In this case, 
the number of all solutions is 24 (that is 16). Applying 
Equation (2), the number of effective solutions is 6, but 
applying Equation (3), the number of effective solutions 
is only 3. 

Table 2 shows some details of the global binomial dis- 
tribution while Table 3 shows the effective number of 
possible solutions. 
 
Table 1. Global and acceptable (in grey) number of solu- 
tions with 10 records and 2 classes. 

Number of Records N = 10 
Number of Classes C = 2 

k = 0 1 

k = 1 10 

k = 2 45 

k = 3 120 

k = 4 210 

k = 5 252 

k = 6 210 

k = 7 120 

k = 8 45 

k = 9 10 

k = 10 1 
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Table 2. Binomial distribution of 4 records. 

Number of Records N = 4 
Number of Classes C = 2 

k = 0 1 

k = 1 10 

k = 2 45 

k = 3 120 

k = 4 210 

 
Table 3. Binomial effective number of possible splitting. 

Combination # Training Testing 

1 ab cd 

2 ac bd 

3 ad bc 

 

 

Figure 1. Graphic distribution of global and acceptable (in 
red) number of solutions with 10 records and 2 classes. 
 

Therefore, a pair of training and testing sets represents, 
on the solutions space, a possible solution 

 [ ] [ ],tr tsx D D   

given by the vector: 

   [ ] [ ]
1 2 &, , , ,tr ts N

N T Tx D D x x x    

T

  (4) 

where 

&i Tx   

&T T  

represents the space of possible solutions for any Train- 
ing and Testing splitting. 

The problem described by Equations (1)-(4) is a typi- 
cal problem of operation research. For this type of prob- 
lem, to optimize the cost function (1), we propose an 
evolutionary algorithm whose population expresses, after 
each generation, different hypotheses about the splitting 
of the global dataset into two subsets. To be specific, at 
any generation each individual of the genetic population 
indicates which records of the global dataset have to be 

clustered into the subset A and which one into the subset 
B. From a technical point of view this is very easy. Each 
individual of the genetic population is a vector of N 
Boolean values (1 or 0), where N is the number of the 
records of the global dataset. From a practical or opera- 
tional point of view, genetic algorithms are able to effec- 
tively deal with problems of high (impossible) comple- 
xity such as the complexity of the problem of splitting a 
database into two sub-databases. 

The main problem at this point is to define a suitable 
fitness function able to adequately evaluate which of the 
ways of splitting a dataset in two is best. In other words: 
which of the splitting generates two subsets whose prob- 
ability density functions are most similar? 

To optimize these constraints we have used two inde- 
pendent Supervised Neural Networks (SNNs). Typically 
we use a Multilayer Perceptron (Back Propagation based). 
The fitness evaluation of each splitting works in five in- 
dependent steps, each time that each individual of the 
genetic population presents its hypothesis of splitting the 
global dataset into two subsets, subset A and subset B: 

1) the first SNN (SNN_A) is initialized and trained 
using the subset A, and it is stopped when the training 
error, as the Root Medium Square Error (RMSE), is 
minimized; 

2) the SNN_A, with the trained weights fixed, is ap- 
plied in a blind way on the subset B, and its accuracy is 
saved; 

3) the SNN_B, completely independent from the 
SNN_A, is initialized and trained using the subset B, and 
it is stopped when the training error (that is, for example, 
the RMSE) is minimized; 

4) the SNN_B, with the trained weights fixed, is ap- 
plied in a blind way on the subset A, and its accuracy is 
saved; 

5) the minimum value of the two accuracies is as- 
signed as fitness of the hypothesis of splitting, generated 
by any individual of the genetic population. 

The steps from 1 to 5, called “Fitness Evaluation” are 
executed for each individual of the genetic population, at 
any generation of the evolutionary algorithm. 

The flow chart of the whole algorithm is as follows: 
a) Genetic Population Initialization 
b) Evolutionary Loop 
i) Fitness Evaluation of the proposal of splitting of 

each individual of the genetic population at the genera- 
tion (n) (From step 1 to step 5); 

ii) Crossover and offspring are produced; 
iii) Random mutation is applied; 
iv) Setup of the new population; 
v) If the average fitness continues to grow start from 

the beginning; else terminate; 
c) Save the subset A and the subset B with the best fit- 
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ness. 
This algorithm is named Training & Testing Optimi- 

zation (for short T&T). The advantages of T&T algo- 
rithm are many: 

1) The evolutionary loop uses a special enhancement 
of the classic genetic algorithm. Its name is Genetic 
Doping Algorithm (for short GenD). GenD has shown to 
be more effective than the classic genetic algorithm in 
many optimization problems [2]; 

2) The Multilayer Back Propagation, using the Soft- 
Max algorithm [3] for classification tasks, is a very ro- 
bust and fast ANN (for the most of the classification 
problems 100 or 200 training epochs are enough). Fur- 
thermore, Back Propagation SNN is also able, with an 
suitable number of hidden units, to compute any con- 
tinuous function [4,5]; 

3) The reverse procedure of T&T algorithm (steps 3 
and 4 are the reverse of steps 1 and 2), the kernel of the 
algorithm, finds two subsets whose density probability 
functions are pretty similar. This is not an advantage, but 
it is a right prerequisite for pessimistic training and test- 
ing distribution. 

4) The T&T algorithm is a powerful tool that uses all 
the information present in the global dataset. Moreover, 
the optimized Subset A and Subset B can be used both 
for Training and Testing (learning from subset A and 
evaluate using subset B, and vice versa), with different 
learning machines (Neural Networks, Decision Trees, 
Bayesian Networks, etc.). Our comparison with the clas-
sic random criterion to setup the Training and the Testing 
set shows that the T&T algorithm significantly outper-
forms random distribution strategy on real medical ap-
plications [6-18]. 

3. Input Selection 

Another significant methodological problem related to 
the application of Machine Learning to real databases 
becomes apparent when datasets are comprised of a large 
number of variables which, apparently, seem to provide 
the largest possible amount of information. When we use 
these large databases in, for example, classification tasks, 
the input space, determined by all the possible combina-
tions of the values of the observed variables, becomes so 
large that any research strategy to find the best space for 
the task becomes very cumbersome in some cases and 
impossible in others. 

It is necessary to carry out a preliminary analysis of 
the variables of the dataset since these can have a diffe- 
rent relevance with respect to the data mining that one 
intends to carry out. Some of the attributes may contain 
redundant information which is included in other vari- 
ables or include inconsistent information (noise) or may 
not even contain any significant information at all and be 

completely irrelevant. Therefore a procedure that will 
identify and select, from the global set, a subset consist- 
ing of those variables that are most informative in the 
representation of input patterns is necessary when deal- 
ing with classification problems solved with induction 
algorithms. Moreover, the accuracy of the procedure, 
learning time and the number of examples necessary are 
all dependent upon the choice of variables. 

Among the methods used to reduce the dimensionality 
of the data, the Feature Selection techniques (also known 
as Subset Attribute Selection or Input Selection) were 
developed to determine which variables (or attributes) 
are most relevant in the representation of an input pattern, 
starting from a large dataset [19-29]. 

When dealing with a database with a large number of 
variables, we use Feature Selection to try to reduce the 
number of variables that are used in the classification 
while maintaining an acceptable level of accuracy in the 
procedure. By extracting the most relevant attributes, the 
dimensions of the input space is reduced. Thus, when we 
only use the most relevant attributes, it is easier to find 
the best solutions and, if the extracted attributes are actu-
ally the most significant, the predictive capability in the 
global data is most effective. 

On the whole, Feature Selection extracts from a given 
dataset D of M characteristics the best subset consisting 
of K characteristics. The number of possible subsets of K 
characteristics is given by: 

1

2 1
M

M

K

M

K

 
  

 
  

and between these the best one is the one that maximizes 
the generalization of the machine learning in the test 
phase. 

Excluding the exhaustive search strategy on the global 
set of characteristics, which is not applicable to a dataset 
with a high number of variables, the techniques that can 
be used are a blind search (for example, Depth First) or 
heuristic (Hill Climbing, Best First). In the literature, 
evolutionary search techniques have also been proposed 
[24,30,31]. 

Feature Selection techniques can be developed using 
two different general approaches based on whether the 
selection of the variables is carried out dependently or 
independently of the learning algorithm used to build the 
inductor. The filter approach attempts to select the best 
attribute subset by evaluating its relevance based on the 
data. The “wrapper” approach, instead, requires that the 
selection of the best attribute subset takes place consi- 
dering as relevant those attributes that allow the induc- 
tion algorithm to generate a more accurate performance 
[32]. 

Our Input Selection algorithm (IS) operates as a spe- 
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cific evolutionary wrapper system that responds to the 
need to reduce the dimensionality of the data by extract- 
ing the minimum number of variables necessary to con- 
serve the most information available. 

vectors of different lengths: 
1) the first one, showing which records (N) have to be 

stored into the subset A and which ones have to be stored 
into the subset B; 

Thus, to integrate our IS algorithm with T&T algo- 
rithm into one procedure we have to modify the structure 
of each individual of the genetic population, which has 
already been described. 

2) the second one, showing which inputs (M) have to 
be used into the two subsets and which one have to be 
deleted. 

After this modification the TWIST algorithm works as 
well as the T&T algorithm, already described. At the end 
of its evolution TWIST will generate two subsets of data 
with a very similar probability density of distribution and 
with the minimal number of effective variables for pat- 
tern recognition. 

This fusion of IS with T&T is a complex algorithm 
able to look for the best distribution of the global data- 
base divided in two optimally balanced subsets contain- 
ing a minimum number of input features useful for opti- 
mal pattern recognition. We have named this new algo- 
rithm TWIST (Training with Input Selection and Test- 
ing). 

Figure 2 depicts the dynamic of the TWIST algorithm. 

This integration is as follows. In the T&T algorithm 
each individual of the genetic population is a vector of N 
components with Boolean values, where N is the number 
of the records of the global dataset. When the value of a 
generic component of the vector is 1, then that record is 
saved into the subset A, and when the value is 0, then the 
record is saved into the subset B. 

4. Falsification Test 

We show here that the application of T&T and of TWIST 
algorithms outperforms the other splitting strategy (i.e. 
random distribution) in terms of results when they are 
applied to real medical data and also to classic datasets 
available from the UCI Machine Learning Repository 
[33]. In the IS algorithm, on the other hand, each individual 

of the genetic population has to be a vector of M com- 
ponents with Boolean values, where M is the number of 
all the input variables of the global dataset. In this case, 
when the value of a generic component of the vector is 1 
the corresponding input feature is saved into the subset A 
and the subset B, while if the value is 0, then the corre- 
sponding input feature is removed. 

The “reverse strategy” used in these algorithms tends 
to generate two subsets with the same probability density 
function, and this is exactly the gold standard of every 
random distribution criterion [1]. In addition, when the 
“reverse strategy” is applied, two fitness indicators are 
generated: the accuracy on the subset B after the training 
on the subset A, and the accuracy on the subset A after 
the training on the subset B. But only the lower accuracy 
of the two is saved as the best fitness of each individual 

Consequently, in the TWIST algorithm every indivi- 
dual of the genetic population will be defined by two 
 

 

Figure 2. Flow chart of TWIST algorithm. 
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of the genetic population rather than an average of the 
two or the highest of the two and thus we are conserva- 
tive. Moreover, this criterion increases the statistical 
probability that the two sub-samples are equally balanced 
during the genetic evolution because of the quasi loga- 
rithmic increase of the optimization process.  

In any case we can apply to the same dataset the 
TWIST and T&T algorithms many times and we analyze 
our results using a 5 × 2 Cross Validation protocol 
(DIETTERICH 1998). To further insure the validity of 
our approach, we have submitted T&T and TWIST to a 
falsification test. If we generate a random dataset with a 
dependent variable randomly distributed we have two 
possible outcomes: 

1) a set of learning machines using the subsets and the 
inputs selected by T&T and TWIST show better results 
than the same learning machines trained and tested using 
sub-samples generated by means of a random splitting 
and K-Fold cross validation; 

2) the set of learning machines using the subsets and 
the inputs selected by T&T and TWIST show the same 
results than the same learning machines trained and 
tested using sub samples generated by means of a ran- 
dom splitting and K-Fold cross validation. 

Only if outcome 2 is true does TWIST and T&T be- 
have as a random strategy when there is no information 
available in the dataset, and consequently validate their 
capability to extract useful information in datasets, when 
this information is really present. 

To test this hypothesis we have generated a dataset of 
1000 records, each one composed of 20 random input 
variables and one random label as dependent variable. 
Then we have processed the dataset using 4 different 
strategies: 

1) a K-Fold cross validation (K = 10); 
2) a random splitting of the dataset into two subsets, to 

be used both as training set and testing set; 
3) the T&T strategy to generate two subsets to be used 

both as training set and testing set. T&T algorithm was 
implemented using a population of 500 individuals and 
each Back Propagation algorithm was trained for 200 
epochs. T&T was run for 1000 generations. 

4) the TWIST strategy was implemented to generate 
two new subsets with a minimal number of variables to 
be used both as training set and testing set. The TWIST 
algorithm was also programmed with a population of 500 
individuals and the two Back Propagation runs of each 
individual was trained for 200 epochs. TWIST after the 
1000 generations selected 9 input variables from the ori- 
ginal 20. 

Then we have processed the dataset using 4 different 
strategies: 

1) a K-Fold cross validation (K = 10); 

2) a random splitting of the dataset into two subsets, to 
be used both as training set and testing set; 

3) the T&T strategy to generate two subsets to be used 
both as training set and testing set. T&T algorithm was 
implemented using a population of 500 individuals and 
each Back Propagation algorithm was trained for 200 
epochs. T&T was run for 1000 generations. 

4) the TWIST strategy was implemented to generate 
two new subsets with a minimal number of variables to 
be used both as training set and testing set. The TWIST 
algorithm was also programmed with a population of 500 
individuals and the two Back Propagation runs of each 
individual was trained for 200 epochs. TWIST after the 
1000 generations selected 9 input variables from the 
original 20. 

We have used 13 different learning machines, repre- 
senting the different “families” of the main algorithms 
known in literature. For each one of the four strategies, 
the 13 algorithms were implemented using the well- 
known WEKA software package [34]. These are the list 
of the machines learning algorithms used in this compa- 
rison [35-38]: 

a) Bayes Net; 
b) Naïve Bayes; 
c) Support Vector Machine (SVM); 
d) Logistic Regression; 
e) Multilayer Perceptron; 
f) Sequential Minimal Organization (SMO); 
g) IBk; 
h) K Star; 
i) Ada-Boost M1; 
j) Logit Boost; 
k) RotationForest; 
l) J48; 
m) Random Forest.  
The comparison shows clearly that outcome 2 is true 

(see Table 4), when there is no information in the dataset, 
the behaviors of the four validation strategies are abso-
lutely equivalent. Therefore, T&T and TWIST do not 
code noise to reach optimistic results. 

5. A Test from Medical Data 

Now we will compare T&T and TWIST algorithms with 
K-Fold CV and Random Training and Testing, using a 
known medical dataset: Statlog_Heart [39]. The dataset 
is composed of 13 attributes, two classes and 270 records. 
TWIST was set with a population of 200 individuals and 
each ANN (a Back Propagation) was set up with 500 
epochs, 12 Hidden units and a fixed learning coefficient 
of 0.1. After 266 generations the algorithm did not in- 
crease its performance. 

Attribute Information: 
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Table 4. Falsification test—results of the comparison. 

Accuracy in blind testing 

Weighted Mean K-Fold (K = 10) Random Splitting T&T TWIST 

Ada Boost M1 48.70% 48.10% 51.76% 52.22% 

Bayes Net 51.90% 51.90% 47.61% 51.92% 

IBk 49.60% 50.40% 50.00% 50.77% 

J48 51.90% 51.90% 47.61% 51.92% 

K Star 51.20% 50.70% 49.79% 53.50% 

Logistic 49.20% 51.30% 51.86% 52.50% 

Logit Boost 49.50% 47.90% 51.72% 51.80% 

Multilayer Perceptron 50.90% 52.41% 51.59% 50.67% 

Naïve Bayes 48.90% 49.90% 51.72% 51.79% 

Random Forest 50.50% 51.40% 49.52% 50.73% 

Rotation Forest 51.60% 52.31% 50.18% 52.53% 

SMO 50.80% 51.50% 51.04% 53.10% 

SVM 51.80% 51.20% 50.33% 52.02% 

Average 50.50% 50.84% 50.36% 51.96% 

Standard Deviation 0.0119 0.0145 0.0148 0.0087 

 
1) age 
2) sex 
3) chest pain type (4 values) 
4) resting blood pressure 
5) serum cholesterol in mg/dl 
6) fasting blood sugar > 120 mg/dl 
7) resting electrocardiographic results (values 0, 1, 2) 
8) maximum heart rate achieved 
9) exercise induced angina 
10) old peak = ST depression induced by exercise rela- 

tive to rest 
11) the slope of the peak exercise ST segment 
12) number of major vessels (0 - 3) colored by fluoros- 

copy 
13) thal: 3 = normal; 6 = fixed defect; 7 = reversible 

defect. 
Variable to be predicted: 
Absence (1) or presence (2) of heart disease (we have 

not considered a specific cost matrix for this application). 
For this comparison we have used only the 8 learning 

machines that had the best performances in K-Fold CV 
from among the 13 algorithms considered in the falsifi-
cation test. 

In Table 5 the results are compared. It is evident that 
machine learning increases their performance when T&T 
and/or TWIST are used. It is evident in the same way 
that not every type of machine learning benefits to the 
same degree from the T&T and TWIST algorithms. Mul- 
tilayer Perceptron has the best results in each comparison 
for the simple reason that it is the same machine learning 

used for T&T and TWIST optimization. But also deci- 
sion Tree base machines with TWIST and T&T outper- 
form their previous results. 

What is really surprising is that many decision Trees 
and sometime also probabilistic networks increase dra- 
matically their results using this new validation strategy. 

Also, TWIST attains the best results by reducing from 
13 to 5 the number of attributes.  

TWIST selected attributes: 
1) age  
3) chest pain type (4 values) 
9) exercise induced angina 
12) number of major vessels (0 - 3) colored by fluo- 

roscopy 
13) thal: 3 = normal; 6 = fixed defect; 7 = reversible 

defect. 

6. Conclusions 

The results presented here indicate that the T&T and 
TWIST algorithms: 

a) do not code noise to reach optimistic results; 
b) are suitable algorithms to generate pairs of subsets 

with similar probability density function; 
c) are optimal strategies that allow machine learning to 

extract from a dataset the most useful information for 
pattern classification. 

The potential downside of this approach is the CPU 
time when the datasets are huge. To avoid this problem, 
we are planning the parallelization of the genetic evolu- 

Copyright © 2013 SciRes.                                                                                JILSA 



Training with Input Selection and Testing (TWIST) Algorithm: A Significant Advance in 
Pattern Recognition Performance of Machine Learning 

36 

Table 5. Statlog heart dataset—results of t&t, twist, k-fold 
cv and random splitting. 

(a) 

Weighted Accuracy K-Fold (K = 10) T&T Delta 

AdaBosostM1 82.22% 84.29% 2.07% 

BayesNet 82.22% 84.59% 2.37% 

IBk 75.56% 80.89% 5.33% 

J48 79.26% 79.07% −0.19% 

LogitBoost 80.74% 83.21% 2.47% 

MLPerc 76.67% 84.60% 7.93% 

RotationForest 82.22% 86.14% 3.92% 

SMO 83.33% 85.21% 1.88% 

Average 80.28% 83.50% 3.22% 

(b) 

Weighted Accuracy K-Fold (K = 10) TWIST Delta 

AdaBosostM1 82.22% 84.48% 2.26% 

BayesNet 82.22% 84.12% 1.90% 

IBk 75.56% 78.90% 3.34% 

J48 79.26% 84.86% 5.60% 

LogitBoost 80.74% 84.48% 3.74% 

MLPerc 76.67% 85.16% 8.49% 

RotationForest 82.22% 86.32% 4.10% 

SMO 83.33% 84.78% 1.45% 

Average 80.28% 84.14% 3.86% 

(c) 

Weighted Accuracy Random Split T&T Delta 

AdaBosostM1 80.00% 84.29% 4.29% 

BayesNet 81.11% 84.59% 3.47% 

IBk 77.04% 80.89% 3.85% 

J48 77.41% 79.07% 1.66% 

LogitBoost 81.11% 83.21% 2.10% 

MLPerc 81.48% 84.60% 3.12% 

RotationForest 80.74% 86.14% 5.40% 

SMO 82.22% 85.21% 2.98% 

Average 80.14% 83.50% 3.36% 

(d) 

Weighted Accuracy Random Split TWIST Delta 

AdaBosostM1 80.00% 84.48% 4.48% 

BayesNet 81.11% 84.12% 3.01% 

IBk 77.04% 78.90% 1.86% 

J48 77.41% 84.86% 7.46% 

LogitBoost 81.11% 84.48% 3.37% 

MLPerc 81.48% 85.16% 3.68% 

RotationForest 80.74% 86.32% 5.58% 

SMO 82.22% 84.78% 2.56% 

Average 80.14% 84.14% 4.00% 

tion of T&T and of TWIST. 
An optimal parallelization and a more intensive ex- 

perimentation with large datasets will show how much 
these two new strategies are promising from practical 
application. 
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