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ABSTRACT 

Using the transfer matrix method approach (TMM), the present paper attempts to determine the optical properties of 
quasi-periodic symmetric one-dimensional photonic systems. In addition, it studies hybrid hetero-structure systems 
constructed by using periodic and quasi-periodic multilayer systems. The effect of symmetry applied to symmetric mul-
tilayer systems results in the appearance of optical windows at the photonic band gaps (PBG) of the system. The use of 
hybrid symmetric systems, at normal incidence in the visible range, show that the complete photonic band gap is the 
sum of bands from individual systems. The results show also that the width of the PBG depends on the parameters and 
nature of the built system. 
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1. Introduction 

Unlike electrical materials, today photonic crystals offer 
the prospect of controlling the flow of photons in the 
dielectric or metallic materials due to their periodic 
structure [1]. 

The speed at which light moves, and the fact that pho-
tons do not tend to interact with transparent matter, is of 
enormous benefit to us. It allows us to transmit data over 
long distances. 

The advent of research into slow light is anticipated to 
bring in a wealth of applications, especially in the fields 
of telecommunications and optical data processing. 

Using light smartly offers many opportunities. Slow 
light promotes stronger light-matter interaction, it offers 
additional control over the spectral bandwidth of this 
interaction and it allows us to delay and temporarily store 
light in optical memories [2,3]. 

Quasi-periodic photonic crystals are dielectric struc-
tures with non-periodic modulations of the refractive 
index. These systems can be considered as suitable mod-
els to describe the transition from the perfect periodic 
structure to the random structure [4]. In this work, we 
have investigated the optical properties of the quasi-pe-
riodic one-dimensional multilayer by using the symmet-
ric structure. 

In the first part, we have evaluated the effect of apply-
ing symmetry in quasi-periodic systems. 

In the second part, we have studied the reflection prop-
erties of one-dimensional hybrid systems formed by 

combinations of periodic and quasi-periodic multilayer. 
The quasi-periodic photonic crystals (PCs) used in these 
hybrid structures are the symmetric Fibonacci sequence 
and the Thue-Morse sequence. The numerical results are 
presented in the visible spectral range [0.3, 1] µm for 
normal incidence. 

2. Problem Formulation and 
Quasi-Periodic Models 

The method used to calculate the optical response of 
symmetric quasiperiodic systems in one-dimensional (1D) 
photonic crystals is the transfer matrix method (TMM) 
described by Yeh [5]. This method is widely applied for 
calculating the transmission and reflection spectra of lay-
ered structures because it is quite simple and at the same 
time, it is a very powerful tool for simulation of light 
propagation through the layered structures and for calcu-
lating the matrix product very quickly. 

TMM method consists in the calculation of the back-
ward E− and the forward E+ propagating electric field 
components. This method shows that the relation be-
tween the amplitudes of the electric fields between two 
different planes including a stratified medium is given by 
the following matrix product: 
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where jC  represent the product of the propagation ma-
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trix pr  by the interface matrix  given respec-
tively by: 
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where jt  is the Fresnel transmission, jr  is the reflec-
tion coefficients and 1j 

 j 
 is the change in the phase of 

the wave between the  and  layer [6]. th
1 thj

The values of the change in the phase of the wave are 
given by the following equations: 
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1jd   is the thickness  layer and  1
th

j    is the 
wavelength of the incident wave in vacuum. 

All the results in this work are given normal incidence, 
so the transmittance T for both polarizations is the same. 

2.1. Symmetric Fibonacci Structure 

The symmetric Fibonacci sequences are multilayer 
structures obtained with two different materials H and B, 
with refractive index nA and nB respectively [7]. The jth 
generation of this sequence can be expressed as  

  ,n nS F G n
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where Gn and Hn are Fibonacci sequence; they obey by 
the following recursion relations,  
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As an example, the third sequence of symmetric Fibo-
nacci sequences is .  S HLHHLH3

The number of layers depends on the order of the sym-
metric Fibonacci sequence. 

22. Thue-Morse Structure 

The Thue-Morse sequence is defined by the recursive 
relation as follows: 
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where H indicates the high refractive index layer and B is 
the low refractive index layer. 

The number of the nth iteration is 2n [8]. 

In this work, we will use only the symmetric Thue- 
Morse structure. 

3. Result and Discussion 

In the following numerical investigation, we chose the 
titanium TiO2 (H) and the dioxide of Silicon SiO2 (L) as 
two elementary layers, with refractive indices nH = 2.3 
and nL = 1.45 respectively. The optical thickness of each 
layer has been chosen to satisfy the Bragg condition, 
where, λ0 is the reference wavelength which is equal to 
0.5 µm. 

Here we study the optical properties for normal inci-
dence, in the spectral range  0.3, 1 μm  which corre-
sponds to  0 0.5, 1.66   . We notice that the transfer 
matrix Method [4] is used to study the optical properties 
of a one-dimensional multilayer system. 

3.1. Hybrid H(LH)j/SF(n)/H(LH)j Systems 

In this part, we are interested in the multilayer system 
composed of symmetric Fibonacci sequence (SFn) sand-
wiched between two periodical multilayer systems 
H(LH)j (Bragg mirror). Where (n) and (j) are the number 
of iterations of the symmetric Fibonacci and the periodic 
systems respectively. 

Figure 1 shows an example of the geometry of hybrid 
H(LH)j/SFn/H(LH)j system. 

3.1.1. The Optimization of the Repetition Number j of 
the Periodic System 

In order to optimize the repetition number j of the peri-
odic multilayer structure H(LH)j we study under normal 
incidence the optical proprieties of the system H(LH)j/ 
SFn/H(LH)j. 

So we fixed the number of iteration of the symmetric 
Fibonacci n to 4 and let j vary from 3 to 10. Figure 2 
show the numerical results for different values of j. 

From Figure 2, it is clear that the reflection spectra 
present the same number of peaks. This number is fixed 
to 1. Moreover, we note that: 
 The position and the intensity of this peak are the 

same for different values of j (Ipeak = 96%). 
 The increase of j induces a reduction in full width at 

half maximum (FWHM) for this peak as shown in 
Figure 3. 

 

Transmitted
Wave 

Reflected
Wave

Incident
Wave

H(LH)j SFn H(LH)j  

Figure 1. Example of the geometry of the hybrid system 
formed by a symmetric Fibonacci sequence sandwiched 

etween two periodic structures. b   
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Figure 2. Reflection spectrum versus λ0/λ for the H(LH)j/SF4/H(LH)j system for different j values. 
 

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
x 10-3

Repetition number j of the periodic system

FW
H

M
 (µ

m
)

 

Figure 3. Plot of the average of FWHM of the peak versus 
the repetition number j of H(LH)j/SF4/H(LH)j. 
 

We notice that when j is equal to 8 the FWHM of the 
peak is almost zero. Then we can conclude that the opti-
mal value of j which can be chosen for the configuration 
H(LH)j/SF4 /H(LH)j is equal to 8. 

3.1.2. Numerical Results of the Study Configuration 
H(LH)8/SFn /H(LH)8 

Now we move to study the reflection spectrum of the 
configuration H(LH)8/SFn/H(LH)8 for the optimal value j 
= 8 and for different values of n ranges from 3 to 9. 

Here we note the different systems by [H(LH)8/SFn/ 
H(LH)8]p where p represents the total number of layers. 

Figure 4 shows that the number of peaks increases with 
n. We notice that the variation of values n affects the 

width of the PBG of the system. 
The most outstanding result of this study is the Bragg- 

PBGs covering the spectral range existing between the 
two PBGs of the symmetric Fibonacci system. 

From Figure 5 we can see that for each iteration the 
number and the position of the peaks are symmetric about 
the central peak (λ0/λ = 1). In Table 1, we present the 
position X and the intensities I of the peaks also the width 
(0/) of the PBG for some iterations. 

According to the results obtained, we notice that the 
peaks intensities are grater or equal to 96%. In addition 
there are two types of peaks: 
 The peaks which are located at the band gap of the 

symmetric Fibonacci system. 
 The peaks which are concentrated in the band gap 

resulting from periodic systems. The peak number on 
either sides of the central peak depends on the parity 
of the number of iterations. It is odd when the number 
of iterations is even and vice versa. 

3.2. Hybrid H(LH)j/Tm/H(LH)j Systems 

At this juncture, the reflection spectra are extricated for 
1D hybrid quasi-periodic multilayer stack at normal in-
cident wave constructed through the use of Thue-Morse 
sequence (Tm) intercalated between two periodic systems 
H(LH)j. Where m and j are the numbers of iterations of 
Thue-Morse structure and periodic systems respectively. 
Figure 6 shows an example of the geometry of hybrid       
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Figure 4. Reflection spectra for the H(LH)8/SFn/H(LH)8 structure for different n values. 
 

0.7 0.8 0.9 1 1.1 1.2 1.3

5

6

7

8

9

n

0/pic λ0/λpic  

Figure 5. Peaks position for Hybrid H(LH)8/SFn/H(LH)8 systems. 
 
H(LH)j/Tm/H(LH)j system. 

To illustrate the reflection spectra properties in the 
spectral range  0.3, 1 μm  of the hybrid H(LH)j/T(m)/ 
H(LH)j system, we start by determining the optimal value 
of j. 

3.2.1. The optimization of Repetition Number j of the 
Periodic System 

To determine the optimal value of j of the periodic sys-
tem H(LH)j, we study under normal incidence the optical 
response of the hybrid H(LH)j/Tm/H(LH)j system for dif-
ferent values of j and by fixing m to 4. 

Figure 7 presents the numerical results for different j 
values. 

We notice that the reflection spectra present the trans-
mission peaks at the photonic band gap. The variation of 
the full width at half maximum (FWHM) of the central 
peak, as shown in Figure 8, indicate that the optimal 
value of j is equal to 8. 

3.2.2. Variation Effect of the Repetitive Number m 
For the optimal value j = 8, we study the reflection spec-
tra properties of the configuration H(LH)8/Tm/H(LH)8

 for 
different values of m. It should be noted that we choose 
the even number of m because the Thue-Morse with even 
iteration values can be builds a symmetric system. 

Figure 9 shows the reflection spectra generated by this 
hybrid photonic system. It is clear that if m increases the  
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Table 1. Position and intensities of the peaks and the width of the PBG for different value of n. 

n = 5 

Structure Δ (λ0/λ) Δλ (µm) Peak 

   Position Intensities 

H(LH)8/SF5/H(LH)8)50 0.1498 0.0753 x1 = 1 λ1 = 0.5 µm I1 = 96% 

n = 6 

Structure Δ (λ0/λ) Δλ (µm) Peak 

   Position Intensities 

H(LH)8/SF6/H(LH)8)60 0.2396 0.1215 x1 = 0.9517 λ1 = 0.525 µm I1 = 96.197% 

   x2 = 1 λ2 = 0.5 µm I2 = 96% 

   x3 = 1.048 λ3 = 0.477 µm I3 = 96.197% 

n = 7 

Structure Δ (λ0/ λ) Δλ (µm) Peak 

   Position Intensities 

H(LH)8/SF7/H(LH)8)76 0.6304 0.350 x1 = 0.8647 λ1 = 0.5782 µm I1 = 98.116% 

   x2 = 0.8768 λ2 = 0.5702 µm I2 = 97.652% 

   x3 = 0.9296 λ3 = 0.5379 µm I3 = 96.436% 

   x4 = 0.9748 λ4 = 0.5129 µm I4 = 96.052% 

   x5 = 1 λ5 = 0.5 µm I5 = 96% 

   x6 = 1.025 λ6 = 0.4878 µm I6 = 96.052% 

   x7 = 1.07 λ7 = 0.4673 µm I7 = 96.436% 

   x8 = 1.123 λ8 = 0.4452 µm I8 = 97.652% 

   x9 = 1.35 λ9 = 0.44405 µm I9 = 97.116% 

 

Transmitted 
Wave 

Reflected 
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Incident 
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Thue-Morse  

Figure 6. Example of the geometry of hybrid H(LH)j/Tm/H(LH)j systems. 
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Figure 7. Reflection spectra for the H(LH)j/T4/H(LH)j system for different j values. 
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Figure 8. Variation of the FWHM of the central peak. 
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Figure 9. Reflection spectra for the hybrid H(LH)8/Tm/H(LH)8 systems for different m values.   
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width of the PBG is larger and the peak number increases. 
We can notice that the effect of the Thue-Morse structure 
of the system considered is obtained only from m = 4. In 
the case where m = 2, it is clear that just the effect of 
symmetry that appears (the appearance of a central peak at 
the PBG of the system). It follows that when m increases 
we have the following results: 

The peak positions are symmetricaly about the central 
peak. 

The width of the complete PBG increases. Indeed, the 
width of the band gap of the resulting system Br8/Tm/BR8 
is the sum of the bandgaps of periodic systems and quasi- 
periodic system (Thue-Morse). We note that the PBG of 
the periodic system covers the spectral range between the 
two PBGs of the Thue-Morse system. This result is very 
important because it is possible to calculate the widh of 
the PBG of the considered hybrid system from the spectra 
of individual systems (Bragg and Thue-Morse) without 
representing the spectrum of the entire structure. 

4. Conclusions 

The effect of symmetry applied to symmetric multilayer 
systems results in the appearance of optical windows at 
the PBG of the system which are symmetrical about the 
value λ0/λ = 1. 

The use of hybrid symmetric systems kinds PS/QPS/ 
PS and QPS/PS/QPS, at normal incidence in the visible 
range show that: 

The complete photonic bandage is the sum of individ-
ual bands from systems. 

The width of the PBG and the optical windows, which 
appear at this band, depend on the parameters and the 
nature of the system built. 

Also, the numbers of PBGs and transmission peaks are 
controlled by the variations of the parameters n and m of 
the symmetric Fibonacci and Thue-Morse structures. There- 

fore, against the conventional quasi-periodic structures, 
the hybrid systems offer the possibility of obtaining poly- 
chromatic filters and of controlling the properties of these 
filters. 
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