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Abstract 
 
Wavelet packets decompose signals in to broader components using linear spectral bisecting. Mixing matrix 
is the key issue in the Blind Source Separation (BSS) literature especially in under-determined cases. In this 
paper, we propose a simple and novel method in Short Time Wavelet Packet (STWP) analysis to estimate 
blindly the mixing matrix of speech signals from noise free linear mixtures in over-complete cases. In this 
paper, the Laplacian model is considered in short time-wavelet packets and is applied to each histogram of 
packets. Expectation Maximization (EM) algorithm is used to train the model and calculate the model pa-
rameters. In our simulations, comparison with the other recent results will be computed and it is shown that 
our results are better than others. It is shown that complexity of computation of model is decreased and con-
sequently the speed of convergence is increased. 
 
Keywords: ICA, CWT, DWT, BSS, WPD, Laplacian Model, Expectation Maximization, Wavelet Packets, 

Short Time analysis, Over-complete, Blind Source Separation, Speech Processing 

1. Introduction 
 
Blind source separation (BSS) using Independent Com-
ponent Analysis (ICA) has attracted great deal of attention 
in recent years. Important applications such as speech 
recognition systems, speech enhancement, speech sepa-
ration, wireless communication, image processing, tele-
communications, and biomedical signal analysis and 
processing had been carried out using ICA [1,2]. The 
main objective of ICA is to identify independent sources 
using only sensor observation datum which are linear 
mixtures of unobserved independent source signals [3-5]. 
The standard formulation of ICA requires at least as many 
sensors as sources [4]. Blind source separation is very 
important problem when there are more sources than 
sensors. In this case estimation of mixing matrix is very 
important issue.  

Anemuller and Kollmeier have used an anechoic 
model for mixture signals using the standard method of 
maximum likelihood estimation of Fourier transformed 
speech signals to develop an adaptive algorithm to cal-
culate the mixture matrix [6]. Li et al have proposed a 
sparse decomposition approach for an observed data ma-
trix, and then using gradient type algorithm, the basis 

matrix is estimated and therefore source signals are  
separated [7]. 

In recent years several approaches have been investi-
gated to address the over-complete source separation 
problem. Shi et al have used a gradient based algorithm 
in time domain to separate source signals from two mix-
tures in over-complete cases [8]. Rickard et al have made 
an assumption that windowed sources are disjointly or-
thogonal in time, frequency or time-frequency domains. 
They have applied a mask function in one of domains 
and have been able to separate sources from two mix-
tures [9,10]. Bofill-Zibulevsky have proposed a geomet-
rical mixing model using shortest path criteria and pro-
posed an algorithm to separate the source signals [11]. 

Vielva et al assumed some prior knowledge about the 
statistical characteristics of the sources and then esti-
mated the mixing matrix which resulted separation of the 
sources [12]. SangGyun kim [27] used a k-means clus-
tering method in time-frequency (TF) domain to esti-
mating the mixing matrix. At first he obtained the STFT 
of any mixtures and by considering the ratio of mixture 
signals in TF domain he computed the regions which 
only one source is active. Lewicki et al. [13] provided a 
complete Bayasian approach assuming Laplacian source 
prior to estimating both the mixing matrix and the *This work is supported by university of Tabriz-Iran. 
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sources in the time domain. Tinati et al. proposed a com-
parison method for speech signal orthogonality in wave-
let and time-frequency domains [14]. Tinati et al. pro-
posed a new algorithm for selecting best wavelet packet 
node using LMM-EM model, finally they could obtain 
best results about estimation of mixing matrix [15,16]. 
They apply LMM model for speech mixture signals in 
wavelet packet domain using long-term Analysis. In their 
proposed algorithm because of long-term analysis, in-
creasing the source number causes more errors in the 
estimation of mixing matrix.  

In this paper we apply Laplacian model in short time 
wavelet packet domain and finally in most packets there 
are only one or less sources and then we show that com-
plexity of computations of model is decreased and there-
fore speed of convergence is increased. 

Because speech signals are localized in different time 
-frequency bins then we can find in short time windows 
that only one source is active in the mixing signals. 
Therefore using short time wavelet transform we obtain 
the packets which only one source is active and other 
sources are disabling. The histogram of phase differences 
is used to obtain a best wavelet packet for this purpose 
[15,16]. In this paper there is no need to calculate mixture 
model, of course a preprocessing of packets histogram is 
done and a best packet is selected in every window (short 
time) for mixture modeling.  

All of the above proposed algorithms and methods are 
combined to introduce a new and simple mixing matrix 
determination in over-complete cases. We will demon-
strate that very promising results are obtained using ex-
amples. 
 
2. Background Material 
 
2.1. Wavelet Transform 
 
Wavelet theory has attracted much attention in signal 
processing, during past decades. It has been applied in a 
number of areas including data compression, speech 
processing, image processing, biomedical signal analysis, 
coding, transient signal analysis, and other signal proc-
essing applications. 

Wavelet transform may be described in terms of rep-
resentation of a signal with respect to specific family of 
functions that are generated by a single analyzing func-
tion [17-20]. 

A single wavelet function generates a family of wave-
lets by dilating (stretching or contracting) and translating 
(moving along time axis) itself over continuum of dila-
tion and translation values. 

The continuous wavelet transform (CWT) of a signal 
f(t) is defined as [21]: 

*1
( , ) ( ) ( )    0,

t b
Tf a b f t dt a b R

aa







        (1) 

where ψ(t) plays the same role as ejωt in the Fourier 
transform, and is scaled and transformed version of 
mother wavelet, ψa,b as: 

,

1
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Computational complexity and redundancy are main 
disadvantages of the CWT. In addition, in practical ap-
plications, in particular those involving fast algorithms, 
the continuous wavelet transform can only be computed 
on a discrete grid of points, which is discretizing only ‘a’ 
or both ‘a’ and ‘b’ parameters. 

Discrete wavelet transform (DWT) is commonly re-
ferred as dyadic sampling of CWT, and generally is de-
fined as: 

/2( ) 2 (2 )               ,,
j jt t k j k Zj k        (3) 

In general any function f(t)L2(R) could be expanded 
using a set of functions, φk(t) and ψj,k(t) as: 
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where φ(t) is called scaling function, and is determined 
from the following equation: 

( ) ( )               
k

t t k k Z   
   

      (5) 
It was shown that the scaling and wavelet functions are 

used to determine two sets of low-pass and high-pass 
filters which are used to decompose signal f(t) in to coarse 
and detail levels. This is called multi-resolution analysis. 
Low-pass and high-pass filter coefficients are obtained 
from following equations: 

0( ) ( ) 2 (2 )        
k

t h k t k k Z            (6) 

1( ) ( ) 2 (2 )        
k

t h k t k k Z            (7) 

where h0(k) and h1(k) are impulse response of low-pass 
and high-pass filters respectively [20]. If one proceeds in 
both of the coarse and detail level branches of the wave-
let tree then a wavelet packet decomposition tree is ob-
tained. A full wavelet packet decomposition binary tree 
for two scale wavelet packet transform is shown in Fig-
ure (1). 
 
2.2. Independent Component Analysis 
 
Independent component analysis is a statistical method 
expressed as a set of multidimensional observations that 
are combinations of unknown variables [1,2,4,22]. These 
underlying unobserved variables are called sources and 
they are assumed to be statistically independent with 
respect to each other. The linear ICA model can be ex- 
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Figure 1. Wavelet packet decomposition. 
 
pressed as: 

X(t) = A × S(t) 

where X(t) = [x1(t),x2(t),x3(t),…,xM(t)]T is an M-dimen-
tional observed vector and xi(t) is the ith mixture signal. 
A= [aij]M×N is an unknown M × N mixing matrix that 
operates on statistically independent unobserved vari-
ables which is defined as the following vector: 

S(t) = [s1(t),s2(t),s3(t),…,sN(t)]T 

where again si(t) is the ith source signal. It is assumed that 
any entry of mixing matrix A has a constant value, in 
other words the ICA system is an LTI system. In the case 
of an equal number of sources and sensors, (M = N), a 
number of robust approaches using independent compo-
nent analysis have been proposed by many researchers 
[22,23]. In this case ICA method estimates the inverse or 
pseudo inverse of mixing matrixes as W. In the over- 
complete source separation case (M < N), an ill-condi-
tioned occurs, and the source separation problem has 
many solutions. It consists of two sub-solutions: 1) esti-
mating the mixing matrix A and 2) estimating the source 
signals S(t).  

Consider a case with two sensors and three sources. 
The mixing model is therefore expressed as: 

1 11 1 12 2 13 3

2 21 1 22 2 23 3
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        (8) 

For simplicity, one can assume all the coefficients in 
one of the above equations to have unit values. This is 
because in the scatter plots we are actually plotting the 
ratios of relevant magnitudes of signals that will be used 
in later. Figures (2), (3) show the speech signals and 
their corresponding mixing signals. Every signal has 2 
seconds length in time and the sampling rate of them is 
16 khz. 
 
3. Methods 
 
In order to increase the sparsity of signals, we use the 
wavelet packet decomposition (WPD) on the observed 
signals and wavelet packet coefficients will be used to 
plot the scatter-representation [24,25]. This is shown in  
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Figure 2. Speech source signals. 
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Figure 3. Mixing signals. 
 
Figure (4) for the mixture of speech signals shown in 
Figure (3). It is obvious that directions of the signals are 
much clearer in wavelet domain. In Figure (5), the rele-
vant histograms are shown and can be seen that much 
better representation here as well [24]. 

The phase difference of observed data measured by 
sensors is expressed as:  

2

1

( )
arctan[ ]

( )

l

i
t l

i

WP x

WP x
                (9) 

where l
iWP  represents the ith wavelet packet in the lth 

level of decomposition. It is shown in Figure (5) that 
there are three peaks corresponding to three sources. Be-
cause of many sources in mixing signals all peaks in his-
togram plot have low amplitude, about lower than 1%, if 
we use short term analysis for mixing signals, we obtain 
histograms that involves less sources and finally we get 
higher peaks in histograms. First we will show when we 
use short time analysis therefore we obtain activity for a 
single source in the most packets. In this situation we 
take a windowed mixture signals and then calculate the 
wavelet packet decomposition for N = 4096 and N = 512, 
then using Equation (9) we calculate θt and we obtain 
histogram for phase difference and finally we get peak 
value of calculated histograms, if this peak value is 
higher than 20% then it is assumed that in this packet we  
have one active source. When we have in the obtained 
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Figure 4. Scatter plot of x2(t) respect to x1(t) in wavelet 
packet domain. 
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Figure 5. Histogram of phase difference between wavelet 
packets of x2(t), x1(t). 
 
packets lower peaks in histograms then we can say that 
there are many sources are active in this packet, it is 
shown in Figures (6), (7). In Figure (6) it is shown that 
when we select window length 4096, in all packets more 
sources are active and their peak values is lower than 
10% and with window length 512 many or all of the 
packets contain only one source and peak value is higher 
than 20%. 

 
3.1. Selection of the Best Wavelet Packet Node in 

Short Time Analysis 
 
In this section we propose a new algorithm to select the 
best node in wavelet packet domain for each source di-
rection, which are depicted in columns of the mixing 
matrix. Considering mixtures of speech signals in the 
time-frequency domain, it is more probable that each 
speech signal be localized in different time-frequency 
bins. 

Therefore, we can state that there are packets where a 
particular source may be localized better than the other 
sources, when we apply short time analysis in wavelet 
packet domain. Consequently dispersion of that particu-
lar source will be better and will show itself in much  
higher amplitude and narrower width in the histogram 
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Figure 6. (a) Scatter plot of wavelet packets; (b) Histogram 
of phase differences N = 4096. 
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Figure 7. (a) Scatter plot of wavelet packets; (b) Histogram 
of phase differences N = 512. 
 
plots than the other sources. This presumption leads us to 
find a certain packet that will identify some sources bet-
ter than the others. In Figure (8) we describe a new 
method based on short time analysis in wavelet packet 
domain. According to the previous sections we choose a 
window in time domain and then we calculate the phase 
differences and then histogram is obtained if maximum 
peak value is higher than 20% then it is suitable for cal-
culating Laplacian model about it, unless another win-
dow is chosen and this operation is repeated over the 
mixing signals. Finally we sort peak values and corre-
sponding Laplacian parameters, then best parameters are 
selected based on maximum peak value about any source 
direction. 
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Figure 8. The proposed algorithm for calculating of mixing 
matrix. 
 
3.2. Calculating of Laplacian Model Using EM  

Algorithm 
 

The Laplacian density is usually expressed as:  

0

0

2
( , , )L e

c
c c

 
 

 
          (10) 

where θ0 represent the center and c > 0 controls the 
width or variance of the density function. If parameter c 
is increased, narrower dispersion will result, and also this 
will increase the height as well. 

Expectation maximization algorithm is a technique 
used to find model parameters in such a way that the 
likelihood function of the model is maximized. It has been 
used in BSS problem in literature. Assuming T samples 
for θt and Laplacian model densities as in Equation (10), 
the log- likelihood takes the following form: 
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In order to update θ0 and c0, we have to find derivatives 
of J(θk ,θ0 ,c0) with respect to θ0 and c0, then set them to 

zero. The recursive formulas for iterations are obtained as: 
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where in above equations ‘n’ indicate the iteration steps. 
Using these iteration formulas we are able to train the 
Laplacian Model and estimate the center and other pa-
rameters for each Laplacian distribution. 

In the following examples we demonstrate the process 
of the best wavelet packet node selection algorithm of 
Figure (8) in details. 

Example 1: 
Consider the mixing matrix to be as: 

1 1 1

1.4 0.4 1.5
A 


 
  

 

Using Equations (9), (12) and (13) and with assump-
tion N = 512, parameters of model are calculated up to 
second level of decomposition. The obtained results are 
shown in Table (1) and finally best estimation can be 
written as: 

1 1 1

1.4001 0.4005 1.4996
A 


 
  

  

In Tables (1), (2) ‘p(si)’ parameter is the maximum 
value in the histogram plot and ‘E(si)’ is the mixing ma-
trix parameter corresponding to ith speech source signal. 

Learning curve and estimated Laplacian Model for 
sources are shown in Figure (9). It is shown that the num 

Table 1. Histogram peaks and mixing matrix parameters. 

P (s1) E (s1) P (s2) E (s2) P (s3) E (s3) 

30.54 1.4001 30.05 0.4005 40.39 –1.4996 

28.08 1.3993 25.12 0.4009 39.41 –1.4992 

27.59 1.3972 20.20 0.3986 29.06 –1.4984 

27.10 1.4028 16.75 0.4027 28.57 –1.5024 

20.69 1.3965 13.79 0.4050 26.60 –1.4924 

26.60 1.4044 13.30 0.3942 23.65 –1.4969 

Table 2. Histogram peaks and mixing matrix parameters. 

P(s1) E (s1) P(s2) E(s2) P(s3) E(s3) P(s4) E(s4) 

44.34 –0.6999 20.69 1.1993 31.03 –1.6000 28.12 0.1998

42.86 –0.7003 19.70 1.2017 28.08 –1.6006 25.15 0.2037

41.87 –0.6995 17.24 1.2032 26.11 –1.6013 22.52 0.1970

37.44 –0.7008 16.26 1.2035 24.14 –1.6019 21.61 0.1969

33.01 –0.6992 15.76 1.2058 23.65 –1.6030 - - 

30.54 –0.7009 15.27 1.1965 20.20 –1.6066 - - 

Input Mixture Signals: X2(t) , X1(t) 

Obtaining Wavelet Packet Transform of Windowed 
Mixture Signals 

Select a windowed of X2(t) , X1(t) 
Window Length: N=512 

Calculate: θt 

Obtaining of Histogram for θt 

Calculation of maximum peak about 
histogram 

NO  

Peak Value >20% 

YES 

Calculate Corresponding Source Direction 
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Figure 9. (a) Learning curve; (b) Histogram and estimated 
Laplacian model. 
 
ber of iterations is about 5-10, which is much less than the 
other reported cases [16], [26]. 

Example 2: 
Consider the mixing matrix to be as: 

1 1 1 1

1.6 0.2 0.7 1.2
A 

 
 
  

 

Again, parameters of model are calculated up to sec-
ond level of decomposition with N = 512. The obtained 
results are shown in Table (2) and finally best estimation 
can be written as: 

1 1 1 1

1.6000 0.1998 0.6999 1.1993
A 

 
 
  

  

 
4. Comparison of the Proposed Algorithm 

with the Other Results 
 

In this section comparison of our algorithm with the Sang 
Gyune Kim method [27] will be considered. For this, 
consider the mixing matrix to be as: 

1 1 1 1

1.6 0.2 0.7 1.2
A 

 
 
  

 

The corresponding scattering plot is shown as Figure 
(10) and the mixture matrix using the SangGyune Kim 
method is shown as below with ε = 0.03 as a threshold: 

1 1 1 1

1.5519 0.2062 0.7044 1.2314
A 

 
 
  



 
The obtained results in the above examples show that  
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Figure10. The scatter plot of mixture signals in STFT do-
main using Kim algorithm. 
 
our proposed algorithm gives better results than Kim 
method. 

 
5. Conclusions 
 
In this investigation we purposed a novel algorithm for 
wavelet packet node selection for any source direction 
using short time analysis. This was performed in all 
packets. Therefore, a more accurate estimation of the 
mixing matrix is obtained. It is shown that the number of 
iterations is about 5-10, which is much less than the other 
reported cases. 

Two examples with three and four source components 
in the mixture were undertaken for simulations. Proposed 
algorithm (mixing matrix estimation) is tested on them. 
Results indicate that we have been able to estimate the 
mixing matrix with high accuracy, also the comparison 
show that the obtained results are better than other recent 
reports. 
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