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Abstract 
 
The challenging conditions prevalent in indoor environments have rendered many traditional positioning 
methods inept to yield satisfactory results. Our work tackles the challenging problem of accurate indoor po-
sitioning in hazardous multipath environments through three versatile super resolution techniques: time do-
main Multiple Signal Classification (TD-MUSIC), frequency domain MUSIC (FD-MUSIC) algorithms, and 
frequency domain Eigen value (FD-EV) method. The advantage of using these super resolution techniques is 
twofold. First for Line-of-Sight (LoS) conditions this provides the most accurate means of determining the 
time delay estimate from transmitter to receiver for any wireless sensor network. The high noise immunity 
and resolvability of these methods makes them ideal for cost-effective wireless sensor networks operating in 
indoor channels. Second for non-LoS conditions the resultant pseudo-spectrum generated by these methods 
provides the means to construct the ideal location based fingerprint. We provide an in depth analysis of limi-
tation as well as advantages inherent in all of these methods through a detailed behavioral analysis under 
constrained environments. Hence, the bandwidth versatility, higher resolution capability and higher noise 
immunity of the TD-MUSIC algorithm and the FD-EV method’s ability to resurface submerged signal peaks 
when the signal subspace dimensions are underestimated are all presented in detail. 
 
Keywords: Indoor Localization, Wireless Sensor Networks, Super Resolution, Time of Arrival Estimation, 

Ultra-Wideband, Location Based Fingerprinting 

1. Introduction 
 
Rapid growth in wireless applications has increased in-
terest in integrating location aware functionality to wire-
less systems. The accurate location estimation or posi-
tioning is a key research task for any location aware sys-
tem. The universally most widely used positioning sys-
tem; global positioning system (GPS) is not suitable for 
indoor or underground scenarios. This is mainly because 
it fails to handle positioning problem with a satisfactory 
level of accuracy in dense multipath conditions prevail-
ing indoors. Further the level of precision required in 
small regions for certain indoor applications is beyond 
the range of most GPS receivers. In addition the weak 
line-of-sight (LOS) satellite signals are blocked by high 
rise buildings and other infrastructures present in urban 
environments. The receiver sensitivity may not be suffi-
cient in indoor environments to accurately capture the 
weak satellite signals transmitted [1]. Therefore research 
interest for Non-GPS based positioning systems has 

surged in the last decade. Primary interest focused on 
enhancing parameter estimation based algorithms for 
LOS environments and robust finger printing based algo-
rithms for Non-LOS environments that can be utilized by 
wireless sensor networks for indoor localization. Appli-
cations in Non-GPS based positioning systems catering 
for severe multipath conditions prevailing in indoor, un-
derground and urban environments are wide ranging. 

Positioning applications are wide ranging; spanning 
from security and defence to applications in commercial 
(asset management), entertainment, exploration (cave), 
underground mining, search and rescue operations and 
location based file sharing [2]. To elaborate further for 
example in the field of security indoor positioning sys-
tems can provide useful information by tracking personal 
and/or important cargo/devices in airports where GPS is 
incapable of meeting the requirement. The underground 
mining industry stands to gain a great deal from 
Non-GPS positioning applications as well; the under-
ground positioning problem is analogous to the indoor  
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problem in many ways. Mines run on narrow under-
ground pathways for miles, limiting accessibility due to 
time and resource constraints. The requirements for lo-
calization in a mine relate to people as well as for ma-
chines. Tracking of mobile vehicle movement of haul 
trucks, determining precise location of individuals (e.g., 
during surveying) and machinery such as drill bits, 
shovel buckets, and bulldozer blades are some of the 
positioning necessities. Another application would be 
coupling an individual’s file access on a wireless net-
work with his/her current location on the premises thus 
restricting access to sensitive material only if the person 
is within a high security area. Further location aware tags 
can be used to keep track of children also applications in 
the digital home as well as location ware games are a few 
of the vast majority of applications that crop up through 
location aware technologies. 

It is commonly accepted among research circles that 
time of arrival (TOA) based ultra-wideband (UWB) 
wireless sensor networks are the most accurate for indoor 
Geolocation [3]. The synchronization requirement of 
TOA systems can be limited just to the transmitter side 
as shown in [4] by utilizing a time difference of arrival 
(TDOA) scheme. Other parameter estimation techniques 
such as the Received Signal Strength (RSS) based posi-
tioning systems suffer severe deviations from mean sig-
nal strengths due to fading. Second, its accuracy suffers 
greatly with distance, and third it is very sensitive to the 
estimated path-loss model parameters [5]. Angle of arri-
val (AOA) estimation techniques require antenna arrays 
at each node to determine the angular power spectrum 
which is required for Direction of Arrival estimation [6]. 

Conventional TOA estimation techniques which util-
ize either Inverse Fast Fourier Transforms (IFFT) or 
correlation based methods are highly error prone under 
severe multipath conditions and have low noise immu-
nity. Their resolution is limited by the inverse of the sig-
nal bandwidth [7]. When the time intervals between two 
adjacent multipaths are too small, as customary in indoor 
environments, both these methods fail to resolve the di-
rect path (DP). The peak of the direct path lobe is shifted 
as a result of the overlaps with unresolved multipath 
lobes. 

The fine time resolution in UWB signals can be accu-
rate to within one inch [8]. However in dense multipath 
conditions as mentioned above the accuracy of DP-TOA 
estimate is affected by the resolvability of the processing 
algorithm. Thus we focused on utilizing super resolution 
techniques such as the Multiple Signal Classification 
(MUSIC) algorithm first introduced in [9,10] for spectral 
estimation applications to improve the resolution capa-
bility of the TOA estimation process. Super Resolution 
Algorithms are mainly of two types. The first type is, 
parametric methods such as the Prony algorithm as sug-
gested in [4,6]. The frequency domain sample points of 
the indoor channel received signal are utilized by the 

Prony method for estimating the complex exponentials 
generated due to the time domain multi-paths. The sec-
ond type is based on the eigen analysis based spectral 
estimation techniques such as the MUSIC algorithm and 
its variant, namely the eigen value (EV) method.  

This paper applies super resolution techniques for a 
wireless sensor network with UWB type impulsive sig-
nals in the GHz range. Here we introduce highly versa-
tile algorithms with the capability to handle the most 
adverse conditions (low signal-to-noise ratio (SNR) con-
ditions and hazardous channels with limited bandwidth) 
with as little pre-configuration data as possible and still 
yield satisfactory results. For the analysis of the latter 
condition, (reduction in pre-configuration data computa-
tion requirement) we studied the algorithm’s behaviour 
under incorrect estimation of signal subspace dimen-
sions. 

It is important to notice that our work focused on cre-
ating new theoretical methods, for accurate estimation of 
time delay parameters, which can cater for various ap-
plication scenarios [11]. Therefore one need not limit the 
application possibilities to just UWB based systems. The 
high noise immunity and versatility under low bandwidth 
conditions make these methods prime candidates for use 
in economical wireless sensor networks. Systems intro-
duced in [12,13] utilize a simple sensor network using 
audible sound for positioning, a wireless LAN for syn-
chronization and an ultra sound based distributed posi-
tioning system with signaling and synchronization done 
by a RF pulse respectively. Both these systems use sim-
ple correlation or counter based peak detection algo-
rithms for the TOA estimation process. Even with such 
simple methods, for example the audible sound based 
system yields accuracy to within two feet in 97% cases 
for 2-D case and a corresponding accuracy to within 
three feet in 95% cases for 3-D case. This can be easily 
improved upon by using the super resolution techniques 
suggested in this paper. Ultra sound and audible sound sys-
tems display poor results under noisy conditions and such 
occurrences are frequent in indoor environments [14]. 

If we were to consider a UDP (Undetectable Direct 
Path) case, where the direct path is undetectable, and use 
one of the previous methods to obtain the position, it will 
result in a massive error as the first dominant path is a 
non-direct path. Finger printing techniques were intro-
duced for location estimation in environments where the 
DP was not present [15]. In such systems the area is di-
vided into grid points and each grid point position is 
identified by a unique signature. Originally, a “received 
signal strength vector” or a “time delay vector” was 
measured for each grid point from multiple transmitters 
(Access Points) at the calibration phase. This was then 
used as the potential signature to identify each grid point 
on the radio map. In the real time application phase, the 
position of the unknown receiver is assumed to be the 
grid point whose signature most closely resembles the 
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q

measurement vector obtained by the receiver at that 
moment. Mostly an N-Dimensional Euclidean distance 
based minimization scheme is used to determine the 
closest neighbor. But later actual images such as the spa-
tial power spectrum [16] and the power delay profile [17] 
were used as the finger print. This gave rise to image 
matching techniques or earth mover distance (EMD) 
being used for finger print matching, instead of previ-
ously used technique of minimizing the N-Dimensional 
Euclidean distance. This resulted in greater positioning 
accuracy in hazardous non-LoS environments with as 
few as two or even a single transmitter depending on the 
reliability of the finger print. The underlying logic is that 
any transmitter to receiver path and its surrounding en-
vironment which constitutes the indoor channel for the 
transmitter to receiver network is unique. The more in-
formation we are able to capture from the environment 
and insert as data input to our fingerprint the more reli-
able it becomes. Thus what we present as the resultant 
pseudo-spectrum generated as output from a MUSIC 
algorithm can actually be thought as the “ultimate finger 
print” for radio map construction as it is an improved 
version (with the noise removed) of the power delay pro-
file. 

The super resolution techniques introduced in this pa-
per have shown tremendous versatility under strenuous 
conditions with each emerging as the leader in different 
scenarios. This paper presents valuable insight into the 
capabilities of the super resolution algorithms to yield 
satisfactory results in the most hazardous environments 
as well as limitations of each technique under varied cir-
cumstances. It is an extensive comparative analysis of 
the TD-MUSIC, FD-MUSIC and FD-EV algorithms un-
der variety of conditions and constraints.  

We show how the eigen value de-weighting in the 
FD-EV method can be utilized to overcome erroneous 
estimations of signal subspace dimensions in cases where 
the dimensions are under estimated. This result is of 
great practical significance considering the limitation in 
data samples and the fact that noise under practical cir-
cumstances tends to have a certain degree of color at 
times. Eigen value de-weighting resurfaces the local 
peaks which were submerged in the noise floor when the 
MUSIC algorithms were used. This relaxes the prerequi-
site for precise knowledge of signal subspace dimensions 
prior to time delay estimation. 

The relatively higher noise immunity of the TD-MUS- 
IC algorithm compared to its frequency domain counter-
parts is then demonstrated by the relative rise of noise 
floors in the pseudo-spectrums as SNR is lowered. This 
makes TD-MUSIC the prime candidate for use in loca-
tion based finger printing techniques in highly dynamic 
noisy non-LoS environments.  

The bandwidth versatility of the TD-MUSIC algo-
rithm is verified. It was shown that the spectral leakage 
phenomenon of the TD-MUSIC algorithm can be used to 

our advantage. This can be done by identifying the ‘ul-
timate performer’ for the given channel conditions to 
generate the pseudo-spectrum for time delay estimation 
or location based finger print construction.  

The higher resolution capability of the TD-MUSIC 
algorithm is demonstrated. As indoor environments tend 
to have extremely closely spaced dominant multi-paths 
which can’t be considered as noise path, separation ca-
pability of the TD-MUSIC algorithm has tremendous 
implications. 

The Estimation of Signal Parameters via Rotational 
Invariance Techniques (ESPIRIT) algorithm is intro-
duced as an alternate to the peak detection based ap-
proaches presented earlier. Versatility of this method is 
maintained by not reusing a single data sample from the 
first data vector to form the second data vector thus the 
spirit of the traditional ESPIRIT algorithm was main-
tained. 

Significance of these techniques is that they provide 
the means for accurate geolocation even in the most haz-
ardous indoor environment where GPS is unusable. In 
addition we have laid foundations for obtaining the ulti-
mate fingerprint that can be used in Non-LOS conditions 
heavily prevalent in indoor environments. It can be ob-
served that the resultant pseudo-spectrum with the abun-
dance of information it carries about the environment 
makes it the prime candidate for location based finger-
printing. 

The basic structure of the paper is as follows. In Sec-
tion 2 the theoretical background of the three algorithms 
under discussion is introduced. Third section with three 
subsections focuses on: the impact of erroneous estima-
tion of signal subspace dimensions on the resultant 
pseudo-spectrums; comparison of performances under 
low SNR conditions to identify which method has better 
noise immunity; the bandwidth effect and presents the 
“spectral leakage phenomena” present in the TD-MUSIC 
algorithm; the effect path separation and resolvability of 
each technique. Fourth section focuses on an alternate 
approach for time delay estimation by introducing a ro-
bust version of the ESPIRIT algorithm that can be used 
for time delay estimation. Finally the paper ends with 
conclusions drawn from the above analysis. 
 
2. Theoretical Background 
 
Here we analyze the theoretical foundations of the three 
super resolution algorithms in consideration. Consider 
the qth realization for the received signal under mul-
ti-path and AWGN conditions: 

     1

Mq q
m mm

y n s n w 


   n       (1) 

For n = 1,…,N.  
It is assumed that path delays in adjacent snapshots 

(realizations) or diversity branches remain unchanged. 
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q

2.1. Time Domain Multiple Signal Classification 
(TD-MUSIC) Algorithm 

 
Equation (1) can be represented in matrix form for a time 
domain sample window of length N as: 

q qy = Sα + w                 (2) 

where 

1
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where the time domain generalized signal vector is de-
fined a 

 1( ) (1 ) ( )
T

i N i in s s Ns        

As can be noticed the signal vector 1( )i Ns n    is a 

time shifted version of the original signal with the time 
shift corresponding to the time delays. Then the auto 
correlation matrix  is formulated for the received 

signal y(n): 
yyR

2
yy w  T

N NR SPS I             (3) 

where 2Tq q
wE    w w I  and

Tq qE     P  , 

where E[.] is the expectation operator. 
Matrix P is of rank M and positive definite and sym-

metric and theoretically of Toeplitz form. Thus for 
 :N M

 2 2

1 1

M N
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1
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T
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    R v v v v

 v v  

Next eigen decomposition is performed on the auto 
correlation matrix. Now the M Principle eigen vectors 
will correspond to the signal subspace where as the eigen 
vectors corresponding to the smallest N - M eigen values 
span the noise subspace. 

The estimated dimension of the signal subspace is 
used for subspace separation based on the magnitudes of 
the Eigen value spread. The orthogonality between the 
generalized signal vector or the “steering vector” s

 
n   and the noise subspace UN is used to evaluate 

the objective function: 

 
   

1
TD MUSIC T T

N N

F
s n s n


 

 
 U U

       (4) 

 1 .N M N U v v  

The peaks of the “Pseudo-Spectru ” generated by 
ev

p

m
aluation of (2) correspond to the time delays of each 

multi-path. It can be noted from the equations that cor-
rect estimation of signal subspace dimensions is para-
mount for the MUSIC algorithms. 

For the proper implementation of the TD-MUSIC al-
gorithm for impulse radio UWB system or any other 
pulse delay estimation based system the time domain 
window or the data matrix length should be selected such 
that: 

d wl l l                     (5) 

where  

and 

When the steering vector is shifted above the upper 
bo

 

 ,dDelay spread l  

,wWindow length l  

. pPulse width l  

und specified by (5) the pulse gets clipped as shown in 
Figure 1. As it is clipped further the numerator of objec-
tive function defined in (4) tends to zero. This in turn 
produces a pseudo-spectrum which exponentially rises to 
infinity as depicted in Figure 2. Even though the peaks 
 

 

Figure 1. Over shifting of the TD-MUSIC steering vector. 
 

 

Figure 2. Pseudo-Spectrums of TD-MUSIC and FD-MUSIC
algorithms when steering vector for TD-MUSIC algorithm 
is shifted over the upper bound. 

 

where 
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e data 
ect

Following similar analysis as was done for TD-MUSIC 
algorithm with the only difference being that th
is do

that correspond to the multi-paths are produced by the 
TD-MUSIC algorithm at correct locations, for delay 
values above the upper bound specified by (5) the mag-
nitude of the pseudo-spectrum rapidly rises to infinity 
thereby making the local peaks negligible. Therefore the 
window length should be selected according to the con-
dition specified in (5). Cyclic wraparound for the steer-
ing vector is not possible as it creates a false sense of 
periodicity as well as gives rise to initial ambiguity 
problems similar to the ones present in GPS systems. 
 
2.2. Frequency Domain Multiple Signal 

Classification (FD-MUSIC) Algorithm 
 
By considering the Fourier transform of (1) as th

or: v

     2

1
m

M j fq q
mm

Y f S f e w f  


       (6) 

e analysis 
ne in the frequency domain we can define the steer-

ing vector and objective function as below for the FD- 
MUSIC algorithm: 
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       (7) 

 
2.3. Frequency Domain Eigen Value (FD-EV) 

Method 

m, 
n e de-weighting was first suggested in [18] 

 
To r spurious nature of the pseudo-spectrueduce the 

igen value a
for the evaluation of the objective function as given 
below: 

 
   1

1
FDF 

1
EV

H N H
i k k ik M

k
s v v s  

  
 

It is worthwhile to mention that for the first ti
eigen value de-weighting process was identified to have 
an 

     (8) 

me the 

additional benefit under our study. It provided means 
of correctly resolving all multipaths for cases where the 
number of signal subspace dimensions was underesti-
mated. Detailed analysis of results will appear in later 
sections. Figure 3 summarizes the basic steps involved 
in the procedure. 

 

Figure 3. Flow chart of basic super resolution TOA estima-
tion algorithm. 

 

trums’ as 
s as well 

 the “actual shape” of the pseudo-spectrum is put under 

3. Results of the Behavioral Analysis 
 
The analysis relies on the use of ‘Pseudo-Spec
the final output. The placement of the local peak
as
scrutiny. This enables even the minute changes in shape 
of the pseudo-spectrum to be captured under changes in 
certain variables. In practical applications even when the 
theoretical peaks are placed correctly due to the pseu-
do-spectrum shape not being pronounced enough at the 
local peaks, obtaining the local maxima in a peak detec-
tion process maybe tedious and error prone. In addition 
resultant pseudo-spectrums are to be explored as possible 
location based fingerprints for radio map construction. 
This places even more importance on shape of the 
pseudo-spectrum than if we were to utilize it as a mere 
time delay estimation tool. Normalization was done as 
below for comparative analysis among the algorithms. 
By defining the normalization as below it is ensured that 
no shape deformation takes place due to normalization. 

   
 maxNORM

F
F

F






             (9) 

 
3.1. Impact of Erroneous Estimat

Dimensions 

olut is the number of multi-path compo-
ents (M). Theoretically ‘M’ is obtained via the ACM. 

ion of Subspace 

 
A critical parameter in TOA estimation using super res-

ion techniques 
n
The eigen decomposition of yyR  yields an Eigen spread 

of N eigen values. From these the smallest (N – M) eigen 

values are all equal to 2
w , th ise power spectral den-

sity. The larger M eigen values correspond to the number 
of signal multipath components, thus enabling us to sep-
arate the signal eigen vectors from the noise eigen vec-
tors. In practice when a limited number of data samples 
are available, and the noise has a certain degree of color, 
the noise eigen values tend to be all different, making it 
difficult to obtain M easily using the above approach. 

e no
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ria 
sp

Therefore researchers have looked for alternate meth-
ods to determine M with better accuracy. For example 
the Rissanen minimum descriptive length (MDL) crite

ecified in [19] is such a method. The MDL criterion 
for estimation of ‘M’ is given by 
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 0 1i i L   
ion matrix are in
etermined by the v

,  the eigen vales of the auto 

correlat  descending order. The value of 

R conditi

ation 
of

e dimensions are underestimated as two. 
D

tions. What was most interesting to 
no

addition for scenarios where the signal subspace dimen-

M is d alue [0, 1]k L   which mi-

nimizes the MDL. This can be computationally extensive 
and moreover does not guarantee 100% accuracy.  

Given sound bandwidth and SN ons the FD- 
EV method is able to resolve all multi-paths correctly 
even in case where there is an erroneous underestim

 signal subspace dimensions. This relaxes the accuracy 
requirement for estimation of M considerably for most 
practical scenarios. In addition this can be used as a 
check to verify whether the estimation of M was done 
properly prior to running the MUSIC algorithms. In our 
simulation we used a case where 5 dominant signal paths 
are present at equi-distances. This was done under sound 
bandwidth (above 4 GHz) and SNR (above 5 dB) condi-
tions. It is important to note that we have assumed the 
minimum separation between two dominant multi-paths 
to be 0.4 ns for a pulse width of roughly 1 ns. The versa-
tility of each method with respect to noise, spectral 
leakage, bandwidth, and path separation is analyzed in 
later sections. 

As illustrated in Figure 4 the MUSIC algorithms fails 
to resolve the five dominant multi-paths present when 
signal subspac

ue to the eigen value de-weighting in the FD-EV me-
thod; the ‘submerged local peaks of the pseudo-spectrum 
corresponding to the dominant multi-paths resurface 
above the noise floor’. The impact of estimated signal 
subspace dimensions on the obtained ‘delay profile sig-
nature’ are further highlighted in Figures 5-7 where 
pseudo-spectrum changes for each method is mapped 
separately for variation of signal subspace dimensions 
from zero to five. 

As expected only the FD-EV method pseudo-spectrum 
was not affected considerably by the signal subspace 
dimension fluctua

te was that FD-EV was able to resolve multipaths to a 
reasonable degree of accuracy even without a subspace 
separation. As the SNR, bandwidth and dimensions were 
lowered, the accuracy of the peak locations declined. In 

sions were over estimated from 5 to 100 (for same chan-
nel conditions) all methods were able to identify five 
dominant paths correctly. Yet the MUSIC algorithms 
showed no signs of pseudo-spectrum shape changes or peak 
location fluctuations as the signal subspace dimensions 
 

 

Figure 4. Comparison of normalized pseudo-spectrums 
when number of signal vectors is under estimated as 2. (For 
sound BW and SNR conditions). 
 

 

Figure 5. Variation of normalized pseudo-spectrums for 
FD-MUSIC algorithm when signal subspace dimensions are 
varied from 0 to 5. 
 

 

Figure 6. Variation of normalized pseudo-spectrums for 
FD-EV algorithm when signal subspace dimensions are 
varied from 0 to 5. 
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Figure 7. Variation of normalized pseudo-spectrums for
TD-MUSIC algorithm when signal subspace dimensions are 
varied from 0 to 5. 
 

 

were increased over 5. In fact the normalized MUSIC 
algorithms pseudo-spectrums were near identical under 
the said variations. The FD-EV method however dis-
played a shape and peak placement fluctuation (see Fig-
ure 8). It can further be stated that this fluctuation is 
similar to the random variations displayed by the FD-EV 
method in Figure 10 when signal sub space dimensions 
were under estimated. The claim that the eigen value 
de-weighting renders the FD-EV method unable to co-
herently respond to signal subspace dimension variations 
is further reinforced. Sound bandwidth and SNR condi-
tions were maintained to isolate variations occurring due

oise 

sed systems the 
ise separation capability is 

an accurate multi path profile of 
e transmitter to receiver channel. The noise maybe the 

ec-
tiv

 
to signal subspace dimension variations. 
 
3.2. Impact of N
 
The impact SNR conditions have on the pseudo-spectrum 
‘shape’ and ability of the algorithm to resolve the mul-
ti-paths under low SNR conditions is a measurement of 
the method’s ‘noise immunity’. Noise immunity be-
comes the underlying criterion for selection if we were to 
use less expensive signaling techniques such as ultra 
sound or audible sound for positioning applications. For 
example it is stated in [14] that broadband as well as 
narrowband ultrasound positioning systems display poor 
performance under ultrasonic noise which occurs due to 
people’s everyday actions as they employ simple corre-
lator based techniques for time of flight estimation.  

On the other hand even for UWB ba
signal processing tool’s no
essential for generating 
th
result of interfering dynamic scatterers present at the 
real-time application stage which were absent during the 
calibration stage of a location based fingerprinting posi-
tioning system. The accurate multi-path profile in turn 
can be used as the most accurate means of obtaining a 
‘location based fingerprint’ for localization on a radio 
map for non-LoS scenarios. First we will consider (in 

Figure 9) a pseudo-spectrum obtained at good SNR 
(around 10 dB) as a control for comparison. In addition 
good bandwidth (above 4 GHz) and correct estimation of 
signal subspace dimensions (= 5) are assumed.  

Now the SNR is lowered to 1 dB and -5 dB resp
ely in Figures 10 and 11. As can be observed the rela-

tive rise in the noise floor in the frequency domain meth-
ods verifies the better noise immunity of the TD-MUSIC 
 

 

Figure 8. Variation of normalized pseudo-spectrums for 
FD-EV algorithm when signal subspace dimensions are 
varied from 5 to 100. 
 

 

Figure 9. Comparison of pseudo-spectrums for SNR = 10 
dB. 
 

 

 Figure 10. Comparison of pseudo-spectrums for SNR = 1
dB. 
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Figure 11. Comparison of pseudo-spectrums for SNR = –5 
dB. 
 

tion error prone, but also shifts the local peaks to 
incorrect locations. Thus making TD-MUSIC the prime 
candidate for high noise-low cost and Non-LOS location 
based finger printing applications. 
 
3.3. Impact of Spectral Leakage and Bandwidth 
 
The versatility of each algorithm under varying effective 
channel bandwidth above noise floor was then tested. 
Figures 12-14 illustrate the shape deformation of the 
respective pseudo-spectrums when the bandwidth is var-
ied. As can be noted from Figure 12, the TD-MUSIC

e 2 GHz; and is able to resolve all five paths and 
stimate time delays accurately even under bandwidths 

for bandwidths below 
 GHz as illustrated in Figure 14. This clearly illustrates 

 
 

algorithm. The relative rise in the noise floor not only 
makes the local peaks less pronounced thus making peak 
detec

 
algorithm under goes hardly any shape deformation 
abov
e
below 2 GHz. Whereas the FD-MUSIC algorithm is only 
able to accurately resolve the multi-paths above a band-
width of 3 GHz, even then it places the local peaks in-
correctly as shown in Figure 13. The FD-EV method 
fares the worst when bandwidth is lowered as it is unable 
to resolve the multipaths correctly 
5
the bandwidth versatility of the TD-MUSIC algorithm. It
an clearly be observed how the local peaks become lessc

and less pronounced for the frequency domain methods 
as bandwidth is lowered. 

Next in our analysis the steering vector   s n   

pulse spread of the TD-MUSIC algorithms was varied. 
The shape deformations of the resultant pseudo-spectrums 
generated were analyzed. The algorithm which utilizes a 
steering vector whose pulse spread is varied by a (+/–) 
‘x’ amount to evaluate the objective function defined in 
(4) was tagged as the (+/–: x) deviant of the TD-MUSIC 
algorithm in our terminology.  

It was observed for low bandwidths below 1.5 GHz 
for each channel condition there exists an ‘ultimate per-
former’ that is not the original TD-MUSIC algorithm but 
a positive deviant of the algorithm. For each channel 

 

Figure 12. Variation of normalized pseudo-spectrums for 
TD-MUSIC algorithm under bandwidth change. 
 

 

Figure 13. Variation of normalized pseudo-spectrums for
FD-MUSIC algorithm under bandwidth change. 

 

 

 

Figure 14. Variation of normalized pseudo-spectrums for 
FD-EV algorithm under bandwidth change. 
 
condition, there exists a modified version of the steer-
ing vector, which best replicates the transmitted signal 
that was assumed to have been sent according to the 
TD- MUSIC algorithm’s point of view due to the spec-
tral leakage effect. When the SNR is lowered or the 
signal subspace dimensions are erroneously estimated 
this behavior becomes even more apparent. This phe-
nomena tagged the “Spectral leakage effect” exists due  
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to noise leakage in the subspace separation phase. The 
leaked noise is accounted as part of the signal by the 
TD-MUSIC algorithm thereby expecting the transmit-
ted signal to be a deviated version of the actual signal 
that was sent. 

This behavior can be utilized to our advantage as for 
bandwidth below 1.5 GHz the (+) deviants of the TD- 
MUSIC algorithm actually outperforms the original 
TD-MUSIC algorithm. In addition it was observed ear-
lier that for this bandwidth range the frequency domain 
methods yield erroneous results. This is verified by Fig-
ure 15 where it can clearly be seen that the (+2) deviant 
of the TD-MUSIC algorithm not only outperforms its 
frequency domain counterparts but also the original

nd is one of the under-
tion technique 

e  

 
TD-MUSIC algorithm as well. 
 

.4. Impact Due to Path Separation 3
 
A key criterion to be considered when determining the 
performance of any multi-path resolution techniques is 
its path resolvability itself. There can be many ap-
proaches to determine which algorithm has the best res-
olution. Our approach is to identify which method con-
tinues to accurately resolve all multi-paths correctly 
when the path separation between two multi-paths is 
gradually decreased. To make sure other variables do not 
come into play in this study we have kept the effective 
bandwidth above the noise floor as well as the SNR itself 
at friendly levels. It was also assumed that the signal 
subspace dimensions were accurately estimated.  

It needs to be noted that an effective multi-path reso-
lution comprises of two key steps. First the algorithm 
should be able to identify the existence of two separate 
signal paths. This is ensured when there is evidence of 
two separately identifiable peaks present in the resultant 
pseudo-spectrum. Secondly for the process to be deemed 
complete the peaks must be placed at the correct loca-
tions corresponding to the relevant time delays. This is a 
fundamental criterion in resolution because as was stated 
earlier the ‘peak shift’ that takes place due to adjacent 
aths causes an estimation error ap

lying reasons for opting to a super resolu
n the first place.  i

The path separation between the second and the third 
peaks was varied for our analytical purposes. It was 
noted that for a path separation of 0.4 ns both MUSIC 
algorithms were able to resolve and place the local peaks 
correctly. The FD-EV method did resolve the paths but 
there was a slight error in the peak placement, thereby 
eliminating it as primary candidate for resolvability. Our 
earlier control experiment depicted in Figure 9 can be 
used to confirm this.  

As the path separation is lowered down to 0.3 ns it 
becomes clearly visible that the TD-MUSIC algorithm 
has the edge when it comes to path resolvability. Figure 
16 demonstrates how the TD-MUSIC algorithm is th

 

Figure 15. Comparison of pseudo-spectrums for channel 
BW of 1.25 GHz. 
 

 

Figure 16. Comparison of pseudo-spectrums for Path Se-
paration of 0.3 ns. 
 
only one able to place the peaks correctly while on top of 
resolving them. Its frequency domain counter parts are 
only able to identify the existence of two separate peaks 
yet are unable to place them accurately at the correct 
delay points.  

Finally at 0.2 ns separation it can be observed from
Figure 17 that only the TD-MUSIC algorithm is able to

TD-MUSIC method is not only able to 
entify but also place the peaks at the correct locations 

while the other two methods cannot even detect two 
paths speaks volumes about its resolution capability. It 
should be further stated that the TD-MUSIC positive 
deviants (+1) and (+2) were also able to resolve both 
peaks under these conditions. 
 
4. Espirit as a Tool for Toa Estimation 
 
In [20,21], the ESPIRIT algorithm was introduced as an 
alternative method to the MUSIC super resolution algo-
rithm, in the direction of arrival estimation problems for 
array-based systems. It has the virtue of not relying on a
peak detection process for parameter estimation. The

 
 

resolve the two closely spaced paths. The fact that even 
at this point the 
id
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Figure 17. Comparison of pseudo-spectrums for path sepa-
ration of 0.2 ns. 

 
downside is that it can only be used in an impulsive re-

onse case or if the signal spectrumsp  is flat in the fre-
ccurate 
 can’t 

enerate the visual output that is required for a delay 

quency sampling region. In addition it isn’t as a
n estimation tool as the MUSIC algorithms anda

g
profile based fingerprint. Here a versatile form of the 
ESPIRIT algorithm was suggested as a possible alterna-
tive for TOA estimation. This was done by making sure 
that the data vectors, X and Y , were constructed by 

using odd and even frequency samples from the impulse 
response spectra thus making sure none of the data sam-
ples used for X  were reused for Y

relations
. Defining the data 

vectors as such guarantees the hip specified be-
tween 

XX
C  and 

XY
C  in [21] when the original ESPI-

RIT algorithm was formulated. This is proven below. 
This confirms that the suggested method below is in the 
same spirit as the original ESPIRIT algorithm, with the 
displacement between the two identical subarray systems 
equated to a frequency shift in our method. Consider 
channel impulse response as: 

   
1pL

k kh t a t
0k

 


   


where .kj
k ka e   The Fourier transform of  h t  is  

  0
p k

kk
H f a e

1 2L j f  


  . 

Let the received signal be: 

 Δ ( )oX f n f x n  , 

and consider the number of sample points L to be even. 
Let us define the data vectors 
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and 
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Thus, the qth realization of the data vector X  can be 
written as, 
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Similarly as above data vector Y  can be 
as 

expressed 
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Thus, the two correlation matrices are of the form: 

,
Hq q H

XY

H
E     

R X Y AV V  

and 

2
Hq q H

wXX
E     

R X X V AV I  

where . Now taking the covariance: [ ]E q q HA a a

2
wXX

H

XX
  C R I V AV          (14) 

and  

  

H
XY Y

H

X
 VC R A V              (15) 

As the matrices  and a

0,21] using t ner gen Vectors of the 
Matrix Pencil 

XXC

he Ge
XYC  

alized Ei

re of the same form 

as in [2

 ,XX XYC C  e delay parameters 

can be obtained. To meet this end a total least squares 

the tim
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(TLS) approach can be used as suggested in [20]. TLS- 
ESPIRIT approach for obtaining DOA parameters can be 

used by constructing .
T

Y   Z X  

ate solution to th

This can be con-

sidered as an altern e MUSIC algorithm 
 peak detection is deemed too complex for a pa-
ter estimation based positioning system to be used 

in an LOS environment. 
 
5.
 
In this paper we have conducted an in detai vioral 

super resolution techniques under varied en-
ments to identify the strengths and limits of these 

techniques. In addition to the advantages these methods 
offer compared to the traditional time delay estimation 
techniques, it was concluded that each method has its 

ues. The eige -EV 
method enables it to resurface multi-paths that 
submerged in the noise floor when t

 used. The TD-MUSIC algorithm emerged as 
der in terms of noise immunity. The spectral lea-

kage in the TD-MUSIC algorithm 
vantage at low bandwidths to yield better result
m  stee cto

idate for use 
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