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Abstract 
 
This paper is devoted to the study of the coordinate stability in undirected networks of dynamical agents with 
time-varying transmission delay. Neighbor-based rules are adopted to realize local control strategies for 
these continuous-time autonomous agents. Sufficient and necessary conditions in terms of linear matrix ine-
qualities (LMIs) are given to guarantee the coordination of dynamical agents. Numerical simulations are 
given and demonstrate that our theoretical results are effective. 
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1. Introduction 

The coordinate stability of multi-agent systems is an im-
portant research topic in engineering applications, in-
cluding moving in formation for fleets of unmanned ae-
rial vehicles (UAVs), satellite clusters and mobile sensor 
networks. In the last few years, it has attracted more at-
tention in diverse fields in physics, biophysics, systems 
biology, applied mathematics, mechanics, computer sci-
ence and control theory. 

In the multi-agent systems, agents are usually coupled 
and interconnected with some simple rules including a 
proposed first-order/two-order dynamical model and 
nearest-neighbor rules. Using graph theory, Jadbabaie et 
al. [1] provided a theoretical explanation for the consen-
sus behavior of dynamical multi-agents. The extended 
results under some more relaxable conditions are studied 
in [2]. Saber et al. investigated a systematical framework 
of consensus problem under a variety of assumptions on 
the network topology (fixed or switching), presence or 
lack of communication delays, and directed or undirected 
network information flow [3,4]. 

In networks of the dynamic agents, time-varying de-
lays may arise naturally, e.g., because of the moving of 
the agents, the congestion of the communication chan-
nels, the asymmetry of interactions, and the finite trans-
mission speed due to the physical characteristics of the 
medium transmitting the information. The different con-
sensus protocols have been investigated in [4–6], where 
the communication delay is a fixed constant. The aver-
age-consensus problem of agents under continuous-time 

networks with both switching topology and time-delay is 
studied in [7,8], where the dynamics order of each agent 
is one. A leader-following consensus problem for multi-
ple agent with communication transmission time delays 
is discussed in [9], where the dynamics of each agent is 
second order. 

Motivated by [7] and [9], we study the coordinated 
stability of multi-agent systems where the dynamics of 
each agent is second order in this paper. The communi-
cation transmission time delays of multi-agent systems 
are varying and the interconnection graph of the agents is 
undirected. The method used in this paper is partly mo-
tivated by the work of [10,11]. 

This paper is organized as follows. In Section 2, we 
recall some properties of graph and give the problem 
formulation. Coordinated stability analysis of the agents 
under network is given in Section 3. Section 4 gives a 
simulation example. Section 5 is a conclusion. 

 
2. Preliminaries 
 
By ( , , )G V E A= , we denote an undirected graph with 
an weighted adjacency matrix [ ]A aij= , where 

1 2{ , , , }MV p p p= L is the set of nodes, E V V⊆ × is the 
set of edges. The node indexes belong to a finite index 
set { }1,2, ,M M@ L . An edge of G is denoted by 

( , )ij j ie p p= for some ,i j M∈ . The adjacency elements 

ija  are defined in following way: ije E∈  0ija⇔ >  
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and ije E∉  0ija⇔ = . Moreover, we assume 0iia =  
for all i M∈ . The set of neighbors of node ip is de-

noted by { }| ( , )i j i jN p V p p E= ∈ ∈ . 

A diagonal matrix { }1, , M M
MD d d R ×= ∈L  is a de-

gree matrix of G , whose diagonal elements 
1

M

i ij
j

d a
=

= ∑  

for i M∈ . Then the Laplacian of the weighted graph G  
is defined as L D A= − . A graph is called connected if 
there exists a path between any two distinct vertices of 
the graph. 

Lemma 1 The graph G with the Laplacian L is con-
nected if and only if rank(L)=M-1 and all eigenvalues  
of L are of positive real numbers except that only one  
eigenvalue is zero with eigenvector ( )1 1, ,1 T

M = L . 
In this paper, we consider a network of dynamical 

agents defined by a connected graph ( , , )G V E A= . The 
node set V  consists of dynamical agents ,ip i M∈ . 
The dynamics of ,ip i M∈  are identical and described 
as follows. 

    

   

i i

i i i i

i
i

i

x v
m v kv u

x
y F

v

=
= +

 
=  

 

&
&                 (1) 

where n
ix R∈  is the location vector of agent ip , 

n
iv R∈  represents its velocity vector of the i-th agent, 

n
iu R∈  is its coupling inputs and n

im R∈  is its mass. 
The control gain k  is designed later. The output map 
indicates that the state information of dynamical agents 
is measured by, for example, some remote sensor and 
transmitted to other agents in network [10]. 

Due to time-delay in communicated network, the con-
trol protocol of the dynamical agent ip  is a neighbor- 
based linear control law in the form that 

( ( ( )) ( ( )))
j i

i ij j ij i ij
p N

u a y t t y t tτ τ
∈

= − − −∑      (2) 

where iN  is the set of neighbors of agent ip  and 

ija are adjacency elements of A . The ( ) 0ij tτ ≥ , denot-
ing the communication transmission time-delay from 
agent jp  to agent ip . In the following, we assume that 
time-varying delays in (2) satisfy 

0 ( ) , ( )ij ijt d t hτ τ≤ ≤ ≤&            (3) 

or 
0 ( )ij t dτ≤ ≤                   (4) 

For 0t ≥ . That is to say, nothing has been known 
about the derivative of ( )ij tτ , where d and h are posi-

tive constant numbers. 
To focus our study in a main stream, we simply as-

sume that 1im = , the observation matrix F =  

[ ]0n n n nI × × and ( ) ( )ij t tτ τ=  for all ,i j M∈  in this pa-
per. We shall give the conditions, under which the net-
work of dynamical agents (\ref{dyn0}) achieve asymp-
totical consensus stability meaning that there exists a 
fixed position (equilibrium) x R∗ ∈ such that for i M∈  

1

lim ( ) 1

lim ( ) 0
i nt

i nt

x t x

v t

∗

→∞

×→∞

= ⊗

=
               (5) 

 
3. Coordination of Dynamic Agents with 

Time-Varying Delay 
 
We study the collective behavior of dynamical agents 
under a class of communicated networks. The collective 
behavior of dynamical agents in network can be de-
scribed by 1( ) ( ( ), , ( )) ,T T T Mn

Mx t x t x t R= ∈L ( )v t =  

1( ( ), , ( ))T T T
Mv t v tL and its communication topology is 

characterized by a connected graph G . By 

1(0) ( (0), , (0)) ,T T T
Mx x x= L 1(0) ( (0), , (0))T T T

Mv v v= L , we 
denote the initial locations and the initial velocities of the 
agents, respectively. 

3.1. Description of Dynamic Systems 

Under control protocol (2) with ( ) ( )ij t tτ τ= for all 
,i j M∈ , the dynamical equations of each agent of 

multi-agent systems are written by 

( ) ( ) ( ( ( )) ( ( )))
j i

i i ij j i
p N

t A t B a t t t tξ ξ ξ τ ξ τ
∈

= + − − −∑&  (6) 

where ( ) ( ( ), ( ))T T T
i i it x t v tξ = , i M∈  

0
0

n n n n

n n n n

I
A

kI
× ×

× ×

 
=  

 
,   

0 0
0

n n n n

n n n n

B
I

× ×

× ×

 
=  

 
. 

Furthermore, let 1( ) ( ( ), , ( ))T T T
Mt t tξ ξ ξ= L , then the 

dynamic network is of the following form 

( ) ( ) ( ) ( ) ( ( ))Mt I A t L B t tξ ξ ξ τ= ⊗ − ⊗ −&        (7) 

where L is the Laplacian associated with the connected 
graph G. Moreover, we have the following result, which 
is similar to the dynamic systems without time- delay 
[10]. 

Lemma 2 The dynamics of System 7 is stabilized if 
and only if M systems  

( ) ( ) ( ( ))i i i it A t B t tη η λ η τ= − −&         (8) 

are globally asymptotical stable, where ,i i Mλ ∈ are the 
nonnegative eigenvalues of L. 
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Proof Since the Laplacian L  of undirected graph G  
is real symmetric matrix, there exists an orthogonal ma-
trix W such that 

1

2

0 0
0 0

0 0

T

M

W LW

λ
λ

λ

 
 
 = Λ =
 
 
 

L
L

M M O M
L

 

where ,i i Mλ ∈ are the nonnegative real eigenvalues of 
Laplacian L . By the transform 2 2( )n nW Iη ξ×= ⊗ , we 
may obtain 

2 2( )[( ) ( ) ( ) ( ( ))]
  ( ) ( ) ( ( ))

n n M

M

W I I A t L B t t
I A t t t

η ξ ξ τ

η η τ
×= ⊗ ⊗ − ⊗ −

= ⊗ − Λ −

&
 

which implies that the dynamics of System 7 is stabilized 
if and only if M  Systems 8 are globally asymptotical 
stable. 

 
3.2. Main Results 

 
First, by means of linear matrix inequality (LMI), we 
study consensus stability of dynamic Systems 8 with 
certain communication transmission time-varying delay 

( )tτ . 
Theorem 1 The dynamic equations of (8) that the ei-

genvalues of Laplacian L  are zero, i.e., 0sλ =  for 
some s M∈ , achieves globally asymptotical stable if 
the control gain 0k < . 

Moreover, let 1

2

( )
( ) 1

( )
s

s n
s

t
t

t
η

η
η

 
= ⊗ 

 
, then 

lim ( ) 1
0s nt

x
tη

∗

→∞

 
= ⊗ 

 
,            (9) 

where 1 2
1(0) (0)s sx
k

η η∗ = − .  

Proof Consider the dynamic equations of (8) with 
0sλ =  for some s M∈ , it is easy to obtain their ex-

pressions as the following 
( ) ( )s st A tη η=& . 

Denoting 1

2

( )
( ) 1

( )
s

s n
s

t
t

t
η

η
η

 
= ⊗ 

 
, we have 

1 2 2 2( ) ( ),        ( ) ( )s s s st t t k tη η η η= =& & . 

Then 

2 2( ) (0)kt
s st eη η= , 2 2 1

1( ) (0) (0)
kt

s s s
et

k
η η η

−
= + . 

Since 0k < , one gets 

1 1 2
1lim ( ) (0) (0)s s st

t
k

η η η
→∞

= − , 2lim ( ) 0st
tη

→∞
= . 

which leads to the result of Theorem 1. 

In order to prove our main result relevant to the dy-
namic Systems 8 with communication transmission 
time-varying delay, we recite the following lemma [7]. 

Lemma 3 For any real differentiable vector function 
( ) nz t R∈  and any n n× symmetric positive definite 

matrix Γ , one has the following inequality 

( )

[ ( ) ( ( ))] [ ( ) ( ( ))]

( ) ( )

T

t T

t t

z t z t t z t z t t

d z s z s ds
τ

τ τ

−

− − ⋅Γ ⋅ − −

≤ Γ∫ & &
 

where ( )tτ  satisfies 0 ( )t dτ≤ ≤ . 
Theorem 2 Assume that the control gain 0k <  and 

the communication transmission time-varying delay sat-
isfies (3). If there exist symmetric positive definite ma-
trices 2 2, , n n

i i iP Q R R ×∈  such that the following condi-
tions hold: 

1 2

2 3

0i i
T
i i

Φ Φ 
< Φ Φ 

,   3 0iΦ >             (10) 

where 

1

2

2
3

( ) ( ),

(1 ) ( ) ,
1 (1 ) ,

[( ) ( )].

T
i i i i i i

T
i i i i i i i

T
i i i i i

T
i i i i i

hQ d A B R A B
PB h Q d A B R B

R h Q d B R B
d

A B P P A B

λ λ

λ λ λ

λ

λ λ

Φ = −Ω + + − −

Φ = + − + −

Φ = + − −

Ω = − − + −

   (11) 

with properly choosing 0d ≥ , 0h ≥ . Then the origin 
of the i -th dynamic System 8 is asymptotical stable 
equilibrium point if and only if the communication net-
worked topology G is connected. 

Proof (Sufficiency) Since the undirected communica-
tion networked topology G  is connected, the eigenval-
ues iλ , 2, ,i M= L  of Laplacian L are positive num-
bers in addition to 1 0λ =  from Lemma 1. Consider the 
characteristic polynomial of iA Bλ− , 2, ,i M= L  

2( ) det( ( )) ( )
i

n
A B i is sI A B s ksλπ λ λ− = − − = − + . 

Since 0k <  and 0iλ > , it is easy to be verify that 

iA Bλ− is Hurwitz. Then there exists a symmetric posi-
tive definite matrix iP  such that 

[( ) ( )]T
i i i i iA B P P A Bλ λΩ = − − + −  is positive definite 

matrix. So (10) is always feasible for appropriate positive 
scalars h  and d . 

Take a Lyapunov function for the i -th dynamic Sys-
tem 8 as follows: 

( )

0

( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( )

tT T
i i i i i i it t

T
i i id

V t t P t s Q s ds

s d t s R t s ds

τ
η η η η

η η

−

−

= +

+ + + +

∫

∫ & &
 

Rewrite the i -th dynamic System 8 as the following 
equivalent form 
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( ) ( ) ( ) ( )i i i i it A B t B tη λ η λ ζ= − +&         (12) 
where ( ) ( ) ( ( ))i i it t t tζ η η τ= − − . Along the trajectory of 
the solution of System 12, we have 

0

( ) ( )[( ) ( )] ( )

[ ( ) ( ) ( ) ( )]

( ) ( ) (1 ( )) ( ( )) ( ( ))

( ) ( ) ( ) ( ) .

T T
i i i i i i i

T T T
i i i i i i i
T T
i i i i i i

T T
i i i i i id

V t t A B P P A B t

t PB t t B P t
t Q t t t t Q t t

d t R t t s R t s ds

η λ λ η

λ η ζ ζ η

η η τ η τ η τ

η η η η
−

= − + −

+ +

+ − − − −

+ − + +∫

&

&

& & & &

 

With the condition (3) and Lemma 2, we have 

2 1

( ) ( )[( ) ( )

( ) ( )] ( ) ( )[

(1 ) ( ) ] ( ) ( )

[ (1 ) ( )] ( )

( )[(1 ) ] ( )

T T
i i i i i i i

T T
i i i i i i i

T T
i i i i i i

T T
i i i i i i i
T T
i i i i i i

V t t A B P P A B hQ

d A B R A B t t PB
h Q d A B R B t t

B P h Q d B R A B t

t h Q d B R B d R t

η λ λ

λ λ η η λ

λ λ ζ ζ

λ λ λ η

ζ λ ζ−

≤ − + − +

+ − − +

+ − + − +

⋅ + − + − ⋅

− − − +

&

 

( ) 1 2

2 3

( )
( ) ( )

( )
i i iT T

i i T
i i i

t
t t

t
η

η ζ
ζ

Φ Φ   
=   Φ −Φ   

 

where , 1,2,3ij jΦ =  are defined in (10). Therefore, 
there exists a positive constant iβ  such that 

( )
( ) ( )

( )
i

i i i i
i

t
V t t

t
η

β β η
ζ

≤ − ≤ −& . 

This implies that the i -th dynamic System of 8 
achieve asymptotical stable for 0 ( )t dτ≤ ≤  and 

0 ( )t hτ≤ ≤& . 
(Necessary) Since the origin of the dynamic Systems 8 

is asymptotical stable equilibrium point, the eigenvalue 
of 

iA Bλ− have negative real-parts except that at most 
n eigenvalues are zero. Considering the Laplacian 
L and the characteristic polynomial of iA Bλ− , one 
may get 1 0λ =  and the eigenvalues iλ , 2, ,i M= L of 
Laplacian L  are positive numbers. By Lemma 1, we 
may get the communication networked topology is con-
nected.  

Due to the reversible orthogonal transform, the M  
dynamic Systems 8 are equivalent to the System 7. So 
we get the same result of stability for the System 7. 

Theorem 3 Assume that the graph G  is connected, 
the control gain 0k <  and the communication trans-
mission time-varying delay satisfies (3). If there exist 
symmetric positive definite matrices 2 2, , n n

i i iP Q R R ×∈  
such that the following linear matrix inequalities hold 

21 22 2 2 2 2

22 23 2 2 2 2

2 2 2 2 1 2

2 2 2 2 2 3

0 0
0 0

0
0 0
0 0

n n n n
T

n n n n

n n n n M M
T

n n n n M M

× ×

× ×

× ×

× ×

Φ Φ 
 Φ −Φ 
  <
 

Φ Φ 
 Φ −Φ 

L
L

M M O M M
L
L

, 

3 0iΦ >                   (13) 

with properly choosing positive scalars h  and d , 
where ijΦ  ( { }2, ,i M∈ L and 1,2,3j = ) are defined in 
(11). Then the dynamic System 7 achieves globally 
asymptotical consensus stability if and only if the com-
munication networked topology G  is connected. 

Moreover,  

lim ( ) 1 1
0M nt

t
ξ

ξ
∗

→∞

 
= ⊗ ⊗ 

 
,         (14) 

where 
1

1 1[ (0) (0)] 1
M

i i n
i

x v
M k

ξ ∗

=

= − ⊗∑ . 

Proof By Lemma 1, the networked topology G  is 
connected if and only if the real eigenvalues of Laplacian 
L with 

1 2 30 Mλ λ λ λ= < ≤ ≤ ≤L . Under the given 
conditions, the M  dynamic Systems 8 achieve globally 
asymptotical stable if and only if the communication 
networked topology G  is connected from Theorem 1 
and Theorem 2. 

Since the transform 2 2( )n nW Iη ξ×= ⊗  is reversible 
orthogonal, the M  dynamic Systems 8 are equivalent to 
System 7. Hence, for appropriate positive scalars h  and 
d , one can conclude that the System 7 achieves globally 
asymptotically consensus stability if and only if the 
communication networked topology G  is connected. 
And the allowable h  and d  can be obtained by the 
feasible linear matrix Inequality 13. 

As the origin of the dynamic Systems of 8 for 
{ }2, ,i M∈ L  is asymptotically stable equilibrium, we 

have ( )2 1 2 ( 1)( ) ( ) 0T T
M n Mt tη η × −→L . 

Due to the fact that one eigenvalue of Laplacian is 
zero with eigenvector ( )1 1, ,1 T

M = L , one may get 

1

1 1

1 11
1

T
M

M

W
WM

−

−

 
=  

 
 

with 1 1 11 1M MW − −= − , 1 1 1 1 11 1T T
M M MW W MI − − −= − . 

By Lemma \ref{lem1} and Lemma 2, one gets 

( )

( )

2 1 2 2 1

1 2 2 2

1, , (1 )

1         ( ) , ,

TT T
M M n n

TT T T
n n M

I
M

W I
M

η η ξ

ξ ξ

− ⊗

⊗

= ⊗

+ ⊗

L

L
 

Then, we can obtain that 

1

1 M

i m
mM

ξ ξ ξ
=

= = ∑ , { }2, ,i M∈ L . 

One can get 1
1

1 M

i
iM

η ξ
=

= ∑  by Lemma 1. Then 

from Theorem 1, it is hold that 
1

1
lim ( )

0
n

t
t xη ∗

→∞

 
=  

 
, with 
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11 12
1

1 1 1(0) (0) [ (0) (0)]
M

i i
i

x x v
k kM

η η∗

=

= − = −∑ . 

Therefore, we can obtain 

1

1 1lim ( ) [ (0) (0)] 1
M

i i i nt i
x t x v

M k→∞
=

= − ⊗∑ , 

1lim ( ) 0i nt
v t ×→∞

=  

The proof of the Theorem is completed. 
Remark For any 0h ≥ , the maximal allowable d  

guaranteeing average consensus in Theorem 2 and/or 
Theorem 3 can be obtained from the following optimiza-
tion problem: 

Maximize d  
s.t. 0 1h≤ < , 0, 0, 0i i iP Q R> > >  and (13). 
This optimization problem can be solved by using the 

GEVP solver in Matlab’s Control Systems Toolbox [5]. 
Considering the matrices in the linear matrix Inequal-

ity 13 are continuous for 0iλ > , { }2, ,i M∈ L , we may 
obtain the following corollary for estimation of conser-
vative upper bound h  and d . 

Corollary 1. Assume that the control gain 0k <  and 
the communication time-varying delay satisfies (3). If 
there exist symmetric positive definite matrices 

2 2, , n n
i i iP Q R R ×∈  such that the following linear matrix 

inequalities hold 

21 22 2 2 2 2

22 23 2 2 2 2

2 2 2 2 1 2

2 2 2 2 2 3

0 0
0 0

0
0 0
0 0

n n n n
T

n n n n

n n n n M M
T

n n n n M M

× ×

× ×

× ×

× ×

Φ Φ 
 Φ −Φ  <
 Φ Φ
 

Φ −Φ 

, 

23 0Φ >      3 0MΦ >             (15) 
with properly choosing 0d ≥ and 0h ≥ , where 

2 jΦ , 

MjΦ  ( 1, 2,3j = ) are defined in (13). Then the dynamic 
System 7 achieves globally asymptotical consensus sta-
bility if and only if the communication networked topol-
ogy G  is connected. 

When time-varying delays satisfy (4), that is to say, 
nothing has been known about the derivative of ( )tτ . 
For Systems 8, one may construct the following Lyapu- 
nov function as 

0
( ) ( ) ( ) ( ) ( )

tT T
i i i i i i id t

W t t S t s R s dsd
θ

η η η η θ
− +

= + ∫ ∫ & & . 

Similar to the proof of Theorem 2 and Theorem 3, it is 
easy to get the following results and we may omit their 
proof here. 

Theorem 4 Assume that the control gain 0k <  and 
the communication transmission time-varying delay sat-
isfies (4). If there exist symmetric positive definite ma-
trices 2 2, n n

i iS T R ×∈  such that the following conditions 
hold: 

1 2

2 3

0i i
T
i i

Ψ Ψ 
< Ψ Ψ 

,   3 0iΨ >         (16) 

where 

1

2

( ) ( ),

( ) ,

T
i i i i i

T
i i i i i i

d A B T A B

S B d A B T B

λ λ

λ λ λ

Ψ = −Γ + − −

Ψ = + −
 

2
3

1 ,T
i i i iT d B T B

d
λΨ = −  

[( ) ( )].T
i i i i iA B S S A Bλ λΓ = − − + −     (17) 

with properly choosing 0d ≥ . Then the origin of the 
i -th dynamic System of 8 is asymptotical stable equilib-
rium point if and only if the communication networked 
topology G is connected. 

Theorem 5 Assume that the graph G  is connected, 
the control gain 0k <  and the communication trans-
mission time-varying delay satisfies (4). If there exist 
symmetric positive definite matrices 2 2, n n

i iS T R ×∈  such 
that the following linear matrix inequalities hold 

21 22 2 2 2 2

22 23 2 2 2 2

2 2 2 2 1 2

2 2 2 2 2 3

0 0
0 0

0
0 0
0 0

n n n n
T

n n n n

n n n n M M
T

n n n n M M

× ×

× ×

× ×

× ×

Ψ Ψ 
 Ψ −Ψ 
  <
 

Ψ Ψ 
 Ψ −Ψ 

L
L

M M O M M
L
L

, 

3 0iΨ >                    (18) 

with properly choosing positive scalars d , where ijΨ  

( { }2, ,i M∈ L and 1,2,3j = ) are defined in (17). 
Then the dynamic System 7 achieves globally asymp-

totical consensus stability if and only if the communica-
tion networked topology G  is connected. 

Moreover,  

lim ( ) 1 1
0M nt

t
ξ

ξ
∗

→∞

 
= ⊗ ⊗ 

 
, 

where 
1

1 1[ (0) (0)] 1
M

i i n
i

x v
M k

ξ ∗

=

= − ⊗∑ . 

 

 
Figure 1 Undirected connected graph G  with five nodes. 
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Figure 2. State trajectories of the agents in G . 

 

 
Figure 3. Velocity trajectories of the agents in G . 

 
4. Simulations 

 
Numerical simulations will be given to illustrate the 
theoretical results obtained in the previous section. Con-
sider five dynamic agents under network described in 
Figure 1. 

Here we consider the dynamical equations (\ref{dyn0}) 
with 2n = . By employing the LMI Toolbox in Matlab, 
one gets that the maximum time-delay bound is 

2.1152d =  when 0h = , i.e. the value of time-delay is 
fixed. When 0.5h = , the maximum delay bound is 

1.2799d = . And we may get the corresponding feasible 
solutions in the following. 

2 2
1

2 2

1.4978 0.2519
0.2519 0.9299

I I
P

I I
 

=  
 

 2 2
2

2 2

1.3969 0.2175
0.2175 0.6666

I I
P

I I
 

=  
 

 

2 2
3

2 2

1.2385 0.0985
0.0985 0.2196

I I
P

I I
 

=  
 

2 2
4

2 2

1.6896 0.5056
0.2056 0.2557

I I
P

I I
 

=  
 

 

2 2
1

2 2

0.1784 0.0334
0.0334 0.6915

I I
Q

I I
 

=  
 

2 2
2

2 2

0.3766 0.0488
0.0488 0.6925

I I
Q

I I
 

=  
 

 

2 2
3

2 2

2.0632 0.1171
0.1171 0.0099

I I
R

I I
 

=  
 

2 2
4

2 2

2.4174 0.1864
0.1864 0.0471

I I
R

I I
 

=  
 

2 2
3

2 2

0.2463 0.0197
0.0197 0.3858

I I
Q

I I
− 

=  − 
2 2

4
2 2

0.8508 0.1547
0.1547 0.0829

I I
Q

I I
− 

=  − 

2 2
1

2 2

1.4655 0.0197
0.0197 0.1397

I I
R

I I
− 

=  − 

2 2
2

2 2

1.9895 0.0281
0.0281 0.0714

I I
R

I I
− 

=  − 
 

The agents have initial conditions ( )1( ) 21 2 Tx θ = − , 

( )2( ) 8 10 Tx θ = − − , ( )3( ) 15 4 Tx θ = − , ( )4( ) 12 2 Tx θ = , 

( )5( ) 25 25 Tx θ = , ( )1( ) 12 13 Tv θ = − , ( )2( ) 12 5 Tv θ = − , 

( )3( ) 7 18 Tv θ = , ( )4( ) 15 25 Tv θ = − , ( )5( ) 20 15 Tv θ = −  for 
[ 1, 0]θ ∈ − . The eigenvalues of the Laplacian matrix are 

1 0λ = , 2 0.8299λ = , 3 2.6889λ = , 4 4λ = , 

5 4.4812λ = . Figure 2 and Figure 3 show the state and 
velocity trajectories of the multi-agent systems with 
time-varying delay ( ) 0.2 sint tτ = . 

 
5. Conclusions 

 
In this paper, we discuss the coordinate stability of 
multi-agent systems where the agent is described by dou-
ble-integrator with time-varying transmission delay in 
their communicated network. Two different time-varying 
delays are considered for dynamical systems. We firstly 
decompose the multi-agent systems into $M$ dynamical 
systems by certain transformation of state space under the 
condition of undirected connected communication net-
work. By the methods of linear matrix inequality (LMI), 
we study each dynamical system with time-varying delay 
and show that the agents of multi-agent systems can 
achieve globally asymptotical consensus stability. Mean- 
while, the upper bound parameters of time-varying delay 
can be estimated by checking solutions of LMI. Numerical 
simulation results are provided and demonstrate the effec-
tiveness of our theoretical results. 
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