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Abstract 
In this work, the elastic cross section is calculated at energies above the Cou-
lomb barrier for 3He + 58Ni using a Woods-Saxon potential. The solutions of 
the radial Schrödinger equations are calculated numerically and they are in-
troduced in the S matrix, after which the cross section is obtained. The para-
meters in the potential are adjusted to satisfy known experimental data. 
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1. Introduction 

We have studied the scattering of nuclei by helium and nickel atoms using the 
Schrödinger equation at energies up to 35 MeV for the reaction 3He + 58Ni using 
a radial Woods-Saxon potential. We treated the Schrödinger equation numeri-
cally, for the case of the Woods-Saxon potential [1]; the parameters for this po-
tential were adjusted to coincide with known experimental data. 

The value of chi-squared was minimized by using a theoretical model and the 
experimental data from Fujisawa et al. [2]. The parameters thus obtained are 
used in the Woods-Saxon potential and we compare the results with known ex-
perimental data. 

Recently we have results at low energies for the reaction 3,4,6He + 58Ni [2] [3] [4] 
[5]. We compare our results for this reaction and show that the Woods-Saxon 
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potential agrees with known experimental data. 
This paper is divided into four sections as follows. In Section 2, we briefly de-

scribe the setup; Section 2.1 is dedicated to obtaining the Woods-Saxon potential. 
In Section 2.2, we discuss the elastic cross section for the scattering of helium by 
nickel atoms. In Section 3, the obtained results are shown. Finally, in Section 4 
we focus on the discussion of our results. 

2. Theory   

In this section we describe the procedure used to compute the Woods-Saxon 
potential produced by a point particle. We then calculate the cross section for 
the collision of two particles of mass 1,2m  and atomic number 1,2Z . Our ap-
proach to this problem is numerical, and we make the assumption that the inte-
raction of the incident particle with the rest atom can be accounted for by the 
effective Woods-Saxon potential which we calculate below. We minimize the 
value of chi squared from the experimental 3He + 58Ni data [2] and the parame-
ters we obtain are shown in Table 1 and Table 2. 

2.1. The Woods-Saxon Potential  

The Woods-Saxon potential is a mean field potential for the nucleons (protons 
and neutrons) inside the atomic nucleus, which is used to describe approx-
imately the forces applied on each nucleon, in the nuclear shell model for the 
structure of the nucleus. 

The standard Woods-Saxon potential [1], as a function of the distance *r  
from the nuclear center, is defined by: 

( )* 0
*

,
1 exp

V
V r a R

r R
a

′ = −
 −

+  
 

�                    (1) 

 
Table 1. Parameters obtained for the reaction 3He + 58Ni. 

E l 0V  1R  1a  0W  2R  2a  Rσ  Tσ  2 Nχ  

(MeV) up to (MeV) (fm) (fm) (MeV) (fm) (fm) (mb) (mb)  

24.15 11 174.400 1.30 0.750 17.1 1.41 0.71 1476.904 2871.663 11.95 

27.64 15 174.275 0.93 0.601 17.1 1.41 0.71 1526.071 3542.422 5.85 

34.14 13 174.500 0.94 0.75 18.6 1.41 0.73 1620.872 2695.711 2.21 

 
Table 2. Parameters obtained with the derivative in the complex term of the Woods-Saxon 
potential for the reaction 3He + 58Ni. 

E l 0V  1R  1a  0W  2R  2a  Tσ  2 Nχ  

(MeV) up to (MeV) (fm) (fm) (MeV) (fm) (fm) (mb)  

24.15 11 175.0 1.3 0.75 18.2 1.41 0.72 3277.768 17.903 

27.64 15 173.6 1.3 0.75 17.1 1.41 0.71 3046.658 5.047 

34.14 13 173.9 0.94 0.75 18.9 1.41 0.73 2804.289 1.832 
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where 0V  (with dimensions of energy, MeV) represents the potential well depth, 
a is a length representing the “surface thickness” of the nucleus, and 1 3

0R r A=  
is the nuclear radius where 0 1.25 fmr =  and A is the atomic mass number. 

It is interesting to examine the consequences of the radial effective Woods-Saxon 
potential, ( )*

WSV r , by using both real and imaginary terms in experiments such 
as scattering events. We do so in the following section, where we include the 
Coulomb interaction potential ( )CV r . The total radial effective potential used is 

( ) ( ) ( )* ,C WSV r V r V r= +                        (2) 

( ) 1,2 0 0
* *

1 2

1 2

1.44
.

1 exp 1 exp

Z V iW
V r

r r R r R
a a

= − −
   − −

+ +   
   

           (3) 

In Figure 1, we show the real and imaginary parts of the Woods-Saxon poten-
tial. 

2.2. The Schrödinger Equation with the Woods-Saxon Potential  

In this section we solve the radial Schrödinger equation using the radial potential 
(Equation (3)). The Schrödinger equation is,  

( ) ( ) ( )
2

2 ,
2

V r E
µ

 
− ∇ + Ψ = Ψ 
 

r r�                    (4) 

where 1 2

1 2

m m
m m

µ =
+

 is the reduced mass for a two-particle system, E is the  

energy and ( )V r  is the radial effective potential calculated in the previous sec-
tion. 

We introduce ( )U r , where  

( ) ( ) ( )
,

U r
r

r
Ψ = Ψ =r                         (5) 

and the Schrödinger Equation (4) is solved by the method of separation of va-
riables. For the radial component we obtain  
 

 
Figure 1. The solid line is for the Woods-Saxon potential using the parameters obtained from the Colorado group (Table 
I-a from Ref. [2]) and the dashed line is for the Coulomb potential. 
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( ) ( ) ( ) ( ) ( )2 2

12 0.l l l

l l
U r E V r U r U r
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            (6) 

The radial equation takes the final form, 

( ) ( )
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�   (7) 

The next step is to determine the set of the parameters for the Woods-Saxon 
potential. In the Table 1 and Table 2 we show the parameters obtained by mi-
nimizing the chi squared value,  

( ) ( )
( )

2

2

1
.

N
th i exp i

i exp i

σ θ σ θ
χ

σ θ=

 −
=  

∆  
∑                    (8) 

The calculations for this analysis were done using the experimental data from 
Fujisawa et al. [2]. 

In Table 1 and Table 2 we show the parameters obtained by minimizing chi 
squared and using the experimental data from Fujisawa et al. [2]. 

The numerical techniques necessary to solve the Schrödinger equation with a 
radial potential are explained in chapter 3, Equation (3.28) of Ref. [6]. The solu-
tions of lU  from Equation (7) are introduced in the S matrix (Eq. 10.58 of Ref. 
[6]), which is,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1

1 1 1

,l n n l n l n n l n
l

l n n l n l n n l n

U r r h kr U r r h kr
S

U r r h kr U r r h kr

− −
− − −

+ +
− − −

−
=

−
            (9) 

where the S matrix is evaluated in the last two points on a mesh of size δ  
( 0, , 2 , ,r nδ δ δ= � ). lU  are the solutions to the Schrödinger equation with the 
potential previously calculated and lh  are the spherical Hankel functions de-
fined in Eq. 10.52 of Ref. [6]. The scattering amplitude for a partial wave de-
composition in terms of the S matrix is,  

( ) ( ) ( )( )
0

1 2 1 cos 1 .
2 l l

l
f l P S

ik
θ θ

∞

=

= + −∑               (10) 

For states with well defined spin and isospin the elastic and total cross section 
of nucleon-nucleon scattering into a solid angle element dΩ  is given by the 
scattering amplitude ( )f θ  of the reaction 

( ) 2d ,
d

fσ θ=
Ω

                         (11) 

( )4 0 ,T Im f
k

σ π  =  
�                        (12) 

where k is the center-of-mass momentum and ( )0f �  is the forward amplitude. 
The reaction cross section is defined as the subtraction from the integral of the 
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elastic cross section from the total cross section, 

( ) ( ) ( )2
0

2 2 1 1 d .R Re S
k

σ σ θ
∞
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≡ + − − Ω∑ ∫�

�

�              (13) 

Doing the integration gives 
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The results from the calculations are shown in the next section. 

3. Elastic Cross Section  

With the analysis performed, we proceed to evaluate numerically the Equations 
(11)-(12) and (15). We compare the theoretical results with experimental data 
for elastic cross sections for elastic scattering of helium by nickel atoms [2]. This 
comparison is made explicitly in Figures 2-5. 

In Figures 2-4 the elastic cross section is analyzed for helium by nickel atoms. 
We evaluate the elastic cross section at energies from TLab = 24.15, 27.64 and 
34.14 MeV considering the radial effective Woods-Saxon potential and setting 
the parameters to adjust the experimental points (see Table 1 and Table 2). 

In Figure 5 we show the differential cross section at energies above the Cou-
lomb barrier. 

Figure 6 shows the total and reaction cross section for the interaction of he-
lium by nickel atoms. We evaluate the cross sections at energies up to  

35 MeVLabT =  considering the radial effective Woods-Saxon potential and set-
ting the parameters to adjust the experimental points (see Table 1). 
 

 
Figure 2. The differential cross section for 3He + 58Ni is plotted as a function of the angle 
at the energy of 24.15 MeV. The solid line is for the Woods-Saxon potential, the dashed 
line is with the derivative in the complex term for the Woods-Saxon potential, and the 
dashed-dot line is for the Coulomb potential. The experimental points come from [2]. 

https://doi.org/10.4236/wjnst.2020.101001


R. Arceo et al. 
 

 

DOI: 10.4236/wjnst.2020.101001 6 World Journal of Nuclear Science and Technology 
 

 
Figure 3. The differential cross section for 3He + 58Ni is plotted as a function of the angle 
at the energy of 27.64 MeV. The lines and the experimental points have the same mean-
ing as in Figure 2. 
 

 
Figure 4. The differential cross section for 3He + 58Ni is plotted as a function of the angle 
at the energy of 34.14 MeV. The lines and the experimental points have the same mean-
ing as in Figure 2. 
 

 
Figure 5. 3He + 58Ni elastic scattering for energies at the barrier Coulomb plotted as a 
function of the angular distribution. The lines are for the case of a Woods-Saxon potential. 
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Figure 6. The total and integrated elastic scattering cross section for 3He + 58Ni are plot-
ted as a function of the incident energy. The experimental points come from [2]. 

4. Conclusions  

In this work, we present a numerical solution of the radial Schrödinger equation 
using a Woods-Saxon potential. We have examined the scattering of helium 
atoms via nickel. The scattered from alpha particles via nickel atoms was per-
formed and the use of an imaginary term in the Woods-Saxon potential gives a 
better fit to the experimental data. The parameters for the Woods-Saxon poten-
tial were varied until 2χ  was minimized and they are shown in Table 1 and 
Table 2. The values obtained are better in comparison to those of the Colorado 
group (Table I-a from Ref. [2]) at the energies of 24.15, 27.64 and 34.14 MeV. 

Finally, the total cross section and integrated elastic scattering cross section 
are calculated and compared with experimental data. We obtain excellent agree-
ment with the experimental data of Fujisawa et al. (Ref. [2]) for the set of para-
meters obtained in Table 1 and Table 2. 
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