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ABSTRACT 

Mathematical frameworks of quantum theory have 
recently been adopted in cognitive and behavioral 
sciences, to explain the violations of normative deci- 
sion theory and anomalies in cognition. However, to 
date, no study has attempted to explore neural im- 
plementations of such “quantum-like” information 
processing in the brain. This study demonstrates that 
neural population coding of information with nonlin- 
ear neural response functions can account for such 
“quantum” information processing in decision-mak- 
ing and cognition. It is also shown that quantum deci- 
sion theory is a special case of more general popula- 
tion vector cording theory. Future applications of the 
present theory in the rapidly evolving field of “psy- 
chophysical neuroeconomics” are also discussed. 
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1. INTRODUCTION 

Recent years witnessed a rapid growing of the appli- 
cations of mathematical frameworks of quantum physics 
[1-3] and quantum information theory [4] in psychology, 
cognitive science, behavioral science, and economics 
[5-11]. One of the advantages of the utilization of “quan- 
tum” theoretical frameworks is that quantum probability 
theory can describe the violation of some classical pro- 
bability laws such as the law of total probability [10]. 
Although we claimed the importance of the explorations 
of possible cognitive mechanisms underlying such 
“quantum”—like behavior in human decision and cog- 
nition [7,8], no study to date addressed this issue. This 
point is important, because it is not very probable that 
quantum mechanical effects appear in the brain under 
normal physical conditions at body temperature [12]. 

We now show a simple example of the violation of 
classical probability laws in human decision making and 
cognition (corresponding to the violation of the Sure-  

thing Principle in decision theory proposed by [13]). The 
law of total probability states that  

         1 0 1 0 1 1| |P a P b P a b P b P a b  1   (1-1) 

where  P xi ( ,  ; 0,x a b i 1)   is a probability at which 
event ix occurs and  P x | yi j is a conditional probability 
of event ix given event jy ( , ;   0,y a b j  1) . 
Mathematical psychologists Tversky and colleagues ex- 
perimentally demonstrated that humans violate the law of 
total probability in their probabilistic choice (referred to 
as “disjunction effect”, [14,15]) and probability judgment 
(referred to as “conjunction fallacy”, [16]). The simplest 
quantum formalism for modeling the violation of the law 
of total probability is [9]: 
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Where   is a “quantum phase” parameterizing the de- 
gree of the violation (“quantum interference”) of the law 
of total probability (see [7,8], for more complete quan- 
tum formalism with “composite” system setting). It is to 
be noted that Eq.1-2 is obtained through “Born’s rule” in 
quantum probability theory (see [1], for a standard re- 
ference of quantum theory). 

2. POPULATION CODING THEORY OF 
QUANTUM COGNITION AND 
DECISION-MAKING 

In neuroscience of sensory and motor systems, it has 
been established that information of sensory input and 
motor output is, in many cases, encoded at the neuronal 
population level rather than individual single neuron 
level [17-20]. Let us start our current investigation into 
the neural foundation of quantum decision theory from 
this empirical observation. Suppose that (scalar) physical 
input (or output) signal (from sensory organs or to motor 
systems) activates a neuronal ensemble (a population 
vector) consisting of n neurons, even when the intensity 
(magnitude) of input/output signal is a single real scalar  
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parameter. The physical input to (or output from) the 
ensemble of n neurons (“population state vector”) can be  
expressed in a vector form as: 

 1 2, , , npx px px px         (2-1) 

where 1 is a real number which indicates the input to 
single neuron i in the neural population (ensemble) 
consisting of the n neurons. 

px

The important point here is that even when the signal 
is a (real) scalar number (e.g. time, probability, the in- 
tensity of sound and light), the corresponding input to the 
neural ensemble system is in a vector form (of which 
components are real numbers) in Eq.2-1, in mathema- 
tical terms. 

Then, the n neurons’ response vector for the neural 
population is 

 1 2 1( ), ( ), , ( ) ( , , )n n ,x f px f px f px x x     (2-2) 

where each component i    if px x (i is a positive in- 
teger no larger than n) of the vector x  is (real scalar) 
each single neuron’s response (e.g., a change in firing 
rate [Hz], the concentration of the product of induced 
biochemical reactions [nmol/L], note that ix could be 
negative) of neuron i in the neural population consisting 
of n neurons. Notably, the function f is generally non- 
linear (see standard neuroscience textbooks such as [21]). 
We can now assume that the real scalar “intensity”  
of the neuronal ensemble’s response to (a total sum of 
all the n neurons’ activations) is: 

Φ
px
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This assumption is natural in that the result of the 
neural population activity may be, for instance, an in- 
crease in the level of a specific type of some neuro- 
transmitters (e.g., glutamate, GABA, dopamine and sero- 
tonin) or hormones (cortisol, testosterone, and oxytocin) 
in the brain region containing the neural ensemble con- 
sisting of n neurons. 

Note that, as accumulating neurophysiological and psy- 
chophysical evidence suggests, this intensity of neural 
populational response may linearly correspond to sub- 
jective (or psychological) intensity of the physical 
(scalar) stimulus input [19]: 



  px k px             (2-4) 

Let us then consider two distinct types of the popu- 
lation state vectors (input or output vectors to the neural 
ensemble, note that this “state” is a state of input/output, 
not the state of neuronal responses) and and a 
linear combination of the two population state vectors 
(with real weighting coefficients  and ): 

px

c
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Here we can ask, what is the physical intensity of the 

neuronal ensemble’s response to the linearly-combined 
input (or output) state vector ? The answer is: pz
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Here we should notice that  

    1 2 1 2c cc px c py px py         (2-7) 

The reason for this inequality is that f is generally a 
non-linear function. As we will see later, the violation of 
the linear additivity of neural ensemble’s response shown 
by Eq.2-7 is the mathematical root of the “quantum in- 
terference” in human decision-making and cognition. 

For more intuitive understanding, let us assume that f 
is a power function corresponding to a psychophysical 
quantity (such as subjective probability and preference): 
   sf x  x

 

. In other words, we here assume Stevens’ 
power law in psychophysics [22]. Then, Eq.2-3 reduces 
to 

 1 2 1
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Then, the subjective quantity from the input (or output) 
state vector is (from Eq.2-4) 
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When we consider the special case of  2s   with 
setting  1k   (without losing generality, because psy- 
chophysical quantity   is in an arbitrary unit), Eq.2-9 
reduces to 

   
2

1

n

ii
px px px


        (2-10) 

Here we adopted the standard definition of the “norm” 
(length) of the vector: px  in linear algebra. In this 
case when s = 2, let us again consider a linear combi- 
nation (“superposed”) neural populational input (or out- 
put) state 1 2pz c px c py   (defined in Eq.2-5). The 
subjective quantity (with Stevens’ exponent s = 2) induced 
by this superposed state is:  
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(the last term is an inner product of and ). px py

   
   

2 22 2

1 2

1 22 c

c px c py

c c px py os

 


        (2-11) 

where   is an angle between vectors and . px py
When we put    1 ,pz P a       1 0 ,c P b2

   2

2 1 ,c P b   2
Pp ax b 1 0 , and 

 1 1

2
Pp ay b , Eq.2-11 is the same as Eq.1-2 which 
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often appears in quantum decision theory [9,10]. Taken 
together, it can be concluded that so-called “quantum de- 
cision theory” is a special case of more general nonlinear 
population coding theory of neural information (i.e., 
Eq.2-1 and 2-3) in which Stevens’ exponent is fixed at s 
= 2. When s is an integer larger than 2, there appears 
more interference terms. It should further be noted that 
the present theory removes the necessity of quantum 
physical effect (and associated complex-numbered vec- 
tors in the Hilbert space) in the human brain in explain- 
ing the seemingly “quantum-like” phenomena in human 
cognition and decision making. Also, psychophysical 
experiment demonstrated that subjective intensity of muscle 
force follows Stevens’ power law with the exponent 

  
(

  1.7s 
http://www.cis.rit.edu/people/faculty/montag/vandplite/

pages/chap_6/ch6p10.html) which is close to 2, support- 
ing our present hypothesis on human choice behavior. 

3. IMPLICATIONS OF THE PRESENT 
THEORY TO NEUROECONOMICS 
AND DECISION NEUROSCIENCE 

Rapid advances in neuroeconomics suggest the impor- 
tance of psychophysical considerations for proper the- 
ories in decision neuroscience (we can call it “psycho- 
physical neuroeconomics”, [23-26]). For instance, ano- 
malies in human decision making (i.e., deviations from 
normative decision theory or axioms in microeconomics) 
such as preference reversal over time in intertemporal 
choice has been explained by nonlinearity of subjective 
time in terms of physical time [25-28]. Therefore, future 
studies in neuroeconomics and decision neuroscience 
should incorporate the nonlinearity arising from popu- 
lation vector cording of decision parameters (e.g., utility 
function, psychological time, subjective probability, pro- 
bability weighting function), by combining neuroeco- 
nomic theory and quantum theory of cognition and de- 
cision. 
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