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Abstract 
In this paper, the existence of chaotic behavior in the single-well Duffing Os-
cillator was examined under parametric excitations using Melnikov method 
and Lyapunov exponents. The minimum and maximum values were obtained 
and the dynamical behaviors showed the intersections of manifold which was 
illustrated using the MATCAD software. This extends some results in the li-
terature. Simulation results indicate that the single-well oscillator is sensitive 
to sinusoidal signals in high frequency cases and with high damping factor, 
the amplitude of the oscillator was reduced. 
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1. Introduction 

Duffing oscillators have received remarkable attention in the recent decades due 
to the variety of their Engineering applications, for example magneto-elastic 
mechanical system [1], large amplitude oscillator of centrifugal governing sys-
tem [2], nonlinear vibration beans and plates [3] [4] and fluid flow induced vi-
bration [5]. It is famous for the existence of chaos behavior in recent decades [6]. 
In 1979, the chaotic phenomena in Duffing equation had been investigated by 
Ueda [7]. Chaos occurs when the behavior of the dynamical system is extremely 
sensitive to initial conditions. In mechanical system, it means a motion which 
trajectories starting from slightly different initial conditions diverge exponen-
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tially. 
Various researchers have used different methods in obtaining solutions, for 

instance, Ueda [7] used the numerical simulation where changes in attractors 
were obtained under various parameters.  

The problem in Duffing-type system still remains a puzzle to so many scien-
tists for instance, suppressing and inducing of chaos, influence of time delay, 
fractional dynamics [8]-[13]. 

Melnikov method and Lyapunov exponents are very significant analytical 
techniques for determining chaos. The main idea of this method is to measure 
the distance between the stable and unstable manifolds and if the stable and un-
stable manifolds intensively intersect once, they will intersect infinite times [6]. 
Thus, according to Smale-Birkhoff theorem in [1], it implies the existence of the 
chaotic behavior in the Smale-horseshoe sense. The Melnikov theory was firstly 
used to study chaos in Duffing system by Holmes [2] and generalized Melnikov 
function was developed by Wiggins [13] [14]. This criterion is just the necessary 
condition for chaos but not sufficient for chaos, therefore, it must be sufficient 
conditions for the suppression of chaos [15]. The Lyapunov exponent is an im-
portant indicator in determining the sensitivity of chaotic behavior which cha-
racterizes the average rate of the system in phase space between adjacent tracks 
of convergence and divergence [16]. Whether the Lyapunov exponent is greater 
than zero or not is one of the most straight forward criterions to distinguish the 
chaotic systems [17]. In other to calculate the Lyapunov exponent, some me-
thods of solutions includes [16], nonlinear adaptive filtering method, QR matrix 
factorization method and its improvement methods. This paper makes use of 
two methods, the Melnikov method and improved QR matrix factorization. 

The objectives of this paper therefore are to investigate the existence of chao-
tic behavior in a single-well Duffing oscillator forced by parametric excitations.  

The rest of the paper is organized as follows: Section 2, explained the prelimi-
naries to the results, Section 3 gives the main results using the Melnikov method 
and the calculation of the Lyapunov exponent and Section 4 presents the nu-
merical simulations and finally some conclusions are given in Section 5. 

2. Preliminaries 
2.1. Melnikov Method 

One of the main tools for determining the existence or non-existence of chaos in 
a perturbed Hamiltonian system is Melnikov. In his theory, the distance between 
stable and unstable manifolds of the perturbed system were calculated up to the 
first order term. 

Melnikov method is a procedure which gives a bound on the parameters of a 
system such that chaos is predicted not to occur. The Melnikov method investi-
gate the homoclinic bifurcation in the forced Duffing oscillator system with li-
near and non-damping. It measures the distance between stable and unstable 
manifolds in the Poincare section [6] and to preserve the homoclinic loops un-
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der a perturbation requires that at 0t , if ( )0M t , that is the Melnikov function 
has a simple zero, then a homoclinic bifurcation occurs, implying that the chao-
tic motion occurs. 

2.2. Melnikov Method for Predicting Chaos 

Melnikov method gives an analytic tool for establishing the existence of trans-
verse homoclinic points of the Poincare map for a periodic orbit of a perturbed 
dynamical system of the form; 

( ) ( ) x f x g xε= + .                          (1) 

with nx R∈ . It can also be used to establish the existence of sub-harmonic pe-
riodic orbits of perturbed system of the form in (1). Furthermore, it can be used 
to show the existence of limit cycles and separatix cycles of perturbed planar 
system with 2x R∈ . For periodically perturbed planar systems, we have the 
form; 

( ) ( ),x f x g x tε= + .                         (2) 

where 2x R∈  and g is periodic with period t in T. We assume that ( )2f C R′∈  
and ( )2g C R R′∈ ×  and we make the assumption; 

1) For 0ε = , the system (2) has a homoclinic orbit; 
( )0 0: ,t tγ= −∞ < ∞Γ <X  at a hyperbolic saddle point 0X  and 

2) For 0ε = , the system has a non-parametric family of periodic orbit. Then 
the Melnikov function ( )0M t  is defined as; 

( ) ( )( ) ( )( )0 0 0 0^ , d ?M t f t g t t t tγ γ
∞

−∞
= +∫ .                (3) 

The Melnikov method can be interpreted as a derivation in energy from the 
value on the perturbed separatix. Before stating main result established by Mel-
nikov concerning the existence of transverse homoclinic point of the Poincare 
section, we need the following lemma and theory which establish the existence of 
a periodic orbit and hence the existence of the Poincare map with sufficient ε . 

Lemma 2.1 
Under assumption 1) and 2), for ε  sufficiently small, the system (2) has a 

unique hyperbolic periodic orbit; ( ) ( )0  0t Xε εγ = +  of period T. Correspon-
dingly, the Poincare map Pε  has a unique hyperbolic fixed point of saddle type; 

( )0 0X Xε ε= + .                           (4) 

Theorem 2.1  
Under the assumption 1) and 2), if the Melnikov function ( )0M t  has a sim-

ple zero in [0,1], then for all sufficiently small 0ε ≠ , the stable and unstable 
manifold of the Poincare map Pε  intersect transversally, that is, Pε  has a 
transverse homoclinic point.  

This theorem was established by Melnikov [1]. The idea of the proof is that 
( )0M t  is a measure of the separation of the stable and unstable manifold of the 

Poincare map. The theory is an important result because it establishes the exis-
tence of transverse homoclinic point for Pε . It implies the existence of strange 
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invariant set for some iterate of Pε  and the same type of chaotic dynamics for 
system (2) as for the Smale horseshoe map. Generally, the Melnikov method is 
very useful for detecting the presence of transverse homoclinic orbits and the 
occurance of homoclinic bifurcations.  

Theorem 2.2 (Smale-Birkhoff Homoclinic Theorem) [18] 
Let f be a diffeomorphism ( C′ ) and suppose p is a hyperbolic fixed point. A 

homoclinic point is a point q p≠  which is in the stable and unstable mani-
folds. If the stable and unstable manifolds intersect transversally at q, then q is 
called transverse. This implies that there is a homoclinic orbit ( ) nq qγ =  such 
that lim limn n n nq q p→∞ →∞= = . Since the stable and unstable manifolds are in-
variant, we have; ( ) ( )s u

nq W p W p∈ 
 for all n∈ . Moreover, if q is trans-

versal, so are all nq  since f is diffeomorphism. 

2.3. Method of Lyapunov Exponent 

The method of Lyapunov exponent serves as a useful tool to qualify chaos. Spe-
cifically, Lyapunov exponent measures the rate of convergence or divergence of 
nearby trajectories [16] [18]. Negative Lyapunov exponents indicate conver-
gence while positive Lyapunov exponents demonstrate divergence and chaos. 
The magnitude of the Lyapunov exponents is an indicator of the time scale on 
which chaotic behavior can be predicted or transients for the positive and nega-
tive cases respectively [19]. 

Physically, the Lyapunov exponent measures average exponential divergence 
or convergence between trajectories that differ only in having an infinitesimally 
small difference in their initial condition. The system is said to be chaotic if the 
trajectories remain within a bounded set of the dynamics. If one considers a ball 
of points in N-dimensional phase space in which each point follows its own tra-
jectory based upon the system equations of motion over time, the ball of points 
will collapse to a simple point, will stay a ball or will become ellipsoid in shape 
[20]. The measure of the rate at which this infinitesimal ball collapse or expands 
is the Lyapunov exponent. For a system written in the state-space form 

( )x u x= , small derivation from trajectory can be expressed by the equation  
i

i j
j

u
x x

x
δ δ

∂
=
∂

 . The maximal Lyapunov exponent is then defined by this equation. 

Other useful quantities are the short time Lyapunov exponent and the local 
Lyapunov exponent. A short time Lyapunov exponent is simply a Lyapunov ex-
ponent defined over some finite time interval. The local Lyapunov exponent is a 
short time Lyapunov exponent in the limit where the time interval approaches 
zero. Both are dependent on starting points and the short time Lyapunov expo-
nent is also independent on the magnitude of the time interval. If all points in 
the neighborhood of a trajectory converge towards the same orbit, the attractor 
is a fixed point or a limit cycle. However, if the attractor is strange, any two tra-
jectories ( ) ( )0x t f x′=  and ( ) ( ) ( )0 0x t x t f x xδ δ′+ = +  that starts over very 
close to each other separate exponentially with time. This sensitive initial condi-
tion can be quantified as; 
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( ) 0e tx t xλδ δ=                           (5) 

where λ, the mean rate of separation of trajectories of the system is called the 
Lyapunov exponent, which can be estimated for long time t as; 

( )
0

1 ln
x t

t x
δ

λ
δ

=                            (6) 

( )( ) ( )
( )0

1, lnT

X t T
X t x

T x t
δ

λ δ
δ

+
=                   (7) 

( )( ) ( )
( )

1lim lnlocal

X t T
X t

T X t
δ

λ
δ

+
=                   (8) 

Equations (7) and (8) are for short and local Lyapunov exponent. The exponent 
can be positive or negative but at least one must be positive for an attractor to be 
classified as chaotic. In particular, if 0λ < , the system converges to a stable 
fixed point or periodic orbits. A negative value of the Lyapunov exponent is 
characteristic of dissipative or non-conservative systems. If 0λ = , the system is 
conservative and converges to a stable cycle limit. If 0λ > , the system is unsta-
ble and chaotic. Hence, if the system is chaotic, it will have at least one positive 
Lyapunov exponent. Thus, the definition of chaotic system is based on a positive 
Lyapunov exponent. Finally, If λ = ∞ , the system is random. 

Generally, the most used measure of sensitive initial condition is a system 
characterization by the Lyapunov exponent, which quantifies the rate of separa-
tion of infinitesimal close trajectories. For example, consider a one-dimensional 
system with two trajectories ( )1x t  and ( )2x t  which at some point 0t  are ar-
bitrary close together and their difference in time tracked by the function;  

( ) ( ) ( )1 2x t x t x tδ = − . The sign of the lyapunov exponent characterizes whether 
or not the system is exhibiting chaotic behavior. If the exponent is negative, the 
system, at least in that set of initial conditions is said to be stable (like trajecto-
ries go to like trajectories). A Lyapunov exponent of zero implies an unstable 
system which is essentially on the edge stable and chaotic. And of course a posi-
tive exponent implies the system is chaotic where trajectories exhibit exponential 
divergence. 

3. Results 
3.1. The Single-Well Duffing Oscillator 

The single-well Duffing equation under parametrical excitation is shown below; 

( )3 cosx kx x x tε α β εγ ω+ + + =                     (9) 

The System (9) has a unique hyperbolic limit cycle. Using the Melnikov 
theory, an analysis has been performed of the limit circles in oscillator systems 
described by single-well Duffing equation under perturbation.  

Briefly, we describe Melnikov function and the bifurcations in perturbed Ha-
miltonian system as; 
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( )

( )

,

,

Hx p x y
y
Hy q x y
x

ε

ε

∂ = + ∂ 


∂ = + ∂ 





                      (10) 

where H the Hamiltonian ( ),H H x y=  is the analytic function. Also the per-
turbation functions ( ),p x y  and ( ),q x y  are analytic, ε is a small parameter. 

Let ( ) ( ) ( ), ,x y x t y tε ε=  be the solution of (3.1). Then the solution of the 
unperturbed system at ( 0ε = ) is ( ) ( ) ( )( )0 0, ,x y x t y t= . Further, we note that 
the unperturbed system at 0ε =  has one equilibrium point i.e. the center sur-
rounded by a closed trajectories. 

3.2. Melnikov Function for the Perturbed Single-Well Duffing  
Equation  

In this work, the single-well Duffing equation is represented by; 

( )3 cosx kx x x tε α β εγ ω+ + + =   

This equation can be rewritten in the following perturbed Hamiltonian sys-
tem; 

( )
3

cosx y ky t

y x x

ε γ ω

α β

= + + 


= − − 





                    (11) 

where , 0α β > . 
Let ( ) ( ) ( ), ,x y x t y tε ε=  be the solution of (11). The unperturbed system 

(11) has a Hamiltonian; 

2 2 41
2 2 4

H y x xα β
= + + .                    (12) 

and one equilibrium point surrounded by a closed trajectories.  
The solution of the unperturbed system is expressed as; 

( )
2

0 2 2

2 1   ,
1 2 1 2

ak k ax t sd t k
b k k

 −
=   − − 

.            (13) 

where sd is a Jacobian function. 
Then, the Melnikov function for the System (3) is given as; 

( ) ( )( )
( )

0

0 0

0 00

00 0

1 2

cos d

d cos d

 

T

T T

M t kx t t t

kx t t t t

kL L

γ ω

γ ω

γ

= − +

= − +

=− +

∫

∫ ∫               (14) 

now taking (13) into (14), we get; 

( )0

0

1 00

2

0 2 2

d

2 1   ,
1 2 1 2

T

T

L x t t

ak k asd t k
b k k

=

 −
=   − − 

∫

∫
            (15) 

Then, using the following properties; 
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( )
2

2
0

1 24 kT k k
a

−
=                     (A3) 

( ), 0Sd z k =                         (A2) 

( ) ( )4 2 2
0 0

, d 4 , d
k kn nsd z k z sd z k z=∫ ∫               (A3) 

The Melnikov function becomes;  

( ) ( )
2 2

2
0 0 2

4 1 2 2 1   , d
1 2

k nk ak kM t sd z k z
a b k

 − −
=  

 − 
∫         (16) 

after a long calculation and introducing the notation 2m k=  and the following 
identities; 

( )
2

2 20

1d
1

k
sd z

k k
=

−∫  

( )
4

4 20

1d
3 1

k
sd z

k k
=

−∫  

We obtain the final expression as; 

( )
( )0 2

8 1 2
1 2

a mM t
m

λ −
=

−
 

where a bλ = . 

3.3. The Lyapunov Exponent of a Single-Well Duffing Oscillator 

Consider the Duffing equation below; 

( )3 cosx kx x x tα β γ ω+ + + =                    (17) 

where x  and x  are second-order and first-order derivative, nα ∈ , 
nβ ∈ , δ  is the damping, γ  is the amplitude of the circle, ω  is the angular 

frequency of the driven circle. In other to Type equation here, determine wheth-
er the system is in chaotic state, we need to calculate the Lyapunov exponent us-
ing the QR factorization method. 

Let y x=  , ( ) 3,g x y ky x xα β= − − −  
Then Equation (1) is equivalent to; 

( ) ( ),
x y
y g x y f t
= 

= + 





                      (18) 

which is written in matrix form as; 

( ) ( )Y x F Y=                          (19) 

According to the variational principle, its variational equations are; 

( ) ( ) ( ) ( ), 0Y t J t Y t Y I= =                    (20) 

where ( )Y t  is a 2 by 2 matrix, I is a 2 by 2 unit matrix, ( )J t  is the Jacobian 
matrix of the system and its expression is; 
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2

0 1

3

f f
x y

g g x k
x y

α β

∂ ∂ 
 ∂ ∂    =    ∂ ∂ − − −  
∂ ∂ 

 

Then, QR factorization of ( )Y t  can be written as; 

( )Y t QR=                            (21) 

where Q is orthogonal matrix, R is upper triangular matrix. Substituting (21) in 
(20), we obtain the variational equation; 

QR QR JQR+ =  .                       (22) 

( ) ( )0 0Q R I=  

Left multiply Equation (22) by TQ  and right multiply by 1R− , we have; 
T 1 TQ Q RR Q JQ−+ =                        (23) 

( ) ( )0 , 0Q I R I= =  

The orthogonal matrix Q is written as a function of angle variables. To the 
Duffing equation, its orthogonal matrix Q can be expressed by one angle θ . 

cos sin
sin cos

Q
θ θ
θ θ

 
=  − 

 

The upper triangular matrix R can be expressed as; 

( )

( )

1

2

12e

0 e

t

t

r
R

λ

λ

 
=  
  

 

where θ  is the angle variable, ( )i tλ  is the value associated with the Lyapunov 
exponent. Then, 

T cos sin
sin cos

Q
θ θ
θ θ

− 
=  
 

 

( )

( )

1

1 2

2

12
1 e

e
0 e

t

t

r
R

λ
λ λ

λ

−
+−

−

− 
 =  
  

 

Then putting T 1, ,Q R Q−  and R into Equation (23), we have; 

( )

( )

( )

( )

1

1

1 2

2
2

12
12

2

dde
cos sin sin cos ed d e
sin cos cos sin de 0 e0

d
cos sin 0 1 cos sin

sin cos 3 sin cos

t

t

t t

r r
t t

t

x k

λ

λ
λ λ

λ
λ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ α β θ θ

−
+

−

 
−  − −      +      − −        

 

−     
=      

− − − −     

 

The correspondent matrix elements on both sides of (23) are equal, so we get; 
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( ) ( )

( ) ( )

( )

1 2

2 2

2 2

d 1sin 1 sin 2
d 2

d 1cos 1 sin 2
d 2

d 1 sin 2 sin cos
d 2

t g g
t y x

t g g
t y x
t g g

t y x

λ
θ θ

λ
θ θ

θ
θ θ θ

∂ ∂ = − +  ∂ ∂  
∂ ∂  = + +  ∂ ∂  
∂ ∂ = − + −

∂ ∂ 

             (24) 

We add and subtract the first two differential equations and get a new diffe-
rential equation. Together with the third differential equation, we obtain three 
new equations; 

( )

( )

1

2

2 2

d
d
d 1cos 2 1 sin 2
d 2

d 1 sin 2 sin cos
d 2

v g
t y
v g g
t y x

t g g
t y x

θ θ

θ
θ θ θ

∂
= ∂ 

∂ ∂  = − +  ∂ ∂  
∂ ∂ = − + −

∂ ∂ 

             (25) 

Then from; 

1 1 2

2 1 2

d d d
d d d
d d d
d d d

v
t t t
v
t t t

λ λ

λ λ

= + 

= −


                        (26) 

We obtain; 

( )
( ) ( )

( )
( )

1 2
1

1 2
2

2
( )

2

v t v t
t

v t v t
t

λ

λ

+  = 



−   = 

                     (27) 

The time evolution of the Lyapunov exponent is; 

( ) ( )

( ) ( )

1
1

2
2

t
f t

t
t

f t
t

λ

λ


= 


= 

                         (28) 

Then, the Lyapunov exponent is; 

( )

( )

1
1

2
2

lim

lim

t

t

t
t

t
t

λ
λ

λ
λ

→∞

→∞


= 


= 

                      (29) 

4. Numerical Simulation of Single-Well Duffing Oscillator  

In this section, we compare the numerical solution of Equation (9) using 
MATCAD simulation. In Figures 1-6, the trajectory versus time response curves 
are plotted for different sets of parameter values noted in the figure captions. In 
all figures, the solid lines represent the numerical solution and the dashed lines  
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Figure 1. Trajectory-time response curves and parameter 
values of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . 
The solid lines represent the numerical solution and the 
dash lines represent the chaotic behavior. 

 

 
Figure 2. Velocity-time response curves and parameter 
values of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . 
The solid lines represent the numerical solution and the 
dash lines represent the chaotic behavior. 

 

 
Figure 3. The phase portrait orbits in the chaotic state at 

0.5k = . 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . 
 
represent our chaotic solutions. 

Figure 1 and Figure 2 compare solutions by considering a strong nonlinearity 
value of 0.01ε = . The periodic solution of the Duffing’s equation were shown 
by the relationship between the first solution function values and the indepen-
dent variables values as shown in Table 1. The values were generated using the 
vector initial function values and the constant. However, the solutions are in  
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Figure 4. Trajectory-time response curves and parameter val-
ues of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . The 
solid lines represent the numerical solution and the dash lines 
represent the chaotic behavior. 

 

 
Figure 5. Velocity-time response curves and parameter values 
of 0.01ε = , 1α = , 0.5β = , 0.5k = , 0.1ω = . The solid 
lines represent the numerical solution and the dash lines 
represent the chaotic behavior. 

 

 
Figure 6. The phase portrait orbits in the chaotic state at 

2k = . 
 
good agreement over the time interval shown. Also, at 0.067t = , the maximum 
trajectory is 0.998x = . Figure 3 is the phase diagram of the chaotic system at 

0.01ε =  and damping factor 1k = . 
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The same conclusion can be drawn from Figures 4-6 but with damping factor 
at 2k = . The solutions are in excellent agreement over the time interval shown. 
However, Figure 6 is the phase portrait of the chaotic system. 

( )3 cosx kx ax x y tε β ε ω+ + + =   

: 0.01, : 1, : 0.5, : 0.5, : 0.1a kε β ω= = = = =  

Define a function that determines a vector of derivatives values at any solution 
point ( ),t Y : 

( )
( ) ( )

1
3

1 0 0

, :
cos

X
D t X

y t k X a X b Xε ω ε

 
=  

⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ − ⋅  
 

Define an additional argument for the ODE solver:  

0 : 0t =  Initial value of independent variable 

1 : 100t =  Final value of independent variable 

0

0
:

1
X  

=  
 

 Vector of initial function values 

: 1500N =  Numbers of solution values on [t0, t1] 

( )0 0 1: , , , ,S X t t N D=  

0:t S=  Independent variables values 
1

1 :X S=  First solution function values 
2

2 :X S=  Second solution function values 
 
Table 1. Solution matrix table for solution functions. 

 0 1 2 

0 0 0 0 

1 0.067 0.067 0.998 

2 0.133 0.133 0.991 

3 0.2 0.199 0.98 

4 0.267 0.264 0.964 

5 0.333 0.327 0.944 

6 0.4 0.389 0.918 

7 0.467 0.449 0.888 

8 0.533 0.508 0.853 

9 0.6 0.563 0.812 

10 0.667 0.616 0.766 

12 0.8 0.711 0.658 

13 0.867 0.753 0.596 

14 0.933 0.79 0.53 

15 1 0.823 … 
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5. Conclusions 

In the present study, the chaotic behavior in single-well Duffing oscillator is in-
vestigated using Melnikov approach and Lyapunov exponent. The distance be-
tween the stable and unstable manifold of the nonlinear system is calculated by 
Melnikov approach. The Lyapunov exponent of the nonlinear system is eva-
luated by QR factorization to determine whether the chaotic phenomenon of the 
nonlinear system actually occurs. 

As a result, threshold values were obtained and the dynamical behaviors 
showing the intersections of manifold were illustrated. To detect the chaotic 
phenomena of the nonlinear system, the Melnikov approach, Lyapunov expo-
nent, the time history, phase portrait of the nonlinear system were presented for 
various cases. 
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