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Abstract 
The development of a theoretical model to predict the four equilibrium forces 
of reaction on a simple ladder of non-adjustable length leaning against a wall 
has long remained an unresolved matter. The difficulty is that the problem is 
statically indeterminate and therefore requires complementary information to 
obtain a unique solution. This paper reports 1) a comprehensive theoretical 
analysis of the three fundamental models based on treating the ladder as a 
single Euler-Bernoulli beam, and 2) a detailed experimental investigation of 
the forces of reaction as a function of applied load and location of load. In 
contrast to previous untested proposals that the solution to the ladder prob-
lem lay in the axial constraint on compression or the transverse constraint on 
flexure, the experimental outcome of the present work showed unambi-
guously that 1) the ladder could be modeled the best by a pinned support at 
the base (on the ground) and a roller support at the top (at the wall), and 2) 
the only complementary relation needed to resolve the static indeterminacy is 
the force of friction at the wall. Measurements were also made on the impact 
loading of a ladder by rapid ascent and descent of a climber. The results ob-
tained were consistent with a simple dynamical model of the ladder as a li-
near elastic medium subject to a pulse perturbation. The solution to the lad-
der problem herein presented provides a basis for theoretical extension to 
other types of ladders. Of particular importance, given that accidents involv-
ing ladders in the workplace comprise a significant fraction of all industrial 
accidents, the theoretical relations reported here can help determine whether 
a collapsed structure, against which a ladder was applied, met regulatory 
safety limits or not. 
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1. Introduction: The Ladder Problem 

Although determination of the reaction forces on a beam is a standard part of 
the mechanics of continuous media, the exact conditions under which an actual 
physical structure comprised of beams is stressed are not always apparent. Mod-
els based on different assumptions can predict hugely different reaction forces, 
and careful experimentation is required to determine which model may most 
accurately characterize a structure. One of the most important mechanical 
structures for which reaction forces need to be determined is that of a ladder. 
Although ladders have been in use since antiquity, to date no definitive model of 
the reaction forces on a ladder has been experimentally tested and confirmed. 
This paper reports what the author believes to be the most comprehensive theo-
retical analysis and definitive experimental test of the reaction forces on a fixed 
ladder. 

1.1. The Fixed Ladder as an Euler-Bernoulli Beam 

A fixed ladder is defined by the American Ladder Institute as a non-self-supporting 
ladder of fixed (i.e. non-adjustable) length [1]. It comprises two identical rails of 
uniform density connected by short rungs. As a suitable first approximation to 
modeling such a ladder, the rungs are ordinarily disregarded and the two rails 
are merged into a single uniform beam, such as shown in panel A of Figure 1. 
The single-beam ladder of length L is in static equilibrium supported obliquely 
by the flat horizontal ground and a flat vertical wall. The weight W of the ladder 
is regarded as a uniformly distributed load of linear density 

w W L=                            (1) 

that acts vertically downward at the center of mass of any isolated segment of the 
beam. A climber is modeled as a point load P acting vertically downward at a 
distance Lβ  ( )1 0β≥ ≥  along the beam from the contact point at the ground, 
which is taken to be the origin. 

As shown in panel A of the figure, there are four reaction forces: 1) normal 
force at the ground ( )1R , 2) parallel force at the ground ( )2R , 3) normal force 
at the wall ( )3R , and 4) parallel force at the wall ( )4R . The prediction of these 
four forces constitutes what is called the ladder problem. Before discussing the 
theoretical solutions and experimental test of the ladder problem, it is worth-
while to consider why the problem is a significant one. This significance is both 
conceptual and practical. 

First, conceptually, the solution to any model serving as an archetype for a 
class of real-world problems within some branch of physics is significant by vir-
tue of its fundamentality. The single-beam ladder is an archetype within the 
mechanics of continuous media. Moreover, understanding the forces on a fixed  
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Figure 1. (A) Schematic diagram of the reaction forces ( )1 2 3 4, , ,R R R R  on a single-beam 

ladder by the ground and wall. W is the beam weight acting at the center of mass 2L ; P 
is a point load applied at the point Lβ ; (B) Decomposition of forces to show axial 
( )1 2,A A  and normal ( )1 2,B B  components relative to the long axis of the beam. Sub-

script 1 denotes the contact point at the ground; subscript 2 denotes the contact point at 
the wall. 

 
ladder would provide useful modeling guidelines for predicting the reaction 
forces on more complex ladder types, such as extension ladders, step ladders, 
trestle ladders, and others. Second, from a practical standpoint, the ability to 
predict the forces on ladders has direct impact on matters relating to safety in 
the use of ladders and to legal issues that arise when use of a ladder in the 
workplace results in injury or death. For example, with a valid fixed ladder mod-
el, the analyst can determine the acceptable range of inclination angles to avoid 
slippage, or determine whether the net force exerted by a ladder on a wall or 
railing that collapsed was within or exceeded regulatory limits [2]. 

One might think that prediction of the reaction forces on a structure as simple 
as a single-beam ladder is a relatively straightforward matter. Indeed, the prob-
lem is trivially solvable if the parallel reaction at the wall is ignored, which is the 
case in countless physics textbooks (see, for example, [3]) and expository inter-
net articles. The fixed ladder leaning against a frictionless wall has been an iconic 
example of static equilibrium in elementary mechanics books for at least a cen-
tury. This problem is statically determinate; i.e. the three reaction forces 
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( )1 2 3, ,R R R  are uniquely solvable from the three equations of static equilibrium 
in which the net horizontal force, net vertical force, and rotational moment 
about any point at rest all vanish. The resulting solution, however, is of academic 
interest only and does not describe correctly the interactions of real ladders with 
real surfaces. 

When account is taken of the parallel reaction at the wall, the problem be-
comes statically indeterminate, and therefore more complicated, since there are 
now 4 unknowns and 3 equations. One proposed solution assumed that the lad-
der undergoes an axial deformation which is constrained by the supports [4]. 
This model cannot be correct as it stands because the transverse (bending) de-
formation—as calculated in Section 2—is approximately two orders of magni-
tude greater than the axial deformation and should not have been neglected. 
Another proposal [5] took account of both axial compression and transverse 
flexion, and concluded that the problem could not be solved by static analysis 
because it was not possible to determine which deformation dominated. This 
conclusion is not substantiated by the findings of the present paper. Neither of 
these proposals provided experimental measurements to test their validity. 

Experimentally, there have been many investigations, of which some repre-
sentative examples are [6] [7] [8], to elucidate the conditions under which lad-
ders can be used safely. In general, these investigations focused on matters relat-
ing to friction, angle of inclination, climbing speed, weight of climber, and other 
empirically accessible variables, but did not attempt to provide a model that 
would succinctly incorporate these data in a mathematical theory. 

This paper reports the theoretical solution of three basic models by which to 
analyze the reaction forces of a fixed ladder represented as a single Euler-Bernoulli 
(E-B) beam. The characteristics of an E-B beam pertinent to the present study 
are as follows [9]: 

1) the length of the beam is much greater than the linear dimension of the 
cross-section; 

2) the long axis of the beam lies within the neutral surface; 
3) the cross section of the beam remains plane and perpendicular to the long 

axis during deflection; 
4) deformation of the cross section within its own plane is neglected; 
5) the beam is a linear elastic material subject to Hooke’s law; i.e. normal 

stress within a cross section varies linearly with perpendicular distance from the 
neutral axis. 

The neutral surface of a beam is the interface that separates the fibers under 
compression from the fibers under tension when the beam is deflected trans-
versely. The neutral axis within any cross section is the line of intersection of the 
neutral surface with the cross section. 

1.2. The Analytical Models 

The three basic ladder models analyzed in this paper are distinguished by the 
nature of the supports at the points of contact with the surfaces of the ground 
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and wall. In the mechanics of beams, the three common types of supports are 1) 
roller, 2) pin, and 3) fixed [10]. The names refer to the constraints on the motion 
of the affected segment of the beam, and not necessarily to the actual presence of 
a roller, pin, or clamping mechanism. Thus, if one end of a beam is supported by 
a roller, it can displace laterally, but not vertically. If the end of the beam is 
pinned, it cannot displace either laterally or vertically, but it can rotate about the 
pin. And, finally, if the end is fixed, it cannot displace or rotate at all. [There is a 
fourth kind of support usually designated as simple, which is idealized as a fric-
tionless surface. This would apply to the support of the single-beam ladder at a 
wall as treated in the elementary physics books.] 

If a right-handed Cartesian coordinate system ( ), ,x y z  is chosen such that 
an initially horizontal beam lies along the x axis, and a load is applied that can 
deflect the beam vertically downward along the negative y axis, then the boun-
dary and continuity conditions at the three kinds of supports can be summarized 
as follows 

Roller : 0, d d 0, 0
Pin : 0, d d 0, 0
Fixed : 0, d d 0, 0

z

z

z

y y x M
y y x M
y y x M

∆ = ≠ =
∆ = ≠ =
∆ = = ≠                 

(2) 

where the symbol ∆  signifies displacement, and zM  is an internal bending 
moment (torque) about the z axis. The salient features of relations (2) are that a) 
the displacement and slope of the deflected beam are zero at a fixed support but 
the support creates an internal bending moment, whereas b) at roller and pin 
supports there is no internal moment, and the slope of the bending curve there 
need not be zero. 

The models analyzed in this paper are based on the supports described by 
Equation (2). 
• In Model 1, the ground support of the single-beam ladder is fixed and the 

wall support is equivalent to a pin. Under a vertical load due to the distri-
buted weight of the ladder and the point weight of a hypothetical climber, the 
ladder is subject to both axial and transverse stresses, but is constrained from 
compression, elongation, or rotation at the supports. This is a case of static 
indeterminateness in two variables: one axial and one transverse. Although 
friction is presumably the source of the constraints, no specific assumptions 
are made in regard to the mathematical form of the frictional force. 

• In Model 2, the ground support of the single-beam ladder is fixed, and the 
wall support is equivalent to a roller. The axial component of the load can 
compress the ladder, and thereby remove the static indeterminateness along 
the length. The reaction at the wall is assumed to be governed by the pheno-
menological relation for friction taken to be proportional to the normal force 
at the wall [11]. There remains a static indeterminateness in one of the 
transverse reactions because of the unknown internal moment at the ground 
support. 

• In Model 3, the ground support of the single-beam ladder is equivalent to a 
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pin and the wall support is equivalent to a roller. The ladder is free to com-
press under an axial force and flex about the ground support, thereby reliev-
ing all static constraints. The reaction at the wall is assumed governed by 
friction as in Model 2. This is a case of static indeterminateness in one varia-
ble in which the equations of static equilibrium, complemented by the fric-
tional force law, suffice to determine a unique solution. 

The three models are schematically illustrated in Figure 2. 

1.3. Outline of Paper 

In Section 2 the reaction forces on a ladder characterized as a single E-B beam 
are calculated for each model and examined as a function of load, location of 
load along the ladder, and angle of inclination of the ladder with respect to the 
ground. In the case of Models 1 and 3, the full bending curve is calculated within 
the Euler-Bernoulli approximation (neglect of the square of the slope d dy x ), 
and the magnitudes of transverse and axial deformations are compared. (The 
bending curve of Models 2 and 1 are the same). 

In Section 3 are reported experiments using horizontal and vertical force 
platforms to measure the reactions on a fixed metal ladder inclined against a wall. 
It is noted here briefly that the model that was found to account for the observed 
results was Model 3. 

In Section 4 the impact loading on a ladder by a climber is examined theoret-
ically and experimentally. 

In Section 5 are reported measurements of the reactions on a wood beam in-
clined obliquely against a wall. The intent of the experiment was to ascertain 
whether the same theoretical model that best applied to a ladder modeled as a 
beam applied as well to an actual single beam. 

In Section 6 conclusions drawn from this research are summarized. 
 

 
Figure 2. Schematic diagram symbolizing the supports upon which each model is based: 
gray clamp = fixed support; red solid circle = pin support; 3 blue circles = roller. The 
fixed support is accompanied by an internal moment (red arc). The zigzag line symboliz-
es friction. The light blue bar represents the single-beam ladder as portrayed horizontally 
in panel B of Figure 1. 
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2. Analysis of a Single-Beam Fixed Ladder 

Panel A of Figure 1 shows the disposition of the reaction forces on the ladder as 
it appears inclined against a vertical wall at an angle θ  to the ground. Because 
the material out of which an actual ladder is constructed—primarily aluminum, 
fiberglass, or wood—has a relatively high elastic modulus ( Al ~ 69E  GPa, 

FG ~ 72E  GPa, wood ~ 10 -13E  GPa) [12] [13] [14], the deformation is ordina-
rily small, and one can analyze the axial and transverse deformations indepen-
dently provided the axial force is not excessively large [15]. Thus, by taking ap-
propriate components, one obtains the axial and transverse reaction forces 
shown in panel B of Figure 1, which are related to the forces normal and parallel 
to the ground and wall as follows 

1 1 2

1 1 2

2 3 4

2 3 4

sin cos
cos sin

cos sin
sin cos

A R R
B R R
A R R
B R R

θ θ
θ θ
θ θ

θ θ

= +
= −
= − +

= +                      

(3) 

with inverse relations 

1 1 1

2 1 2

3 2 2

4 2 2

cos sin
sin cos
sin cos

cos sin

R B A
R B A
R B A
R B A

θ θ
θ θ
θ θ
θ θ

= +
= − +
= − −

= +                      

(4) 

The equations of static equilibrium then take either of the forms 

 (I) 1 4

2 3 0
R R W P
R R
+ = +
− =     

(II) 1 2

1 2

n n

a a

B B W P
A A W P
+ = +

+ = +            
(5) 

in which the normal and axial components of the ladder weight and a point load 
representative of a climber are respectively 

cos sin
cos sin .

n a

n a

W W W W
P P P P

θ θ
θ θ

= =

= =                    
(6) 

The sets of equations in (5) do not contain an equation for the vanishing of a 
rotational moment about a designated point at rest. In the absence of informa-
tion regarding the supports of the ladder at the ground, it is not possible to write 
a torque equation based on static equilibrium alone. This is a consequence of the 
fact that the system may contain an initially unknown internal moment created 
by the ground support in order to maintain static equilibrium. 

Since there are four unknown reactions in Equation (5) and fewer than four 
equations of static equilibrium, the set of equations is statically indeterminate 
and must be supplemented by what are termed complementary conditions. Un-
der the circumstances stated above, these conditions can be applied to the axial 
and normal directions independently. The complementary conditions take dif-
ferent forms depending on the specific model, as discussed in the following sub-
sections. 
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2.1. Model 1: Fixed Ground and Pinned Wall Supports 

With respect to the schematic diagram in panel B of Figure 1, Model 1 entails a 
fixed support at the left end 0x =  (with initially unknown internal moment 

( )0zM ) and a pin support at the right end x L= . The total strain energy U of 
the beam 

a bU U U= +                          (7) 

is the sum of the axial strain energy 

( )2

0

1 d
2

L
a aU F x x

EA
= ∫

                     
(8) 

due to the compression or tension by force ( )aF x  and the energy of flexure 
(bending) 

( )2

0

1 d
2

L
b z

z

U M x x
EI

= ∫
                     

(9) 

due to the moment ( )zM x  about the z axis (see Ref. [15], pp 188-196). The 
material parameters in Equations (8) and (9) are the beam cross section area A, 
beam area moment of inertia zI  about the transverse z axis, and the elastic 
modulus (Young’s modulus) E. For a beam of width w and height h as portrayed 
in panel C of Figure 1, the cross section and area moment of inertia take the 
forms (see [15], pp 448-449) 

A wh=                           (10) 

31
12zI wh= .                        (11) 

Because the overall load comprises both distributed and point contributions, 
the force ( )aF x  and moment ( )zM x  are piecewise continuous functions. 
These functions can be represented economically by use of the Heaviside unit 
step function [16] defined here as 

( ) 0
0

0

0
1 .

x x
H x x

x x
<

− =  ≥                     
(12) 

Mathematically, the Heaviside function is usually defined by pure inequalities 
in both partitions of the real axis and left undefined at the point where the ar-
gument is zero. In the mechanics of continuous media, however, the point load 
occurs at the partition between segments and therefore it is more useful to define 
the Heaviside function as unity there. One can then express the axial force and 
bending moment in the following ways 

( ) ( ) ( )2
a

a a
WF x A L x P H L x
L

β= − − − −
              

(13) 

( ) ( ) ( ) ( ) ( )2
2 2

n
z n

WM x B L x L x P L x H L x
L

β β= − − − − − − .      (14) 

From the complementary energy theorem (Castigliano’s theorem) of conti-
nuum mechanics (see [15] pp 201-217) for systems where the force-deformation 
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relation is linear, the deflection of a point i on a beam in the direction of a load 

iF  applied at that point is given by 

i
i

U
F

δ
∂

=
∂

.                          (15) 

Since a physical condition of Model 1 is that the right endpoint of the beam in 
panel B of Figure 1 suffers no deflection, it follows that 

( )

2

0a
L

U
A

δ
∂

= =
∂                         

(16) 

and 

( )

2

0b
L

U
B

δ
∂

= =
∂                         

(17) 

where superscript a  signifies axial and superscript b signifies bending. Equa-
tions (16) and (17) are the complementary relations required to supplement the 
set of relations (5) and resolve the static indeterminacy of Model 1. 

Substitution of relations (13) and (14) respectively into strain energies (8) and 
(9), taking derivatives (16) and (17), and setting the resulting integrals to zero 
lead to expressions for the axial reaction 2A  and transverse reaction 2B . The 
reactions 1A  and 1B  are then obtained from Equation (5) of static equilibrium. 
The resulting set of four axial and transverse reactions are found to be 

( )1

2

2 3
1

2 3
2

1 sin 1 sin
2
1 sin sin
2
5 3 1cos 1 cos
8 2 2
3 3 1cos cos
8 2 2

A W P

A W P

B W P

B W P

θ β θ

θ β θ

θ β β θ

θ β β θ

= + −

= +

 = + − + 
 
 = + − 
               

(18) 

from which follow by transformation (4) the reactions normal and parallel with 
respect to the ground and wall 

2 2 3 2 2
1

2 4
2 3

2 2 3 2 2
4

1 1 3 11 cos 1 cos sin
2 4 2 2

1 1 3 1 sin 2
16 2 4 4

1 1 3 11 cos cos sin .
2 4 2 2

R W P

R R W P

R W P

θ β β θ β θ

β β β θ

θ β β θ β θ

    = + + − − −        
  = = + − +    

    = − + − +             

(19) 

The directions of 2R  and 3R  are shown in Figure 1, and no algebraic sign 
denoting direction is needed since these two forces are not superposed in any 
calculation in this paper. 

Figure 3 shows the variation in normal force at the ground (panel A) and at 
the wall (panel B) as a function of the fractional location ( )1 0β≥ ≥  of the ap-
plied load along the beam for different load magnitudes ranging from 0 to 100 
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pounds (lbs). The ladder weight is taken to be 25 lbs (111.2 N), in accordance 
with the use of English units in ladder specifications given in the US, but calcu-
lations are performed and recorded in metric units (newtons N). The angle of 
inclination was taken to be 60˚. Plots of the parallel force at the ground ( )2R  
and at the wall ( )4R  are not shown since by relations (18) the former are the 
same as the plots in panel B, and the latter correspond to reversing the horizon-
tal scale (abscissa) in panel A. 

A complementary perspective is given in Figure 4, which shows the variation 
in normal force at the ground (panel A) and at the wall (panel B) as a function of 
the angle of inclination for different fractional locations of the applied load 
along the beam. According to Model 1, the location of a hypothetical climber (of  

 

 
Figure 3. Model 1 variation in normal force at (A) ground and (B) wall as a function of load location for loads (in lbs): (a) 0, (b) 
20, (c) 40, (d) 60, (e) 80, (f) 100. The ordinate unit is in newtons. Ladder weight is 25 lbs; angle of inclination is 60˚. 
 

 
Figure 4. Model 1 variation in normal force at (A) ground and (B) wall as a function of inclination angle for load locations β : (a) 
0.0, (b) 0.2, (c) 0.4, (d) 0.6, (e)).8, (f) 1.0. Ladder weight is 25 lbs; point load is 50 lbs. 
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fixed weight) influences the normal reaction at the wall strongly and the normal 
reaction at the ground relatively weakly as the inclination of the ladder is 
changed. 

Applying Equation (15) to the total strain energy U, one can determine the 
deformation at any point in the elastic curve of the single-beam ladder and the-
reby compare the magnitudes of the axial compression ( )aδ  and transverse  

(bending) deflection ( )bδ . Taking 1
2

β =  for illustration yields the deforma-

tions 

( ) ( )1
12
2

sin
2

a

L
a

U L W P
P AE

β

δ θ
=

∂
= = +
∂

               

(20) 

( ) ( )
3

1
12
2

4 7 cos
768

b

L
n z

U L W P
P EI

β

δ θ
=

∂
= = +
∂

.             (21) 

Given typical parameters of beam length 2.5L =  m, width 2w =  cm, 
height 5h =  cm, inclination angle 45θ =  , ladder weight 25W =  lbs (111.2 
N), climber weight 150P =  lbs (667.2 N), and elastic modulus of aluminum  

69E =  GPa, Equations (20) and (21) lead to deformations ( )
1
2

10a

L
δ ≈

 
µm, 

( )
1
2

5.1b

L
δ ≈

 
mm. The deformation due to bending is approximately 500 times the  

deformation due to axial compression. Therefore, any model of a ladder subject 
to ordinary loads that takes account of axial deformation cannot neglect defor-
mation due to flexure. 

As a final consideration, it is useful to derive the deflection curve of Model 1 
as a check on the calculated deformations and to ascertain that the reactions of a 
single-beam ladder derived from Model 1 correctly fulfill the complementary 
conditions. The exact flexure formula for an E-B beam relates the bending mo-
ment to the radius of curvature and takes the form of a nonlinear second-order 
differential equation (see [10] pp. 576-583) 

( )
( )

2 2

3 22

d d 1

1 d d
z

z

y x M x
EIy x

=
 +                   

(22) 

whose solution is called the elastica [17]. Although an exact solution would be 
required for a highly flexible beam such as a fishing rod [9], the deflection of the 
rail of a ladder is sufficiently low that one can neglect the square of the slope in 
the denominator of Equation (22), as is conventionally done in engineering 
practice. The equation then becomes linear and can be readily solved subject to 
the imposed boundary conditions 

( ) ( )
( )
0 0

 is continuous at 
d d  is continuous at 

y y L

y x x L
y x x L

β
β

= =

=

=                  

(23) 

to yield the piecewise continuous function 
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( ) ( ) ( ) ( ) ( )1 2y x y x H L x y x H x Lβ β= − + −             (24) 

with 

( )

( ) ( )

2 3 2
1 Model 1

2 3 3 4

3 3 2 2 2 3 2
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   = − + − + −   
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x x

L


−  
 

(25) 

Figure 5 shows plots of the deflection curve ( )y x  for different locations of a 
150 lb load on a ladder 2.5 m in length and 25 lbs in weight inclined at an angle 
of 45˚ against a vertical wall. The cross section of the single beam is 2 cm 5 cm×  
and the modulus of elasticity is 69E =  GPa. As seen in the figure, the deflec-
tion curve is the same for a load directly at the base 0x =  or at the top of the  

ladder x L= . The deflection ( )
1
2

5.1b

L
δ ∼  mm occurs at the mid-position 1

2
β = ,  

which is the result predicted by Equation (21) obtained by Castigliano’s theorem. 
The deflection curve is not symmetric for any location of the load, even at 
mid-position, because the slope is required to be 0 at the ground support (left 
end) but not at the wall support (right end). 

Calculation of deflections (20), (21) and the elastica curve (24) involved  
 

 
Figure 5. Deflection curves of the Model 1 single-beam ladder of length 2.5 m and weight 
25 lbs for a point load of 150 lbs at fractional lengths β  along the beam of (a) 0 [ground 
point], (b) 1/4, (c) 1/2, (d) 3/4, (e) 1 [wall point] (note that plots (a) (solid line) and (e) 
(dashed line) overlap). The inclination angle of the ladder was taken to be 45˚. Material 

parameters are 69 GPaE = , 22 5 cmA = × , ( ) ( )31 2 cm 5cm
12zI =  

https://doi.org/10.4236/wjm.2018.89024


M. P. Silverman 
 

 

DOI: 10.4236/wjm.2018.89024 323 World Journal of Mechanics 
 

integration of expressions of the form ( )0
nx H x x−  for non-negative integer n. 

The integration of Heaviside functions is summarized in the Appendix. 

2.2. Model 2: Fixed Ground and Roller Wall Supports 

With respect to the schematic diagram in panel B of Figure 1, Model 2 entails a 
fixed support at the left end and a roller support at the right end. Resolution of 
the static indeterminateness of the bending reactions is accomplished in exactly 
the same way as for Model 1, and therefore forces 1B  and 2B  are given as 
shown in Equations (18). To determine the other forces, one makes use of the 
transformation (3) for 2B  and the phenomenological relation for friction 

4 3R Rµ=                           (26) 

with coefficient of friction µ  to obtain 
( )2 3 4 3sin cos sin cosB R R Rθ θ θ µ θ= + = + ,           (27) 

from which follows 

2 3

4
3 2

3 3 1
8 2 2

tan

W P
RR R

β β

µ θ µ

 + − 
 = = =

+               (28) 

and therefore from Equation (5) 

2 3

1 4 3

3 3 1
8 2 2

tan

W P
R W P R W P R W P

β β
µ µ

θ µ

  + −    = + − = + − = + −
+ 

  

.  (29) 

The axial forces 1A  and 2A  are given by the transformation (3) 

( ) 2 3
1

2 3
2

3 3 1 1 tansin cos
8 2 2 tan

3 3 1 1 tancos
8 2 2 tan

A W P W P

A W P

µ θ
θ β β θ

θ µ

µ θ
β β θ

θ µ

   − = + + + −    +    
   − = − + −    +         

(30) 

rather than by a complementary condition constraining axial compression. 
Figure 6 shows the variation in normal force at the ground (panel A) and at 

the wall (panel B) as a function of load location for different loads under the 
same conditions as for Figure 3. The coefficient of friction was taken to be 0.4. 
Correspondingly, Figure 7 shows the variation in these two reactions as a func-
tion of angle of inclination with the ground under the same conditions as for 
Figure 4. Models 1 and 2 are seen to predict reactions that depend very diffe-
rently on load location. 

Since the reaction forces normal to the beam ( )1 2,B B  are the same as for 
Model 1, the bending deflection curve, which does not depend on the axial reac-
tions, is also the same. 

2.3. Model 3: Pinned Ground and Roller Wall Supports 

With respect to the schematic diagram in panel B of Figure 1, Model 3 entails a  
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Figure 6. Model 2 variation in normal force at (A) ground and (B) wall as a function of load location for loads (in lbs): (a) 0, (b) 
20, (c) 40, (d) 60, (e) 80, (f) 100. The weight and angle are the same as in Figure 3; the coefficient of friction is 0.4. 
 

 
Figure 7. Model 2 variation in normal force at (A) ground and (B) wall as a function of inclination angle for load locations β : (a) 
0.0, (b) 0.2, (c) 0.4, (d) 0.6, (e)).8, (f) 1.0. The weight and load are the same as in Figure 4; the coefficient of friction is 0.4. 
 

pinned support at the left end and a roller support at the right end. Because there 
is no unknown internal moment at pinned and roller supports, the set of equa-
tions (5) can be supplemented by an equation for the vanishing of the external 
moment zM  about any fixed point. For example, if the pivot is taken to be the 
point of contact with the ground, then the vanishing of ( )0zM  can be ex-
pressed by either of the equations 

3 4
1sin cos cos cos
2

R R W Pθ θ θ β θ+ = +
             

(31) 

or 

2
1
2 n nB W Pβ= + .                       (32) 
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Together with the complementary relation (26) for force of friction and the 
other equations of static equilibrium, one obtains 

4
3 2

1
2
tan

W PRR R
β

µ θ µ

+
= = =

+
                   

(33) 

( )1
1 1
2 n nB W Pβ= + −                      (34) 

and 

( )( )
1 3

1tan tan 1
2

tan

W P
R W P R

θ µ θ β µ
µ

θ µ

 + + + − 
 = + − =

+

.      (35) 

From the set of transformations (3) follow the axial reactions 

( ) 2 3
1

2 3
2

3 3 1 1 tansin cos
8 2 2 tan

3 3 1 1 tancos
8 2 2 tan

A W P W P

A W P

µ θ
θ β β θ

θ µ

µ θ
β β θ

θ µ

   − = + + + −    +    
   − = − + −    +    

    (36) 

Figure 8 and Figure 9 respectively show the variation in normal force at the 
ground (panel A) and at the wall (panel B) as a function of load location along 
the ladder and as a function of inclination angle with the ground. The plots are 
similar to, but not numerically identical with, the plots of Figure 6 and Figure 7. 

The bending curve (elastica) of Model 3 takes a different shape than that of 
Models 1 and 2 because of the difference in the nature of the support at the 
ground. Solving the Euler-Bernoulli approximation to the flexure equation (22) 

( )2 2d d z zy x M x EI=                     (37) 

with moment (see panel B of Figure 1) 

( ) ( ) ( )2
1 2

n
z n

W
M x B x x P x L H x L

L
β β= − − − −            (38) 

and boundary conditions (23) leads to the piecewise continuous function (24) 
with components 
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 + + − −    
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    
 + − −    

 (39) 

Figure 10 shows plots of the deflection curve ( )y x  for different locations of 
a 150 lb load on a ladder 2.5 m in length and 25 lbs in weight inclined at an angle 
of 45˚ against a vertical wall. As seen in the figure, the deflection curve is again 
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the same for a load directly at the base 0x =  or at the top of the ladder x L= . 
In contrast to the deflection curves of Models 1 and 2, the deflection curve of 
Model 3 is symmetric for a load applied at the middle of the beam; the slopes are 
nonzero and equal at both the ground and wall contact points. For other loca-
tions of the load, the deflection curve is no longer symmetric, but at no location 
are the slopes zero at the end points. 

The maximum deflection ( )
1
2

11.8b

L
δ ∼  mm occurs at the mid-position  

1 2β = . This is the same result one would get from applying Castigliano’s theo-
rem, as implemented in Section 2.1, which leads to the deformation 

 

 
Figure 8. Model 3 variation in normal force at (A) ground and (B) wall as a function of load location for loads (in lbs): (a) 0, (b) 
20, (c) 40, (d) 60, (e) 80, (f) 100. The weight and angle are the same as in Figure 3; the coefficient of friction is 0.4. 
 

 
Figure 9. Model 3 variation in normal force at (A) ground and (B) wall as a function of inclination angle for load locations: (a) 0.0, 
(b) 0.2, (c) 0.4, (d) 0.6, (e)).8, (f) 1.0. The weight and load are the same as in Figure 4; the coefficient of friction is 0.4. 
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Figure 10. Deflection curves of the Model 3 single-beam ladder under the same condi-
tions as for Figure 5 for fractional lengths β  along the beam of (a) 0 [ground point], (b) 
1/4, (c) 1/2, (d) 3/4, (e) 1 [wall point] (note that plots (a) (solid line) and (e) (dashed line) 
overlap). The coefficient of friction is 0.4. 

 

( ) ( )
3

1
2

5 8 cos
384

b

L
z

L W P
EI

δ θ= + .                 (40) 

The deflection produced by the axial forces of Equation (36) is given by 

( )
2

1 1 tansin
2 tan

a
L

L A W P
AEβ

µ θδ β θ
θ µ

   − = − +     +   
.          (41) 

For the load at mid-position and the other parameters of Figure 10, Equation 
(41) leads to an axial compression 13.3 µm. Thus, as was the case with Model 1, 
the bending deflection is again seen to be at least two orders of magnitude great-
er than the corresponding deformation due to axial compression. 

3. Measured Reaction Forces on a Fixed Ladder 

To determine which, if any, of the three basic models describes most closely the 
reaction forces on a fixed ladder, an experiment was performed to measure 
forces 1R , 2R , and 3R . The experiment was performed as follows. A ladder of 
length 244 cm and weight 18.9 lbs (84.07 N) was placed against a vertical wall at 
an angle of 68˚ to the ground. A two-axis force platform (Pasco Model PS-2142) 
was situated horizontally on the ground beneath each of the two rails of the lad-
der. The top of the ladder rested on a third force platform attached vertically to 
the wall. Each force platform, used in conjunction with a computer and the ap-
propriate interface, was designed to measure the applied force normal to its sur-
face (up to a maximum of 4400 N) and along an axis parallel to its surface (up to 
1100 N). 
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The ladder comprised seven rungs located at fractional lengths along the rails 
of 

( )

32 62 92 122 152 182 212, , , , , ,
244 244 244 244 244 244 244
0.131,0.254,0.377,0.500,0.623,0.746,0.869

β  =  
 

≈
 

of which the first six rungs were used in the experiment. External loads were ap-
plied to the rungs in the form of lead bricks, each brick weighing 25 lbs (111.21 
N). Measurements of the normal and parallel forces were made for discrete loads 
of 1, 2, 3, or 4 bricks placed on each rung in progressive order from rung 1 to 
rung 6. The sum of the forces normal to the horizontal surface of force platforms 
1 and 2 (supporting the rails) constituted reaction 1R . The sum of the forces 
parallel to the surface of platforms 1 and 2 constituted reaction 2R . The force 
normal to the vertical surface of force platform 3 (against which the top of the 
ladder rested) constituted reaction 3R . Although the initial intention was to 
measure reaction 4R  as well, this measurement could not be made because the 
force platforms did not measure shear forces accurately when the platform was 
oriented vertically1. The omitted reaction, however, was not needed to establish 
the conclusions drawn from this experiment. 

Table 1 records the measurements of the 3 reactions ( 1R , 2R , 3R ) at each of 
6 rungs for each of 4 loads (25, 50, 75, 100 lbs). The experimental forces are re-
spectively compared with the corresponding theoretical predictions of the three 
models in Figures 11-13. 

In order to apply the theoretical relations of Models 2 and 3, it is necessary 
to know the coefficient of friction µ  of the ladder with the wall—or, more 
accurately, with the surface of the force platform attached to the wall. This 
coefficient cannot be calculated theoretically, but must be obtained empirically 
from the data. The method employed here was trial and inspection; i.e. to as-
sume a value for µ , calculate and plot the resulting reactions, and adjust as 
necessary the value of µ  until a satisfactory match with data was achieved, 
provided that the model itself is a valid representation of the underlying me-
chanical processes. The entire procedure can be executed in a matter of 
seconds with a fast computer and available mathematical software such as 
Maple or Mathcad. It is to be emphasized that the totality of the 72 measure-
ments (3 reactions × 4 loads × 6 load locations) tightly constrained the value of 
µ . For Model 2 or 3 to be valid it is necessary that a single value of µ  suffice 
to account for all the data. If different statistically significant values of µ  for 
the various reactions are needed to match the data, or if no value of µ  
matches the data, then Model 2 or 3 would not describe the static equilibrium 
of a ladder against a wall. 

 

 

1A force normal to the surface of the platform is measured by means of 4 beams connecting the 4 
footpads of the device to strain gauges. A force parallel to the surface (oriented along an indicator 
arrow) is measured by a single strain gauge connected to the center of the upper surface. Small dev-
iations from center in placement of the top of the ladder resulted in erratic values of the parallel 
force. 
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Table 1. Experimental Normal and Parallel Reactions on a Ladder. 

68.0θ =   LOAD (lbs) 25 50 75 100 

REACTIONS (N) RUNG     

Ground Normal 1R       

 1 347.81 303.74 412.54 526.04 

 2 188.54 302.98 413.19 526.67 

 3 193.31 304.92 409.82 522.06 

 4 189.95 303.37 413.52 520.52 

 5 187.31 300.74 409.77 516.84 

 6 188.50 298.47 403.50 508.11 

Ground Parallel 2R       

 1 20.19 23.87 31.56 37.00 

 2 22.92 35.01 47.29 58.86 

 3 32.47 48.67 63.63 80.60 

 4 37.15 60.90 86.58 106.12 

 5 37.50 67.05 95.88 121.87 

 6 47.62 81.22 113.40 145.17 

Wall Normal 3R       

 1 10.01 14.09 17.70 21.40 

 2 16.45 28.49 36.74 46.61 

 3 24.14 39.44 53.67 69.85 

 4 28.82 51.80 74.75 95.94 

 5 32.76 60.15 87.46 112.59 

 6 40.07 73.52 104.20 138.55 

 

 
Figure 11. Experimental measurement (solid circles) of the normal reaction 1R  at the 
ground compared with predictions of Model 1 (dash-dot), Model 2 (solid), and Model 3 
(dash) for loads (in lbs) of (a) 25 (blue), (b) 50 (red), (c) 75 (green), (d) 100 (burgundy). 
The set of Model 1 curves designated M1 do not match the data at all. 
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Figure 12. Experimental measurement of the parallel reaction 2R  at the ground com-
pared with predictions of the three models. The symbolism in color and line style is the 
same as for Figure 11. Model 3 best matches the data. 

 

 
Figure 13. Experimental measurement of the normal reaction 3R  at the wall compared 
with predictions of the three models. The symbolism in color and line style is the same as 
for Figure 11. Model 3 best matches the data. 

 
From examination of Figures 11-13 one can conclude the following: 

• Model 1 does not account for any of the measured reactions. 
• Models 2 and 3 account more or less equally well for the normal reaction 1R  

at the ground support (Figure 11). 
• Model 2 does not account for the measurements of the parallel reaction 2R  

at the ground (Figure 12) or normal reaction 3R  at the wall (Figure 13). 
• Model 3 accounts satisfactorily for all three reaction forces for 0.25µ ≈  es-

timated from the data by trial and inspection. 
To test the consistency of Model 3, the reaction parallel to the wall 4R  was 
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obtained from the data by the two independent relations 

( )
( )

4 3

1 4

a

b

R R

R R W P

µ=

+ = +                      
(42) 

where relation (a) is one of the defining conditions of the model, and relation (b) 
is required by Newton’s 2nd law applied to static equilibrium. Panel A of Figure 
14 shows plots of 4R  for different loads and load locations obtained from rela-
tion (a) of Equation (42). Of the three models, Model 3 is again seen to account 
most closely for the patterns of measured points. Panel B of Figure 14 plots rela-
tion (b) of Equation (42) with 4R  given by independent relation (a). As ex-
pected, the expression 1 4R R+  sums to a constant equal to W P+  for each of 
the four values of applied load P. 

Interpretation of Results 

From the foregoing comprehensive experimental test, one can conclude that, of 
the various mechanical conditions presumed to describe the static equilibrium of a 
ladder against a wall, those upon which Model 3 is based best represent the actual 
physical situation. It is useful to summarize explicitly the nature of these conditions. 
• The elimination of Model 1 indicates that the length of the ladder is not con-

strained by axial forces at the ground or wall. Recall that it was this constraint 
that provided a complementary relation for resolving static indeterminate-
ness in the axial direction. However, the reported experiment is consistent 
with no unrelieved axial strain. This means that the ladder, in response to its 
own weight and/or to the applied load, has relaxed to its (very slightly) com-
pressed length in the course of reaching static equilibrium. 

 

 
Figure 14. (A) Parallel reaction force at the wall 4R  (solid circles) deduced from the measurement of reaction 3R  normal to the 
wall and the experimental estimate of the coefficient of friction µ  between the ladder and the wall. Line styles and colors of plots 
represent the same models and applied loads of Figure 11. M1 explicitly designates Model 1; (B) Test of the consistency of 4R  
predicted by Model 3 (dashed line) for the applied loads P of Figure 11. For each load P (25, 50, 75, 100 lbs), the reactions 

1 3R Rµ+  should sum to a constant W P+ , where W is the ladder weight. 
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• The elimination of Model 2 (and Model 1) likewise indicates that the bending 
of the ladder does not engender a torque at the ground support. Recall that it 
was this initially unknown moment that necessitated a complementary rela-
tion to resolve the static indeterminateness in the transverse direction. The 
reported experiment is consistent with no internal rotational moment at the 
base. This means that the ladder, initially presumed to be straight, has re-
laxed (very slightly) to the shape of an elastic deformation curve like those 
shown in Figure 10 in the course of reaching static equilibrium. 

• The satisfactory accord between Model 3 and the experimental results tends 
to confirm that, for a ladder stationary, but not clamped, at its base, it is the 
friction at the wall that provides the complementary relation needed to re-
solve static indeterminateness so that all four forces of reaction can be calcu-
lated. The theoretical expressions for the reactions do not depend on the 
elastic modulus of the ladder. They do depend, however, on the coefficient of 
friction of the ladder at the wall. The experimental results are consistent with 
an empirical relation whereby the friction at a surface is proportional to the 
normal force on that surface. 

The theoretical models tested in this paper each embodied one or more dis-
tinct physical attributes conceivably responsible for the forces of reaction on a 
fixed ladder modeled by a single beam. In this regard, the models were never in-
tended to provide an exact theory of the stresses and strains within an actual 
ladder. To achieve that would require a detailed mechanical model, outside the 
scope of this paper, taking account of the exact shape, weight distribution, and 
area moments of inertia of the components of the ladder, including rungs. This 
caveat must be borne in mind when comparing theory and experiment in Fig-
ures 11-14. The dashed lines signifying Model 3 in the figures do not pass 
through all the experimental points, although they are sufficiently close for the 
purposes of distinguishing among the models. Small adjustments in the value of 
the coefficient of friction µ  could achieve better agreement in one reaction or 
another, but there is little reason to make such refinements. Nor is there any 
reason to attempt to obtain an optimum value of µ  by a statistical fitting 
process such as the method of maximum likelihood, or least square’s analysis, or 
by Bayes’ theorem [18]. A nonlinear fit of that kind would be computationally 
intensive and, assuming it even converged, would yield values of µ  not much 
better than the estimate obtained simply and quickly by trial and inspection. 

The great practical utility of Model 3, now that it is validated by experiment, is 
that it provides a simple, but satisfactory, way to estimate the forces exerted by 
ladders on structures as a function of the climber’s weight and position of ascent 
and the ladder’s angle of inclination. Moreover, it is readily generalizable in spe-
cial situations of practical interest that may arise in engineering design or mat-
ters of litigation, such as cases where the ground is flat but sloped, or the wall is 
flat but not vertical, or the ladder inclines against a railing, not a wall, and over-
hangs it. 
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4. Effects of Impact Loads 

Although the primary focus of this paper has been on the static equilibrium of a 
ladder against a wall, the manner in which ladders are used in practice makes it 
necessary to discuss, albeit briefly, the question of impact loads. The experimen-
tal data of Table 1 were obtained by carefully and sequentially placing calibrated 
masses at designated rungs along the ladder so as to avoid imparting momentum 
to the ladder. Figure 15 shows the normal and parallel reactions (in arbitrary 
units) at the wall recorded as a function of time as a climber slowly ascends and 
then slowly descends the ladder, resting for a few seconds at each rung. The ho-
rizontal red bars mark the approximate values of the equilibrium reactions when 
the climber is stationary at each rung. 

One sees, however, significant fluctuations about the equilibrium values as the 
climber transitions from one rung to the next. In particular, on the ascent, the 
reactions at the wall drop suddenly as the climber lifts his foot from a rung, and 
then rises suddenly as he places his foot on the next higher rung. On the descent, 
the reverse occurs for the normal reaction at the wall: the reaction increases 
dramatically as the climber raises his foot to step on the rung below. 

The conveyance of momentum to a structure over a time interval is referred to 
as impact or impulse loading [19]. According to Newton’s laws of motion, when 
the climber accelerates upward, the ladder must recoil downward, thereby ex-
erting an additional force on whatever the ladder is leaning against. In physics, 
the integral of a force ( )F t  over time t is designated impulse. An essential  

 

 
Figure 15. Normal (a) and parallel (b) forces at the wall as a function of time as a climber 
ascends, then descends, the first 5 rungs of a ladder. At each rung, the climber waits a few 
seconds until the condition of static equilibrium is achieved, as indicated by the horizon-
tal red bars locating the mean equilibrium force (in arbitrary units) recorded at each 
rung. 
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matter in the safe use of a ladder is to determine how large a force the impulsive 
loading by a climber creates in comparison to the forces of static equilibrium. 

One way to do this is to model the ladder as linear elastic structure governed 
by Hooke’s law 

( ) ( )P t ky t= −                         (43) 

in which k is the force constant and ( )y t  is the deformation under the load 
( )P t . It is well known from the physics of oscillators [20] that the force constant 

k and the oscillation angular frequency ω  are related by 
2k Mω=                           (44) 

where M is the mass of the object. Newton’s second law, in the absence of dissi-
pation of mechanical energy, then takes the form 

( )2
2

2

d
d

P ty y
Mt

ω+ =
                      

(45) 

for which the general solution, derivable by means of Green’s functions [20], is 

( ) ( ) ( )
0

1 sin d
t

y t t t P t t
M

ω
ω

′ ′ ′= −∫
                

(46) 

with initial conditions 

( )
0

d0 0
d t

yy
t =

= = .                      (47) 

The impulse load ( )P t  can be modeled as a pulse of amplitude 0P  and 
width τ  by the difference of two Heaviside functions 

( ) ( ) ( )0P t P H t H t τ= − −   .                 (48) 

Substitution of Equation (48) into (46) leads to the solution 

( ) ( )0
2 cos cos

Py t t t
M

ω τ ω
ω

= − −  
               

(49) 

from which one obtains by standard calculus the maximum deflection 

( )0
max 2 2 1 cos

Py
M

ωτ
ω

= −                   (50) 

and therefore from Equations (43), (44) and (50) the maximum force of impact 
2

max max 0π
2P M y P

ωτ
ω

=
= = .                  (51) 

0P  is interpretable as the time-averaged load or, equivalently, the load at static 
equilibrium—i.e. the weight of the climber in the context of a ladder. 

To the extent that the conditions of the pulse model realistically apply to a 
ladder, Equation (51) indicates that a climber can generate a maximum impact 
load that is twice his weight. Figure 16 shows a plot of the normal reaction at the 
ground (i.e. normal to a horizontal force platform) as a climber rapidly ascends 
and descends a ladder—in contrast to the slow ascent and descent of Figure 15 
(note that the time base in Figure 16 is 1/3 that of Figure 15). The blue hori-
zontal bars mark the approximate reactions at static equilibrium at each rung. Of  
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Figure 16. Normal force at the ground as a function of time as a climber ascends and 
descends rapidly. Horizontal blue bars locate the mean equilibrium force. Large fluctua-
tions signify dynamic impact loads. The black rectangle encompasses the climber’s transi-
tion from the third to fourth rung, thereby generating an impact load approximately one 
and half times his weight. 

 
particular interest is the region within the black rectangle, which corresponds to 
the transition of the climber from rung 3 to rung 4 within a time interval t∆  of 
about 0.2 s. Since the vertical separation between the rungs is 30s∆ =  cm, the 
vertical acceleration a  of the climber can be estimated from the kinematics of 
uniform acceleration [21] to be 

( ) ( )
2

2 2

2 2 0.3 m 15 m s
0.2 s

sa
t

−∆ ×
= ≈ = ⋅

∆                 
(52) 

or, relative to the acceleration of gravity 29.81 m sg −= ⋅ , 

climber

0

15 1.5
10

Pa
g P
= ≈ = .                    (53) 

Equation (53) is consistent with Equation (51) of the dynamical pulse model. 
Indeed, in a more comprehensive model, the dissipation of mechanical energy 
must be taken into account and would lead to a ratio ( )max 0 2P P < . Neverthe-
less, the import of Equation (51) is that the numerical difference between impact 
forces and forces at static equilibrium can be consequential for those who use 
ladders in their work or who are responsible for setting safety guidelines and 
regulations with respect to ladders. 

5. Reaction Forces on a Single Wood Beam Inclined  
against a Wall 

The single-beam models developed in Section 2 to describe the reaction forces 
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on a ladder inclined against a wall should, in principle, apply to an actual single 
beam inclined against a wall. The author is unaware of any previously reported 
experiment to measure these forces and determine which, if any, of the theoreti-
cal models best accounts for these forces. This section reports the results of such 
a test. 

Measurements using one horizontal force platform at the base and one ver-
tically mounted force platform at the top were made on a wood beam of mass 
6.92 kg, length 2.04L =  m, width 7.5w =  cm, height 8.5h =  cm (symbols 
correspond to panel C of Figure 1) inclined against a wall at an angle of 57.7˚ 
to the ground. Starting at the center of the beam, round eyelets were screwed 
into the narrower side at intervals of 30 cm for a total of six eyelets. Loads were 
applied to the beam in units of 2 kg masses stacked on a 444 g weight hanger 
hooked to one of the eyelets. The eyelets, which served the equivalent function 
of rungs of the ladder, permitted load placements at fractional lengths of the 
beam 

( )

42 72 102 132 162 192, , , , ,
204 204 204 204 204 204
0.206,0.353,0.500,0.647,0.794

β  =  
 

≈
 

of which the first five eyelets were used in the experiment. Total loads (apart 
from the weight of the beam) ranged from about 4.4 N to 102.4 N. 

Table 2 records the measurements of the four forces of reaction. With a single 
beam, in contrast to a ladder, it was possible to measure directly the parallel 
force at the wall because the beam contacted the center of the vertical force plat-
form where the shear-sensitive strain gauge was located. 

Figure 17 shows a comparison of the measured reactions with the predictions 
of the three theoretical models for four different loads. One sees again, as in the 
case of the ladder measurements, that Model 1 (dashdot line) does not fit any of 
the data. For a coefficient of friction at the wall 0.35µ = , Models 2 and 3 give 
close predictions for the normal force at the ground (blue circles and curves) and 
the parallel force at the wall (maroon circles and curves), although the curve due 
to Model 3 (dashed line) passes through the data points (solid circles) and the 
curve due to Model 2 (solid line) does not. However, the parallel force at the 
ground (red circles and curves) and the normal force at the wall (green circles 
and curves) suffice to eliminate Model 2. The linear curve due to Model 3 
(dashed line) very closely matches the measured points, whereas the curve due 
to Model 2 (solid line) has a marked curvature and passes well below the red 
solid circles. Only Model 3 accounts satisfactorily for all the data for a single 
value of the coefficient of friction. 

This experiment lends strong support to the conclusion that the reaction 
forces on a single beam are described by the same theoretical model that de-
scribes the reaction forces on a fixed ladder, and that, as long as the base of ei-
ther does not slip, the complementary relation needed to resolve the static inde-
terminateness of the problem is the force of friction at the wall. 
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Table 2. Experimental normal and parallel reactions on a single wood beam. 

57.7θ =   LOAD (N) 43.55 63.15 82.75 102.35 

REACTIONS (N) EYELET     

Ground Normal 1R       

 1 100.3 118.8 137.7 156.6 

 2 99.6 118.6 137.3 154.6 

 3 100.0 119.2 134.1 150.9 

 4 98.0 115.8 131.8 149.0 

 5 99.0 113.8 131.9 148.3 

Ground Parallel 2R       

 1 21.8 23.1 15.9 29.5 

 2 25.8 31.0 35.3 38.5 

 3 31.9 36.8 46.9 49.4 

 4 34.6 40.4 45.6 53.1 

 5 36.2 44.3 53.6 62.6 

Wall Normal 3R       

 1 22.7 25.0 28.2 31.1 

 2 27.5 32.8 38.0 42.1 

 3 33.3 40.1 45.7 51.5 

 4 36.7 45.8 53.5 62.2 

 5 42.4 44.3 63.0 73.0 

Wall Parallel 4R       

 1 9.0 9.7 10.6 10.9 

 2 9.2 10.3 10.7 13.0 

 3 9.1 9.7 13.5 16.2 

 4 10.7 12.8 16.1 18.4 

 5 10.4 14.3 15.9 18.7 

6. Conclusions 

The question of how to calculate the four forces of reaction on a ladder in static 
equilibrium against a wall has been an unresolved issue for many years. The core 
of the difficulty is that the problem is statically indeterminate and requires com-
plementary relations beyond the equations of static equilibrium. Three funda-
mental types of models, differing in the assumptions with regard to supports at 
the ground and wall, were examined. The comprehensive theoretical analysis 
and experimental measurements of this paper showed unambiguously that the 
forces of reaction were best accounted for by the model employing a single com-
plementary relation characterizing friction at the wall. 

The force law for friction that resolved the static indeterminateness in the third 
model is a single-parameter empirical relation. This parameter, the coefficient 

https://doi.org/10.4236/wjm.2018.89024


M. P. Silverman 
 

 

DOI: 10.4236/wjm.2018.89024 338 World Journal of Mechanics 
 

 
Figure 17. Reaction forces on a single wood beam for four different loads as a function of load location for an inclination angle of 
57.7˚: (a) normal force at ground (blue), (b) parallel force at ground (red), (c) parallel force at wall (maroon). Measured points 
(solid circles) are superposed by predictions of Model 1 (dotdash), Model 2 (solid), Model 3 (dash). The green solid circles are 
experimental values of the normal force at the wall for which the theoretical curves are identical to those of (b). Parameters are 
beam weight 67.8 N, beam length 204 cm, and empirically found coefficient of friction 0.35. 
 

of friction µ , was estimated from, and tightly constrained by, the experimental 
data. A critical test of the third model was, in fact, to show that a single value of 
this coefficient sufficed to yield the normal and parallel reactions at the ground 
and at the wall for all values and locations of the loads. 

As part of the analyses reported here, the axial and transverse deformations of 
the single-beam ladder were calculated by means of Castigliano’s theorem, and 
then confirmed by a full calculation of the deflection curve (elastica) of the beam. 
The analyses demonstrated that the deformation due to flexure is about two to 
three orders of magnitude larger than the deformation due to compression. Thus, 
any model that takes into account only axial compression, but neglects flexure, 
to resolve the static indeterminateness of reactions on an inclined beam is likely 

https://doi.org/10.4236/wjm.2018.89024


M. P. Silverman 
 

 

DOI: 10.4236/wjm.2018.89024 339 World Journal of Mechanics 
 

to be inaccurate. 
Measurements were also made of the impact loading on a ladder by the ascent 

and descent of a climber. In a typical ascent without hesitation, the impact loading  

was found to be about 11
2

 times the climber’s weight. This result is consistent  

with the predicted maximum value of 2 for the ratio of impact load to static load 
by a dynamic model of the ladder as a linear elastic medium subject to a pulse 
perturbation. 

The successful description of the reaction forces on a ladder modeled as a sin-
gle beam prompted the question of whether any of the three theoretical models 
satisfactorily accounted for the reaction forces on an actual single beam. Mea-
surements analogous to those made on the ladder were also made on a wood 
beam of comparable length. The results showed that the same model that ac-
counted for the reaction forces on the ladder also best predicted the reaction 
forces on the single wood beam. Whether this result is completely general, or 
whether a different outcome might arise for a beam of different composition, 
length, and/or cross section can only be determined by further experimentation. 

A final point of importance concerns the inclusiveness of the three funda-
mental models. In other words, is there another independent way to analyze an 
Euler-Bernoulli (E-B) beam ladder that might produce better agreement with 
experiment than Model 3 of this paper? In the author’s opinion, the answer is 
probably “no”. The reason is that other models within the single E-B beam 
framework are either irrelevant, equivalent, or inconsistent. 

For example, two models not analyzed in this paper include a ladder with 
simple (i.e. frictionless) support at the wall and a ladder with fixed support (i.e. 
infinite friction) at the wall. Neither model is relevant because the contact at the 
wall is neither frictionless nor immovable. (The models of this paper all assume 
non-slippage at the ground, for otherwise there would be no static equilibrium.) 

Consider, however, a variation of Model 1. Model 1 resolved static indetermi-
nateness by applying two boundary conditions to the wall support in the confi-
guration of Panel B of Figure 1: no displacement axially (in the direction of 
force 2A ) or transversely (in the direction of force 2B ). Although this model 
was in marked disagreement with the experiment, a question might be raised as 
to whether the outcome could be different if the boundary conditions were ap-
plied to the wall support in the configuration of Panel A of Figure 1, which 
shows the usual orientation of a ladder. The modified boundary conditions 
would then be: no displacement vertically (in the direction of force 4R ) or ho-
rizontally (in the direction of force 3R ). To implement these boundary condi-
tions, one would express the strain energy U in terms of 3R  and 4R  (by 
transforming 2A  and 2B ), then set to zero the derivatives of U with respect to 

3R  and 4R . This procedure, however, leads to exactly the same reactions as 
obtained in the original Model 1. 

Another conceivable model might be to express U in terms of 3R  and 4R  
but impose only one boundary condition at the wall, e.g. no displacement verti-
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cally. The resulting equation, which couples the vertical and horizontal reactions 
at the wall, is then used together with Equation (31) which expresses zero torque 
in static equilibrium. This procedure is inconsistent, however, because the first 
equation leads to a rotational moment at the ground support, whereas the 
second equation describes the absence of such a moment. The resulting set of 
reactions depends on the length (L) and width (h) of the beam (in conflict with 
experimental results) and leads to large reaction forces that violate physical laws. 

In conclusion, for any model of a ladder (or other physical structure) it is pa-
ramount that the equations of static equilibrium and the complementary rela-
tions be consistent and compatible with the boundary conditions. 
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Appendix: Integration of the Heaviside Function 

The Heaviside function defined in Equation (12) and repeated below 

( ) 0
0

0

0
1

x x
H x x

x x
<

− =  ≥                     
(54) 

provides an economic way to represent piecewise continuous functions, such as 
frequently occur in the mechanics of continuous media. In the representation of 
static forces, impact forces, rotational moments, and strain energy densities it is 
often necessary to integrate over expressions of the form ( )nz H z a−  where a is 
a non-negative constant and n is a non-negative integer. The general result is 

( ) ( ) ( )
1 1

0
d 0,1, 2,

1

n nx n x az H z a z H x a n
n

+ + −
− = − = + 

∫  .      (55) 

A general proof, which will not be given here, can be constructed inductively 
from the examples below for 0,1n = . 

1) Case 0n = : 

( ) ( ) ( ) ( ) ( ) ( )
0 0

d d d
x x x a

a
H z a z H z a z a H u u x a H x a

−

−
− = − − = = − −∫ ∫ ∫  

(56) 

Steps: Transform the integration variable from z to u z a= −  and use the 
properties of ( )H u  in Equation (54). 

2) Case 1n = : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

0 0 0

2

2 2

d

d d

2

2

x x x

x a x a

a a

zH z a z z a H z a d z a a H z a d z a

uH u u a H u u

x a
H x a a x a H x a

x a H x a

− −

− −

− = − − − + − −

= +

−
= − + − −  

−
= −

∫ ∫ ∫

∫ ∫

  

(57) 

Steps: 
• Line 1: Transform the integrand into a function of u z a= −  by appropriate 

subtraction and addition of terms. 
• Line 2: Perform the first integral and import the result obtained in the case 

0n =  for the second integral. 
• Lines 3 and 4: Expand and simplify the algebraic expressions to obtain the 

form of Equation (55). 
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