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Abstract 
The reactivation of pre-existing faults is a common phenomenon in a basin. 
This paper discusses the relationship between the pre-existing faults and the 
newly formed Coulomb shear fractures regarding pore fluid pressures. Based 
on the Coulomb fracture criterion and Byerlee frictional sliding criterion, an 
equation relating pore pressure coefficient (λe), minimum dip angle (αe) of the 
reactive pre-existing fault and the intersection point depth (z) between the 
pre-existing fault and a newly formed Coulomb shear fault in an extensional 
basin, is established in this paper. This equation enhanced the understanding 
on the reactivation of pre-existing faults and can be used to calculate pa-
leo-pore fluid pressures. The bigger the pore fluid pressure in a pre-existing 
fault is, the less the minimum dip angle for a reactive pre-existing fault will be. 
The minimum dip angle is less in shallow area than that in deep area. This will 
be of significance in petroleum exploration and development. 
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1. Introduction 

The reactivation of pre-existing faults is a common phenomenon in a basin [1] 
(Twiss & Moores, 2007). Pre-existing faults may controlled the geometry and 
evolution of a rift [2] [3] [4] and after that, pre-existing faults may be abandoned 
and be cross-cut by newly formed structures [5] [6] to become sealing for oil and 
gas [7] [8]. In map view, pre-existing faults may reactivate where the stretching 
direction changes by less than 45˚ between extension events [9]. In cross sec-
tions, the minimum angle of a reactive fault and its sealing property for oil and 
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gas has been discussed [8]. However, both the details on reactivation of 
pre-existing faults and the pore fluid pressures have seldom addressed [1] [10]. 
Based on the Coulomb fracture criterion (also called the Navier-Coulomb, 
Mohr-Coulomb or Coulomb-Mohr fracture criterion) [11] and the Byerlee fric-
tional criterion [12], this paper is to discuss the controlling factors of the mini-
mum dip angle of a pre-existing fault thus helping understand the reactivation in 
pre-existing faults and forecast the paleo fluid pressure in faults.  

2. Methodology 

Coulomb criterion or frictional sliding criterion is applicable in most of the de-
formation in the upper lithosphere which always is shown as:  

0 tano n nτ τ µσ τ φσ= + = +                      (1) 

where τo is cohesion, μ is coefficient of internal friction, ϕ is internal frictional 
angle and σn is effective normal stress [13] [14]. 

In terms of the principal stresses, the Coulomb criterion for normal faults can 
be written to be [15] 
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and  

2 90 , tanfθ φ µ φ= + =                        (5) 

where K is a parameter depending on the fracture angle; S is the fracture 
strength under uniaxial compression with zero confining pressure; θf is the frac-
ture angle; ϕ is the internal friction angle and λ is pore fluid pressure coefficient, 
the ratio of pore pressure to overburden pressure. In a rift basin, the maximum 
stress is vertical and the pore fluid pressure coefficient is [16] 

P
gz

λ
ρ

=                            (6) 

where P is pore fluid pressure, ρ is density of overlying rocks, g is gravity accele-
ration and z is depth. 

For a pre-existing fault, its cohesion is zero and the frictional sliding criterion, 
for the same rocks becomes to be 

tann nτ µσ φσ= =                        (7) 

where τ is critical shear stress, μ is frictional sliding coefficient equal to the in-
ternal frictional coefficient for a specific rock [17], σn is normal stress and ϕ is 
frictional angle. The frictional coefficient is 0.85 or 0.6 where the confining 
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pressure is less than or larger than 200 MPa in Byerlee’s law.  
Under the stresses σ1 and σ3, corresponding to total stresses 1

tσ  and 3
tσ , the 

pre-existing faults with their normal lines within the ΔOLM (Figure 1) will 
reactivate where a newly Coulomb shear fracture occurs. In an extensional basin 
with a vertical maximum principal stress, the reactive pre-existing fault with the 
minimum dip angle matches point L (Figure 1) and is supposed to be the line 
AB (Figure 2) with a pore pressure coefficient λe. 

The normal stress on the fault AB is 

1 3 1cos sint t t
n e e eσ σ α σ α σ λ= + −                  (8) 

with 

( )1 3
1, 1t t Sgz gz K
K K

σ ρ σ ρ λ λ= = − + −              (9) 

 

 
Figure 1. Coulomb fracture criterion and frictional sliding criterion for the same rock. 
 

 
Figure 2. Stress state of a reactive fault AB with the minimum dip angle of αe. 1

tσ  is total 

maximum principal stress and it is vertical. 3
tσ  is total minimum principal stress and it 

is horizontal. n is the normal line of the fault AB. 
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The shear stress on the pre-existing fault AB is 

1 3sin cost t
e eτ σ α σ α= −                    (10) 

According to Equation (7), we have 

( ) ( )1 3 1 3 1sin cos cos sint t t t t
e e e e eσ α σ α µ σ α σ α σ λ− = + −        (11) 

Given ρ = 2.7 g/cm3, ϕ = 30˚, τ = 23 Mpa, g = 10 m/s2 and λ = 0.413 (a salt 
water density of 1.073 g/cm3 is assumed), in terms of the Equations (4) and (5), 
we get 

79.67, 3S K= =                        (12) 

In terms of the Equations (2) and (7), we get 

1 27t zσ =                           (13) 

and 

3 16.43 26.56t zσ = −                       (14) 

where the unit of 1
tσ  and 3

tσ  is MPa and that of z is km. The depth z is de-
fined to be the depth of the intersection point between a pre-existing fault and a 
newly formed Coulomb fracture (Figure 3). 

Substituting Equations (13) and (14) into Equation (11) and considering μ = 
tan 30˚ = 0.577, we get 

1.71cos 1.03sin
2.03cos 1.14sin e e

e e e z
α α

λ α α
+

= − −          (15) 

3. Implication of the Equations 

According to Equation (15) we know that there is a specific relationship between 
the pore fluid pressure (λe) and the minimum dip angle (αe) in a reactive 
pre-existing fault and the intersection depth (z) between the pre-existing fault 
and a newly formed Coulomb shear fault. The pore pressure coefficient is ra-
tional in the range of 0 to 1 and the minimum dip angle is rational in the range 
of 0˚ - 60˚. For a typical rock with an inner frictional angle of 30˚, the dip angle 
of a normal fault, a Coulomb shear fracture with a maximum vertical stress and 
a minimum horizontal stress, is 60˚. As shown in Figure 4, the relation between 
λe and αe is close to linear. We can get one of the three parameters like z, λe and 
αe in terms of the Equation (15) or Figure 4.  
 

 
Figure 3. A reactive pre-existing fault with minimum dip angle and a newly formed 

Coulomb shear fracture with a dip angle αi that is 45
2i
φα = + . 
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Figure 4. Coefficient of pore fluid pressure vs. minimum dip angle for pre-existing fault 
for various depthes. 
 

For the cases with the same intersection depth of z, the pore fluid pressure 
coefficient in a reactive pre-existing fault will decrease with the increase of the 
minimum dip angle for the pre-existing fault (Figure 4). The less the minimum 
dip angle of a reactive pre-existing fault is, the bigger the pore fluid pressure 
coefficient in a reactive pre-existing fault is. 

Sharing the same dip angle, the bigger the intersection depth of z is, the bigger 
the pore fluid pressure coefficient is. Similarly, when pore pressure coefficient 
keeps the same, the minimum dip angle for reactivating a pre-existing fault will 
increase with the increase in the intersection depth z (Figure 4). This can be 
further explained based on Figure 5. The maximum principal stress in vertical 
direction will increase with increasing depths, which mean increasing confining 
pressures. In turn, the differential stress needed to form a Coulomb shear frac-
ture will increase with increasing depths or confining pressures. The minimum 
reactive dip angles (αe1) of pre-existing faults in less confining pressure is less 
than those (αe2) in higher confining pressure.  

4. Discussion 

Rock deformation in the upper lithosphere is governed by Coulomb behavior, 
and the brittle fracture [18] or frictional sliding [12] apply for most the deforma-
tion in the upper lithosphere [19] [20]. The occurrence of fractures in cohesion 
rocks is obeyed by Coulomb fracture criterion, and the subsequent movement of 
the two walls is obeyed by frictional sliding after the occurrence of fractures be-
cause the cohesion was missed [1]. Where there are pre-existing faults, the  
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Figure 5. Coulomb shear fractures and reactive pre-existing faults with increasing 
confining pressure or depth in an extensional basin. αe1 and αe2 are minimum reactive dip 
angles of pre-existing faults in less confining pressure and higher confining pressure. αe1 < 
αe2. 
 
occurrence of new Coulomb fractures will be accompanied by reactivation of 
pre-existing faults to form fluid flowage paths [8] [10] [21]. However, the Cou-
lomb fracture criterion cannot explain the normal faults with dip angles less 
than 45˚ in an extensional basin with a vertical maximum principal stress (σ1). 
The angle relationship between the fault dip and the maximum principal stress 
(σ1) is not involved in the Byerlee frictional sliding criterion. Seldom work has 
been addressed on the effect of pore fluid pressures [1] [10] [20] [22] [23]. Fur-
thermore, little has been addressed on the dip change of a reactive pre-existing 
fault with increasing depth. 

In terms of the Equation (15) and based on the analysis in section of implica-
tion of the equations, the effect of pore fluid pressures on the reactivations of 
pre-existing faults can be addressed. A high pore fluid pressure will decrease the 
minimum dip angles of reactive pre-existing faults. Paleo fluid pressure would 
be calculated and this will be helpful in determining fault sealing property. On 
the other hand, the minimum dip angles of reactive pre-existing faults will in-
crease with the increasing depth in an extensional environment where the max-
imum principal stress is vertical (Figure 5). Both the confining pressures and 
differential stresses needed to form Coulomb shear faults will increase with 
depths. This will explain both the increasing dip angles upward the pre-existing 
faults and the fault branching downward the pre-existing faults. 

5. Conclusion 

Given certain rocks in a basin, a quantitative relationship between the pore fluid 
pressure (λe), the minimum dip angle (αe) in a reactive pre-existing fault and the 
intersection depth (z) can be established. The intersection depth (z) refers to the 
depth of the intersection point between the pre-existing fault and a newly 
formed Coulomb shear fault. This relationship will help us understand both the 
reactivation of pre-existing faults and the pore fluid pressures in the pre-existing 
faults. Two improvements have been made on the reactivation of pre-existing 
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normal faults. The first is that the pore fluid pressures affect the reactivations of 
pre-existing faults. A high pore fluid pressure will decrease the minimum dip 
angles of reactive pre-existing faults. This is of significance in petroleum explo-
ration. The second is that the minimum dip angles of reactive pre-existing faults 
will increase with the increasing depth in an extensional environment. This is of 
significance in explaining some downward branching faults and some upward 
steepening faults.  
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