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Abstract 

The linear analysis of the Rayleigh-Taylor instability in metal material is ex-
tended from the perfect plastic constitutive model to the Johnson-Cook and 
Steinberg-Guinan constitutive model, and from the constant loading to a 
time-dependent loading. The analysis is applied to two Rayleigh-Taylor insta-
bility experiments in aluminum and vanadium with peak pressures of 20 GPa 
and 90 GPa, and strain rates of 6 × 106 s−1 and 3 × 107 s−1 respectively. When 
the time-dependent loading and the Steinberg-Guinan constitutive model are 
used in the linear analysis, the analytic results are in close agreement with ex-
periments quantitatively, which indicates that the method in this paper is ap-
plicable to the Rayleigh-Taylor instability in aluminum and vanadium metal 
materials under high pressure and high strain rate. From these linear analyses, 
we find that the constitutive models and the loading process are of crucial 
importance in the linear analysis of the Rayleigh-Taylor instability in metal 
material, and a better understanding of the Rayleigh-Taylor instability in met-
als is gained. These results will serve as important references for evolving 
high-pressure, high-strain-rate experiments and numerical simulations. 
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1. Introduction 

The perturbed interface in a metal material will undergo growth and mixing in-
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duced by interfacial instability under strong shock, high acceleration, and shear 
driving. There are numerous research works [1] [2] [3] [4] [5] covering linear 
analysis and numerical simulation of the Rayleigh-Taylor instability (RTI) of 
gases and liquids. Researchers have gradually developed various experimental 
devices, such as the linear electric motor [6] and the shock wave tube [7] [8], and 
some diagnostic techniques such as particle-image velocimetry (PIV) [9] and 
planar laser-induced fluorescence (PLIF) [10]. For metals, the loading technique 
for the instability involves high pressure and high strain rate, so it is difficult to 
implement. Because a high-accuracy, high-resolution diagnostic technique for 
the RTI in metals has not yet been developed, high-level experimental work of 
the RTI in metals has been lacking. For numerical simulation, computation of 
the RTI in metals, involving the physical modeling of the material encompassing 
material physical behaviors, constitutive models, equations of state, and phase 
transformation dynamics, is also an interesting research topic. 

The RTI in metals has been studied by many authors, since the work of Miles 
in 1968 [11]. These studies could be categorized into three groups: the first 
group is the method based on the energy-balanced equation which was used by 
Miles [11], Robinson and Swegle [12]; the second group is the method based on 
the Eulerian equations for a continuum medium which was used by Plohr and 
Sharp [13], Terrones [14]; the last one is the method recently proposed by Piriz 
et al. [15] [16] who derived the amplitude equation from the Newton second 
law. Although these methods presented similar features for the RTI in metals, 
they gave different quantitative results for the growth rate and the cutoff pertur-
bation wave number. Although the first method and the third method should be 
physically equivalent, they showed different quantitative results. As shown in 
[16], “the instability is not controlled by the details of the behavior of a material 
point but rather it is governed by the bulk motion of the mass contained within 
the region with a thickness k−1”, we think the method based on the energy bal-
ance is more physically realistic.  

In this paper, we derive the equation of the perturbation amplitude based on 
the energy balance. There are three improvements over the classical linear analy-
sis of the RTI in metals presented in this work. First, because the constant pres-
sure driving used in previous works differs from the actual experimental driving 
process and is not applicable for a quantitative analysis of experiments, we in-
troduce time-dependent pressure driving into the linear analysis of the RTI in 
metals. Second, we perform a linear analysis of the RTI in metals based on the 
Johnson-Cook (JC) and Steinberg-Guinan (SG) constitutive models. However, 
in the previous published papers [11]-[16], the perfect plastic (PP) constitutive 
model is used for the linear analysis of the RTI in metals to obtain the analytic 
solution of the perturbation growth. When the constitutive models that better 
characterize the stress-strain relation in metals under dynamic loading, such as 
the JC and SG constitutive models, are used for the linear analysis of the RTI in 
metals, analytic solutions cannot be found, and a numerical solution is needed. 
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Third, we validate the linear analysis of the RTI in metals experimentally in alu-
minum and vanadium under high-pressure, high-strain-rate driving, using two 
Omega laser experiments. 

2. Analytical Formulation of the Problem 

For the linear analysis of interface instability of a finite thickness plate (Figure 
1), a velocity field is introduced with the result of Taylor’s inviscid, impressible 
fluid 

e sin ,    e cos .ky ky
x yu kx u kxξ ξ− −= =                      (1) 

where ( )tξ  is the perturbation amplitude on the interface (y = 0), 2πk λ=  
is the wave number. 

The average potential and kinetic energies within a wavelength in the accele-
rated reference frame that moves with the plate are, respectively 

( ) ( )2 21 1 e
4

khV g tρ ξ−= − −                       (2) 

( ) ( )2 21 1 e
4

khT t
k
ρ

ξ−= −                         (3) 

where ρ is the material density, g P hρ=  is the acceleration of the plate, P is 
the driving pressure, h is the thickness of the plate. In a typical planar Ray-
leigh-Taylor experiment, the driving pressure is generated by a flowing plasma 
atmosphere [17] [18] or a high explosive detonation product [19] which releases 
across a vacuum gap stagnating on the plate, and different driving techniques 
and the gap thickness determine the magnitude of the driving pressure and the 
strain rate of the plate. 

Based on the energy balance method of Mises [11], that is, the sum of the rate 
of kinetic and potential energies and the average stress power integral equals ze-
ro, namely 

( ) 0
d 0

h
T V W y

t
∂

+ + =
∂ ∫                       (4) 

where ij ijW S D=  is the stress power, ijS  is the deviatoric stress tensor, ijD  is 
the deformation rate tensor. 
 

 
Figure 1. Schematic showing RTI in a finite thickness 
plate under load. 
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The aforementioned analysis shows that it is very important to compute the 
stress power in the linear analysis. For the incompressible continuum media, the 
deformation rate tensor is 

cos sin1 e
sin cos2

j kyi
ij

j i

u kx kxuD k
kx kxx x

ξ −
 ∂ −∂  

= + =     − −∂ ∂   
              (5) 

Based on the elastic constitutive relation, deviatoric stress tensor follows 

2ij ijS GD=                              (6) 

Under the initial condition ( ) 00tξ ξ= = , the deviatoric stress tensor is 

( )0

cos sin
2 e

sin cos
ky

ij

kx kx
S Gk

kx kx
ξ ξ − − 

= −  − − 
                (7) 

So, the stress power in the elastic range is 

( )2 2
04 e ky

ij ijW S D Gk ξ ξ ξ −= = −                      (8) 

While the material deformation is beyond the elastic range, the stress state can 
be calculated with radial return algorithm [20]. Firstly, the equivalent stress is 

( )*
03 2 2 3 e ky

ij ijs S S Gk ξ ξ −= = −                  (9) 

Here, we take the equivalent stress at y = 0 as the effective yield stress effσ , 
namely 

( ) ( )eff *
00 2 3s y Gkσ ξ ξ= = = −                   (10) 

If effσ σ< , the deformation is purely elastic, 

ij ijs S=                              (11) 

If effσ σ≥ , the deformation is elastic-plastic, the deviatoric stress tensor ijs  
is 

eff
ij ijs Sσ σ=                           (12) 

σ  is the material yield stress. 
Using these results, the stress power integration is obtained, 

( ) ( )
( ) ( )

2 eff
0

0 eff 2 eff
0

2 1 e ,                
d

2 1 e ,     

kh
h

kh

Gk
W y

Gk

ξ ξ ξ σ σ

σ σ ξ ξ ξ σ σ

−

−

 − − <= 
− − ≥

∫






          (13) 

Taking the average kinetic and potential energies and the stress power inte-
gration into the energy balance Equation (4), and assuming that 0ξ ≠ , the fol-
lowing evolution equation of the perturbation amplitude of the RTI is obtained: 

( )
( )

2 eff
0

eff 2 eff
0

4 ,                ,

4 ,     ,

Gk
gk

Gk

ξ ξ ρ σ σ
ξ ξ

σ σ ξ ξ ρ σ σ

− − <− = 
− − ≥

            (14) 

where ( )tξ  is the perturbation amplitude on the interface, 0ξ  is the initial 
perturbation amplitude, 2πk λ=  is the wave number, ρ is the material densi-
ty, G is the material shear modulus, g P hρ=  is the plate acceleration, P is the 
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driving pressure, and h is the plate thickness. When the perfect plastic constitu-
tive model is used, the analytic solution is obtained from (14). Here, the JC and 
SG constitutive models are applied. The JC constitutive model [21], in which 
strain-rate and temperature effects are considered, expresses the yield stress in 
terms of strain, temperature, and strain rate, namely, 

( )JC
0

1 ln 1 ,
m

np r

m r

T TA B C
T T

ε
σ ε

ε

    −   = + + −      −     





          (15) 

where JCσ  is the yield stress of the JC model, A is the initial yield stress at a 
reference temperature, B and n are the material strain hardening parameters, 

pε  is the plastic strain, C and 0ε  are the strain-rate hardening parameter and 
the defect density characteristic parameter, respectively, m is the heat softening 
parameter, rT  and mT  are the reference temperature and the melting temper-
ature, respectively, and commonly 300 KrT = . Because density and pressure 
effects are not considered in the JC model, the model is only applicable to the 
low-pressure region. Moreover, the yield stress is simply linearly related to the 
logarithmic strain rate in the JC model, so the model cannot characterize the 
transition from a dislocation slide to a dislocation drag mechanism of distortion, 
restricting the applicable validity of the model to the condition in which strain 
rate < 104 s−1. The pressure, temperature, and strain-rate terms are added into 
the elastic-plastic constitutive equation of the SG model [22], and, moreover, the 
couplings of pressure and strain rate with the yield stress can be split. Because 
the yield stress in the SG model depends on the pressure, the constitutive equa-
tion and the equation of state are coupled. This coupling relation indicates the 
pressure hardening feature of metals at high pressure. In the SG model, the shear 
modulus and the yield stress are 

( ) ( )1 3
0

0 00 0

1 1, 1 300G GG P T G P T
G P G T

η− ∂ ∂   = + + −    ∂ ∂    
, 

( ) ( )1 3
SG 0 1 1 300nY B A P Tσ ε η α− = + + − −  , 

respectively, where 0Y  is the initial yield strength, 0G  is the initial shear mod-
ulus, ( )0G P∂ ∂  and ( )0G T∂ ∂  are the derivatives of the shear modulus with 
respect to pressure and temperature at the initial condition, respectively, A and 
α correspond to ( ) 00G P G∂ ∂  and ( ) 00G T G∂ ∂ , respectively, B and n are 
strain hardening parameters, and 0η ρ ρ=  is the compression ratio. The SG 
model is independent of strain rate formally, but it limits the extent of the strain 
rate; namely, the strain rate must be >105 s−1. The reason for this limitation is 
that, in the SG model, one assumes that the intenerating effect induced by the 
temperature rise under high-velocity impact counteracts the hardening effect of 
the strain rate, resulting in a stain-rate-independent constitutive equation. The 
SG model is the most widely applied high-pressure constitutive model at 
present, which is capable of characterizing the yield stresses of many metals at 
high pressures. 
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3. Applications of the Analytical Model 

3.1. Lorenz’s Experiment on Aluminum Using the Omega Laser 

The effect of ultrahigh pressures on the material strength was studied using an 
Al-6061-T6 plate with a pre-imposed sine perturbation driven by plasma ramp 
loading on the Omega laser, where the peak pressure was ~20 GPa and the aver-
age strain rate was ~ 6 16 10  s−× . During the course of the experiment, the loading 
rate is not so fast that the compression wave evolves into a strong shock, so the 
aluminum sample remains shock-free, with less of a temperature rise. In ref. 
[17], the peak temperature was assumed to be ~400 K, which is far lower than 
the melting temperature of Al-6061-T6. In this linear analysis, the initial density 
of aluminum is 3

0 2.7g cmρ = , the compression ratio is 1.17, the sample 
thickness is 35.6 μm, the wavelength of the pre-imposed sine perturbation is 40 
µm, the amplitude of the perturbation is 3.4 μm, and the temperature is 400 K. 
The parameters of the Johnson-Cook and Steinberg-Guinan models of 
Al-6061-T6 are listed in Table 1 and Table 2. 

In contrast to the constant pressure driving in previous work, here, a 
time-dependent pressure driving term ( ) ( ) ( )4 0.2 2037.5 10 20 e tP t t − +−= × + , where 
P is in GPa and the unit of t is nanoseconds, is introduced to approximate the 
experimental driving, as shown in Figure 2. In this computation, three models 
of the JC, SG, and PP are used to describe the stress-strain relation of the metals 
under dynamic loading. To study the effect of pressure driving on the RTI in 
metals, the SG model with time-dependent or constant pressure driving is ap-
plied in the linear analysis. Figure 3 presents the perturbation growth factor 
(namely, the ratio of the current amplitude to the initial amplitude, 0ξ ξ ) and 
ratio of the yield strength to pressure with the SG model under time-dependent 
or constant pressure driving, where the constant pressure is the same as the val-
ue in ref. [17]; namely, the constant pressure equals the peak value of the 
time-dependent pressure driving, ( )maxcP P t= . 

Figure 3(a) indicates that the result of the linear analysis under 
time-dependent loading is comparable to that of the experiment within 10%, but 
the result under constant loading quickly departs from that of the experiment. 
When 5 nst < , the growth factors under constant and time-dependent loading 
are almost in agreement, which indicates that this time extent falls into the linear  
 
Table 1. Parameters for the JC model of Al-6061-T6. 

A (GPa) B (GPa) C Tm (K) n m 

0.3243 0.11385 32.0 10−×  950.2 0.42 1.34 

 
Table 2. Parameters for the SG model of Al-6061-T6. 

G0 
(GPa) 

( )0
G P∂ ∂

 
( )0

G T∂ ∂  
(GPa·K−1) 

Y0 
(GPa) 

B n 
A 

(GPa−1) 
α 

(kK−1) 

27.6 1.7940 −0.017 0.29 125.0 0.10 0.0652 0.616 
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Figure 2. Lorenz’s experimental loading history. 

 

 
(a) 

 
(b) 

Figure 3. Growth factor and ratio of yield strength to pressure with 
the SG model under constant and time-dependent loading. 
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region of pressure. In Figure 3(b), when 5 nst > , the yield strength to pressure 
(Y/P) value of the time-dependent loading grows rapidly with time, but that of 
constant loading grows very slowly, which indicates that the yield strength under 
time-dependent loading inhibits the growth of the RTI in aluminum, but the 
stability of the yield strength at constant loading is so weak that the growth fac-
tor develops rapidly, which differs from the experimental results. As shown, to 
illustrate the experimental phenomena and obtain results that are in good 
agreement with experiments, using a time-dependent pressure is indispensable 
in the linear analysis of the RTI in metals. 

The effects of three different constitutive models—namely, the JC, SG, and PP 
models—on the RTI in metals are further analyzed under time-dependent pres-
sure, as shown in Figure 4. Figure 4(a) presents the comparative results of the  
 

 
(a) 

 
(b) 

Figure 4. Growth factor and ratio of yield strength to pressure with 
the SG, JC, and PP model under time-dependent loading. 

https://doi.org/10.4236/wjm.2018.84008


X. B. Bai et al. 
 

 

DOI: 10.4236/wjm.2018.84008 102 World Journal of Mechanics 

 

growth factor with the three different constitutive models, which shows that the 
result with the SG model agrees with the experiment quantitatively but the re-
sults with the JC and PP models depart from the experiment. The aforemen-
tioned results indicate that the SG model is applicable for the high-pressure, 
high-strain-rate loading condition with a peak pressure of about 20 GPa and a 
strain rate of ~106 s−1 in the linear analysis. As shown from Figure 4(b), the ra-
tios of the yield strength models to the loading pressure for the JC and perfect 
plasticity are less than that of the SG model, so their stability effects on growth 
are too weak to induce a departure of the growth factors. This indicates that the 
JC and PP models are not applicable to the linear analysis of the RTI in metals in 
a plasma-driven, quasi-isentropic, high-pressure, and high-strain-rate experi-
ment. It can also be seen from Figure 3(b) and Figure 4(a) that, when 

15 nst < , the Y/P values of the PP and JC models are close together and the 
growth factors are nearly identical, and, when 15 nst > , the Y/P values depart 
from each other rapidly, but the growth factors exhibit little discrepancy. These 
results indicate that the prophase of the quasi-isentropic loading is the dominant 
regime of the RTI in metals, whereas, in the late regime of the quasi-isentropic 
loading, due to the rapid decrease of the loading pressure, the drive of the load-
ing pressure becomes weak for the RTI in metals, and the RTI is in a free evolu-
tion regime. The linear analysis results of the RTI for the Lorenz experiment are 
in accordance with the experiment with time-dependent pressure and the SG 
model for a peak pressure of ~20 GPa and an average strain rate of ~ 6 16 10 s−×  
in aluminum. 

3.2. Park’s Experiment on Vanadium Using the Omega Laser 

The linear analysis method can be applied to Lorenz’s experiment with loading 
pressure and strain rate of the are ~20 GPa and 6 16 10 s−× . Whether or not the 
linear analysis is applicable to an experiment with a higher loading pressure and 
a higher strain rate is not clear. Hence, the linear analysis was performed on the 
RTI in vanadium, which was quasi-isentropically plasma-driven on the Omega 
laser by Park et al. [18]. A CH-based epoxy “heat shield” was machined on the 
front side of the sample to ensure that the surface of the sample is not ablated by 
the stagnating plasma. The temperature rise of the sample was ~200 K; therefore 
the temperature of the sample was substantially lower than the melting temper-
ature of vanadium. The peak pressure in the experiment reached 90 GPa, the 
strain rate was 7 13 10 s−× , the initial density was 3

0 6.1g cmρ = , the compres-
sion ratio was 1.3η = , the sample thickness was 35 μm, the wavelength of the 
imposed ripple was 60 μm, the amplitude was 0.6 μm and the temperature was 

500 KT = . The parameters for the Steinberg-Guinan model of vanadium are 
listed in Table 3. 

Because the loading pressure and the strain rate in Park’s experiment are sub-
stantially beyond the applicable extent of the JC model, here only the SG model 
is applied in the linear analysis. Both constant and time-dependent pressure  
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Table 3. Parameters for the SG constitutive model of vanadium. 

G0 
(GPa) ( )0

G P∂ ∂  ( )0
G T∂ ∂  

(GPa·K−1) 
Y0 

(GPa) 
B n 

A 
(GPa−1) 

α 
(kK−1) 

48.1 0.4906 −0.0099 0.60 10.0 0.10 0.0102 0.206 

 
drives are considered, and the time-dependent pressure is  
( ) ( ) ( )1.4 0.14 1014.53 10 e tP t t − += + , where the unit of t is nanoseconds, as shown in 

Figure 5. The constant pressure equals the peak value of the time-dependent 
pressure as in [18], namely, ( )maxcP P t= . 

Figure 6 present the growth factors computed with the SG model under con-
stant and time-dependent pressure drives and the ratios of the yield strengths to 
the loading pressures under two loading conditions, respectively. The linear 
analysis result with time-dependent pressure is in agreement with the experi-
mental data, which is more applicable than that with constant pressure from 
Figure 6(a). As shown in Figure 6(b), when 10 nst < , the Y/P values of the li-
near analysis are almost equal, and the growth factors under constant and 
time-dependent pressure drives are also indistinguishable. However, after 10 ns, 
the Y/P value under the time-dependent pressure drive increases quickly, miti-
gating the development of the RTI in vanadium, whereas the Y/P value under 
the constant pressure drive remains almost unchangeable, thus not inhibiting 
the development of the RTI in vanadium and inducing a quick departure of the 
growth factor from the experimental data. The linear analysis of the RTI in va-
nadium by Park et al. indicates that the results using the SG model and a 
time-dependent pressure drive are quantitatively comparable to the experimen-
tal results under the extreme conditions of a peak pressure of ~90 GPa and an 
average strain rate of 7 13 10 s−×  in vanadium, and the linear analysis is applica-
ble to the extreme conditions of a peak pressure of ~100 GPa and a strain rate of 
107 s−1. 

4. Conclusions 

Based on the energy balance equation, the linear equation of RT interfacial in-
stability for finite thickness plate metal is derived. The constitutive model of 
materials is extended to JC and SG constitutive models. Using the linear analysis 
method, we numerically solve the perturbation growth experiment of the RT in-
stability on the Omega aluminum laser and the quasi-isentropic loading of alu-
minum and vanadium. We have obtained the growth evolution of metal alumi-
num and vanadium interface perturbation and compared it with the experimen-
tal results.  

The main results of this paper are as follows: 1) Some nonlinear effects are in-
troduced into the linear analysis by the imported time-dependent pressure and 
the JC and SG models, and the new method is more applicable to the nonlinear 
regime of the RTI in metals than the classical method with a constant pressure 
and an ideal constitutive model. 2) For the RTIs in aluminum and vanadium  
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Figure 5. Park’s experimental loading history. 

 

 
(a) 

 
(b) 

Figure 6. Growth factor and ratio of yield strength to pressure 
with the SG model under constant and time-dependent loading. 
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quasi-isentropically plasma-driven with high pressures and high strain rates > 
105 s−1, the computed results obtained by implementing the SG model in the li-
near analysis are quantitatively comparable to the experimental data; however, 
these extreme conditions of high pressures and high strain rates are beyond 
the applicable extent of the JC model. 3) At the condition of a peak pressure of 
~100 GPa and a strain rate of 106 - 107 s−1, the linear analysis of the RTI in alu-
minum and vanadium is also applicable. From the linear analysis of the RTI in 
metal material, it is found that constitutive models and loading processes are 
both important, and a better cognitive understanding of the RTI in metals is 
gained. These results will serve as important references to evolving high-pressure, 
high-strain-rate experiments and numerical simulations. 
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