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Abstract 
The objective of this study is to develop an effective approach for product 
quality prediction in Computer Numerical Control turning of cantilever bars. 
A systematic predictive modelling procedure based on experimental investi-
gations, neural network modelling and various statistical analysis tools is de-
signed to produce the most accurate, practical and cost-effective prediction 
model. The modeling procedure begins by exploring the relationships be-
tween cutting parameters known to have an influence on quality characteris-
tics of machined parts, such as dimensional errors, form errors and surface 
roughness, as well as their sensitivity to the process conditions. Based on these 
explorations and using numerous statistical tools, the most relevant variables 
to include in the prediction model are identified and fused using several ar-
tificial neural network architectures. An application on CNC turning of canti-
lever bars demonstrates that the proposed modeling procedure can be effec-
tively and advantageously applied to quality characteristics prediction due to 
its simplicity, accuracy and efficiency. The experimental validation reveals 
that the resulting prediction model can correctly predict the quality characte-
ristics of machined parts under variable machining conditions. 
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1. Introduction 

Turning is one of the most commonly used metal cutting processes because of 
its ability to remove material faster, giving reasonably good quality for cylindric-
al parts. The turning process is used in a variety of manufacturing industries in-
cluding the aerospace and automotive sectors where quality is an important fac-
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tor. The quality of finished products plays a crucial role in the functional capac-
ity of the part and, therefore, a great deal of attention should be paid to main-
taining consistent geometrical and dimensional tolerances and acceptable sur-
face roughness. Producing a part with the desired specifications presents both 
technological and economic issues. The production processes used to reach the 
appropriate specifications affect not only the functional attributes of the product 
but also the manufacturing costs. Working under ideal conditions, engineers can 
control the product quality by controlling the cutting process parameters. Usually, 
engineers set these parameters based on experience or handbook data. In the 
case of turnings tiff materials clamped in a chuck, it is known that it is possible 
to arrive at a good precision for diameter, surface roughness and geometrical 
forms only if the length to diameter ratio of the work piece is relatively low. 
Otherwise, the turning operation could result in poor specifications and fail to 
meet the required tolerances.  

Effectively, the quality characteristics of machined parts (QCMP) may deviate 
from the expected values due to many factors: geometric machine errors, ther-
mally induced distortions of machine tool elements, static deflections of the 
machine-fixture-workpiece-tool system (MFWTS) under cutting forces, and 
other error sources such as tool attributes variation (geometry, material, fixture, 
tool wear, etc.), workpiece attributes change (material, hardness, dimension, 
geometry, fixture, etc.), machining process parameters (cutting speed, feed rate, 
depth of cut, etc.), and machining operation conditions (cutting forces, temper-
ature, MFWTS vibration, cutting fluid, and other dynamic variables. The com-
plex correlations between these factors make it difficult to develop an intuitive 
quality control and improvement approach based only on human experience. All 
of these factors must be considered simultaneously in order to build up an ap-
propriate and successful process quality enhancement plan. An intelligent inte-
gration strategy of the most influential factors and the most significant informa-
tion sources is the key element in developing an effective approach to quality 
control and an efficient prediction system for the CNC turning process. 

The quality of machined parts is recognized as a key element for competitive 
production, due to tolerance requirements of mechanical parts designed for high 
precision applications [1]. Many research works have been conducted in order to 
improve the performance of the machining processes [2]-[8]. Among the most 
reported works are several studies based on the development of modelling ap-
proaches using analytical models, finite element method models, regression 
models, response surface models and Taguchi analyses to estimate, predict and 
improve the performances of the machining process [9]-[15]. In recent years, ar-
tificial neural networks, fuzzy logic, sensor fusion and genetic algorithms are in-
creasingly used to develop predictive models for various part quality characteris-
tics [16]-[22]. Some of these modelling techniques are combined with various 
measurement techniques. The main measurements that have been identified as 
major indicators of machined part quality include cutting forces, cutting torque, 
vibrations, acoustic emissions, temperature and motor current [23]-[28]. Other 
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direct measuring methods such as touch trigger probes, proximity sensors, opti-
cal and electrical resistance measurement techniques have also been reported, 
but their reliability under real conditions is limited [29] [30] [31] [32]. General-
ly, these models are focused on particular applications and materials with a li-
mited range of experimental conditions, and oriented to specific types of errors 
and tolerances. These models are therefore ill-adapted to many applications. 
Other efforts have also been made to develop a number of on-line measurement 
techniques to assess the QCMP using sophisticated instrumentations. The analy-
sis of data from these measurements demonstrated the difficulties involved in 
extracting representative sets of all quality characteristics from only one source 
of information. Data simultaneously acquired from several sensors is needed. 
This analysis also shows that two main requirements need to be satisfied when 
developing predictive models: the measurements must reflect the process beha-
vior under its varied operating conditions and the generated data must allow for 
some refinement in order to discriminate the effect of various cutting parame-
ters and conditions. The integration of several sensors can greatly improve the 
accuracy and efficiency of the modeling process in various applications. This 
approach remains nevertheless a tributary to the used processing and modeling 
methods. 

The literature review clearly shows that there is no structured approach or 
comprehensive and integrated predictive approach combining dimensional er-
rors, form errors and surface roughness at the same time. This research proposes 
an effective approach for dimensional error, form error and surface roughness 
prediction in the CNC turning of cantilever bars. After a structured experimen-
tal investigation, relationships and interactions between cutting parameters, cut-
ting conditions and the quality characteristics of specific machined parts are 
analysed, and their sensitivity to the process conditions is evaluated. Based on 
the experimental results and various statistical tools, the variables most relevant 
to the prediction model are identified and fused using several artificial neural 
network (ANN) architectures. An application to CNC turning of cantilever bars 
is developed to illustrate the feasibility and the effectiveness of the proposed 
modeling procedure. 

2. Machined Part Quality Characteristics 

To demonstrate the proposed predictive modelling procedure, three parts qual-
ity characteristics are considered: diametral errors (De), circularity errors (Ce), 
and surface roughness (Ra). Note that the dimensional and geometrical specifi-
cations of the final parts are expressed in drawings in terms of dimensional and 
geometrical tolerances. There is no direct relationship between deviations re-
sulting from the cutting process and tolerance values. However, it is important 
to understand these interdependencies for analysing the effects of machining 
parameters on the machined part dimensional and geometrical specifications. 

As illustrated in Figure 1, a bar with an initial diameter (Di) is considered for 
turning operation using a nominal depth of cut d in a cantilever mounting con-  
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Figure 1. Typical deflections in turning of cantilever bars: (a) Cantilever mounting con-
figuration and (b) Typical workpiece deflections. 
 
figuration (Figure 1(a)). The machined parts dimensional and form errors are 
basically estimated from the defections of the MFWTS in the cross-section con-
taining the cutting point. The workpiece deflection and the machine center de-
viation of are predominantly due to the cutting forces (radial and tangential 
forces). The tool deflections in X and Y directions are due to radial and tangen-
tial force components respectively. The effects of tool and workpiece axial de-
flections on the radial deviations, due to the axial cutting force, are negligible. 
Because of all these deflections, dimensional and form errors appear on the ma-
chined part surfaces as soon as the cutting forces disappear and the axis of the 
part returns to its normal position. These errors appear proportional to stresses 
and deflections received. Consequently, the turning of cylindrical surfaces leads, 
in the case of cantilever mounting configuration, to surfaces with an apparent 
polynomial profile (Figure 1(b)). 

The diametral error can bedefined as the deviations between the desired and 
actual profiles of the workpiece. For the cantilever bar turning process, the dia-
metral error is expressed as: 

( )act desDe 1000 D D= −  

where De is the diametral error (µm), Dact is the actual (measured) diameter 
(mm) and Ddes is the desired diameter (mm). The desired and actual diameters 
are virtually equal at the fixed end of the workpiece. Due to the increase in part 
deflection, Degrows along the length of part and reaches its maximum value at 
the cantilever free end. In other hand, the ISO definition of circularity or 
roundness is based on the ratio between the inscribed and the circumscribed cir-
cles (maximum and minimum sizes for circles that are just sufficient to fit inside 
and to enclose the shape). The circularity error (Ce) or out of roundness can 
therefore be defined as the difference between the radius of the two circles. The 
first circle is drawn outside the profile as to wholly enclose it, and the other is 
drawn inside the roundness profile so that it just inscribes the profile. The unit 
used for Ce is the micrometre. Finally, the surface roughness Ra (mean rough-
ness) is the arithmetic average of the absolute values of the roughness profile. Ra 

146 



D. M. Davakan, A. El Ouafi 
 

is one of the most effective surface roughness measurements commonly adopted 
in engineering practice. Ra gives a good description of the height variations of 
the surface. The unit used for Ra is the micrometre. 

3. Experimental Study 

Numerous factors have an important influence on machined part dimensional 
and geometric accuracy during tuning operations. This study will employthir-
teen of them to illustrate the proposed approach. The first five factors are related 
to cutting parameters and workpiece geometry: cutting speed (S), cutting feed 
rate (f), depth of cut (d), workpiece diameter (Di), and workpiece length (L). 
The eight other input factors are related to the process’ dynamic conditions, and 
are recognized to have a significant influence on diametral errors (De), circular-
ity errors (Ce) and surface roughness (Ra). These factors are: radial, tangential 
and axial cutting forces (Fx, Fy, Fz), radial and axial machine-workpiece-tool vi-
brations (Vbx and Vbz), acoustic emission (AE), and radial and axial workpiece 
deflections (dfx and dfz). 

3.1. Experimental Design  

In any experiment, the quality of the acquired data depends mainly on the data 
collection method. In a lot of cases, full factorial experiments are conducted. 
However, this design cannot be implemented when there are too many factors 
under consideration because the number of repetitions required would lead to 
prohibitive costs. By contrast, the use of a strategy such as orthogonal arrays 
(OAs), developed by Taguchi, can led to an efficient and robust fractional fac-
torial design of experiments that can collect all of the statistically significant data 
with the minimum possible number of repetitions [33]. Accordingly, OAs will be 
used in this paper for the design of experiment and the modelling procedure. 

The experiments are carried out on a CNC turning machine tool using a car-
bide insert for turning aluminum 6061-T6. The cutting tool is fixed on a Kistler 
piezoelectric dynamometer fixed rigidly on the tool turret so that the three 
components of the cutting force could be measured. A three-component accele-
rometer and an acoustic emission transducer mounted close to the cutting zone 
measured, respectively, the accelerations due to the MFWTS vibrations and the 
acoustic emissions generated by the machining operation. Two capacitance 
probes mounted close to the tool holder measured the tool deflections in the 
feed and speed directions. 

Experiments are performed in two stages using L32 and L16 orthogonal arrays. 
In the first stage, a set of 32 experimental tests is performed to obtain the input 
data for training the ANN in the modelling procedure. In the second stage, an 
additional set of 16 experimental tests is performed to obtain the input data for 
evaluating and confirming the capacity of the resulting model. Cutting parame-
ters used in both first and second stage experiments are summarized in Table 1. 
In order to ensure the validity of the experimental results, all 48 tests are re-
peated three times. Single pass cuts are executed according to the factor levels of  
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Table 1. Factors and levels chosen for the experiments. 

Cuttingparameters Training sets Validation sets 

Cutting speed (S) in m/min 50 - 250 75 - 225 

Feed rate (f) in mm/rev 0.05 - 0.35 0.1 - 0.3 

Cutting depth (d) in mm 0.5 - 3.5 1 - 3 

Diameter (Di) in mm 20 -50 25 - 45 

Length (L) in mm 150 - 350 200 - 300 

 
each repetition. Feed and cutting speed levels are chosen within the range rec-
ommended by the manufacturer. The cutting depth is limited under 3.5 mm to 
represent finishing and semi-finishing conditions. The inserts are changed regu-
larly in order to maintain small cutting tool wear and to avoid tool wear as addi-
tional factor. 

All sensor signals are acquired and conditioned so that only the steady-state 
portions are retained. For each repetition, the min, max and mean values of the 
radial, tangential and axial cutting forces (Fx, Fy, Fz), MFWTS vibrations in the 
X and Z directions (Vbx and Vbz), acoustic emission (AE), and tool radial and 
axial deflections (dfx and dfz) in the steady state portions are calculated. The 
max values are considered to be the most representative. The machined parts are 
inspected for the three considered quality characteristics. The diametral and 
circularity errors are measured using a 3-axis moving bridge type coordinate 
measuring machine with an accuracy to less than 1 μm. The machined parts are 
measured at six uniformly distributed locations along its length to determine the 
form and dimensional errors. Each measurement, taken over a specific area, is 
repeated three times and the average values are considered. The surface rough-
ness is inspected on three separate profiles using an accurate Mitutoyo Surftest 
profilometer, and again the average of three readings is recorded. The average 
dimensional, circularity and surface roughness errors obtained after inspection 
as well as other sensor measurement data are used to evaluate de the cause and 
effect relationships between machining parameters, machining conditions and 
QCMP. Figure 2 presents 12 typical profiles selected from the 32 profiles obtained 
using experimental factors presented in Table 1 for turning of cantilever bars. 

3.2. Analysis Strategy  

The experimental data is analyzed using three statistical tools: the graph of the 
average effects of each factor level, the percent contribution of factors extracted 
from the analysis of variance (ANOVA), and the correlation between the QCMP 
and various factors and sensor measurements. The percent contribution of a 
factor reflects the portion of the total variation observed in the experiment that 
is attributed to that factor. Ideally, the total percent contribution of all consi-
dered factors must add up to 100. Any difference from 100 represents the con-
tribution of other uncontrolled factors and experimental errors. As the experi-
ments are designed using an OA, the estimates of the average effects of a given 
factor on various responses will not be biased. Two ANOVA are performed in  
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Figure 2. Typical dimentional errors along workpiece axis in cantilever 
mounting. 

 
this analysis. The first ANOVA is performed using machining parameters (S, f, 
d, Diand L) as inputs and sensor measurements (Fx, Fy, Fz, Vx, Vz, AE, dfx and 
dfz) as outputs in order to evaluate the effects of machining parameters on the-
process dynamic conditions. The second ANOVA is performed using machining 
parameters (S, f, d, Di and L) as input factors and QCMP (De, Ce and Ra) as 
outputs to identify the parameters that have the highest impact on part quality 
and to estimate their effects. ANOVAs are completed by a correlation analysis to 
evaluate the type and the strength of relationships between machining parame-
ters, machining conditions and QCMP. 

3.3. Experimental Data Analysis 

Figure 3 shows that various QCMP are affected at different degrees by the ma-
chining process parameters. The factors most affecting part quality are the cut-
ting feed and the cut depth. These results are expected, since the cutting forces, 
which are recognized to have a significant effect on part quality, are more sensi-
tive to changes in feed and cut depth than to cutting speed variations (Figures 
4(a)-(c)). Unlike Ra, De and Ce, depend significantly on Di and L. De and Ce 
are relatively large when Di is low and L is large. These results can be explained 
by the increased rigidity of the part as the diameter increases and by the in-
crease in part deformation as the distance from the chuck increases (Figures 
4(g)-(h)). Cutting speed appears to be the factor that has the least influence on 
De and Ce. 

The factors that most affect Ra are S, f and d. The effects of Di and L are in-
significant. These results are anticipated since vibrations and acoustic emissions, 
which are known to have an important effect on surface roughness, are less sen-
sitive to changes in Di and L than they are to S, f and d variations (Figures 
4(d)-(f)). 

On the other hand, De, Ce and Ra show a strong dependency on cutting feed. 
The correlation analysis reported in Table 2 indicates that feed is correlated to 
De, Ce and Ra by up to 75%, while Di is correlated to De, Ce and Ra by less than  
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Figure 3. Effects of cutting parameters on quality characteristics of the machined parts. 

 
25%. Accordingly, one can presume that De and Ce can be controlled using f, d 
and L, while Ra can be controlled using S, f and d. Similar conclusions can be 
clearly established from the percent contributions analysis. The percent contri-
butions analysis also confirms that the contributions of these factors to the vari-
ation of De, Ce and Ra exceed 95%. The error remains within acceptable levels 
(less than 5%), implying that the most important process conditions influencing 
these QCMP are all included in the experiment. Figure 4 shows the average ef-
fects of process cutting parameters on sensor measurements data.  

The cutting forces and workpiece deflection are strongly affected by f and d. 
The radial deflection appears to be more sensitive to L than the axial deflection. 
Acoustic emissions and vibrations are much more affected by cutting speed than 
cutting feed. However, the error associated with these sensor measurements is 
high, indicating that other factors, such as tool wear and variations in the cha-
racteristics of the workpiece and cutting tools could perturb the generated 
acoustic emissions and vibrations during the cutting operations. Accordingly, 
these variables cannot be reliably used to control globally the considered QCMP.  

Furthermore, correlation analysis results in Table 2 shows that the QCMP is 
correlated to different degrees with various machining parameters and condi-
tions. Thus one can expect to use all of these factors in any modelling procedure.  
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Figure 4. Effects of cutting parameters on sensor measurements. 

151 



D. M. Davakan, A. El Ouafi 
 

Table 2. Correlations between cutting parameters, cutting conditions and quality charac-
teristics the machined parts. 

 
S f d Di L Fx Fy Fz Vbx Vbz AE Dfx Dfz 

De (µm) 0.077 0.765 0.378 0.197 0.464 0.627 0.753 0.579 0.401 0.451 0.458 0.841 0.872 

Ce (µm) 0.311 0.752 0.388 0.213 0.305 0.620 0.649 0.545 0.568 0.515 0.406 0.730 0.853 

Ra (µm) 0.461 0.887 0.326 0.073 0.129 0.512 0.572 0.517 0.690 0.677 0.623 0.530 0.555 

 
However, even if these factors could be selected based on the above analysis, it 
still remains expensive to implement. Thus, a systematic and rigorous procedure 
to select the best combination of variables to include in the model is required. 

4. Building the Prediction Model 
4.1. Proposed Modelling Strategy 

Turning operations are dynamic processes with various nonlinearities and sto-
chastic disturbances. The difficulty of building an effective prediction model lies 
in the selection of the appropriate modelling technique and the variables to be 
included in the model. These choices represent the basic ingredients of any 
modelling methodology. Selecting the model form and the modelling technique 
is not sufficient to produce the best model. Since deterministic models are typi-
cally valid only for a limited range of cutting conditions, ANNs present the best 
modelling alternative. While various neural techniques can be used in this ap-
proach, a multilayer feed forward network seems to be one of the most appro-
priate choices because of its simplicity and flexibility. In order to determine the 
best combination of variables to be included in the modelling procedure in a fast 
and cost effective way, OAs are used again. The selection of variables is based on 
analyzing the effect of each combination of variables on the performance of the 
designed models, as well as the contribution of each variable to modelling, vali-
dation and prediction errors.  

Many criteria can be used to assess whether a reduced model adequately 
represents the relationship between the QCMP and the cutting parameters under 
various process conditions. Measuring the performance of fitted models is based 
on the principle of reducing several statistical criteria. These include the residual 
sum of squared errors (SSE), the residual mean square error (MSE), the total 
squared error (Mallow’s Cp), and the coefficient of determination (R2). For the 
majority of modelling techniques, the model is determined by minimizing the 
residual sum of squares (SSE). All of the criteria, MSE, Cp, and R2, are a linear 
function of the SSE. The combination of variables that minimizes the SSE creates 
MSE and Cp as the minimum and R2 as the maximum under a fixed number of 
variables. Among these criteria, R2 does not have an extreme value and shows a 
gradual increasing trend when the number of variables in the model is increased. 
Thus, the use of R2 as a criterion for the selection of variables can allow some 
subjectivity. If p variables among q variables are selected, the residual mean 
square is MSEp = SSEp/(n − p − 1), where n is the total number of observations. 
The terms SSEp and n-p both decrease with an increase in the number of inde-
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pendent variables p. Therefore, MSEp have the ability to show an extreme value. 
In this study, the judgment function used consists in minimizing the training re-
sidual mean square error (MSEt) and the validation residual mean square error 
(MSEv) for each quality characteristic, as well as the total residual mean square 
error (MSEtot). 

4.2. Application of the Proposed Strategy 

To illustrate the proposed modelling approach, twelve variables are considered. 
Before selecting the variables and training the ANN models, it is important to 
establish the size of the hidden layer and to optimize the training performances. 
The idea is to approximate the relationship between the size of the hidden layer, 
the number of input variables and the complexity of the parameters to be esti-
mated. For all trained models, an average error of less than 1% is used, irrespec-
tive of the hidden layer size. Consequently, to avoid long training and over-fit- 
ting that could affect accuracy, the [NP*2NP + 1*3] network structure is selected 
(NP: number of inputs). For variable selection, the procedure begins by selecting 
the OA for the model design. The OA that best fits this modelling procedure is a 
L16. The procedure used for models design is illustrated in Table 3. The (1) and 
(0) numbers indicate whether the variables are used as input to the model or not, 
respectively.  

To reduce the number of variables and simplify the variable selection proce-
dure, the variables Di and L are combined into a single variable identified as L/D 
and defined as workpiece length/diameter ratio. The data structure used to pro-
duce the designed models is showed in Table 4. Typical results representing the 
performances of the designed models as a function of the seven selection criteria 
are presented in Table 5. 

Table 5 shows that all models fit the data relatively well, as indicated by the 
MSE values. Using these results, the average effect of each variable on each mod-
el’s performance is evaluated. The graphs of average effects demonstrate that the  

 
Table 3. Designed models for the variables selection procedure. 

Modelling variables 

Model # S f d L/D Fx Fy Fz Vx Vz AE dfx dfz 

1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 0 0 0 0 0 

3 1 1 1 0 0 0 0 1 1 1 1 0 

… … … … … … … … … … … … … 

… … … … … … … … … … … … … 

… … … … … … … … … … … … … 

14 0 0 1 1 0 0 1 0 1 1 0 0 

15 0 0 1 0 1 1 0 1 0 0 1 0 

16 0 0 1 0 1 1 0 0 1 1 0 1 

QOM 0 1 1 0 0 0 0 0 0 0 1 1 
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Table 4. Typical training and testing data sets for prediction model building. 

 Training sets  Validation sets 

Test # De (μm) Ce (μm) Ra (μm) Test # De (μm) Ce (μm) Ra (μm) 

1 4.33 0.87 1.91 1 5.13 0.93 2.47 

2 7.15 1.16 3.40 2 29.34 3.65 2.02 

… … … … … … … … 

… … … … … … … … 

… … … … 15 21.41 3.30 5.02 

… … … … 16 22.25 3.97 4.78 

… … … … 

 31 9.62 1.44 4.24 

32 36.32 5.16 5.29 

 
Table 5. Typical modelling performances for variables selection using MSEt, MSEv and 
MSEtot. 

Criteria 

Model 
# 

MSE for De MSE for Ce MSE for Ra 
MSETOT 

MSEt MSEv MSETot MSEt MSEv MSETot MSEt MSEv MSETot 

1 0.65 0.69 1.34 1.39 0.34 1.73 2.30 0.73 3.03 6.10 

2 2.50 2.05 4.55 2.37 0.62 2.99 0.12 0.28 0.40 7.94 

… … … … … … … … … … … 

… … … … … … … … … … … 

… … … … … … … … … … … 

16 0.25 0.63 0.88 0.31 2.59 2.90 1.16 1.06 2.22 6.00 

QOM 0.39 0.68 1.07 0.49 0.77 1.26 0.52 1.03 1.55 3.88 

 
variables having the most positive effects on the designed models are feed rate, 
cutting depth, L/D ratio, cutting forces (Fx and Fz) and workpiece deformation 
(dfx and dfz). The presence of speed, vibrations and acoustic emission in the 
model increase the MSE values. These results are confirmed by the average effect 
of each variable in terms of percent contribution to improving model accuracy. 
Table 6 reveals that the variables significantly reducing MSE values are f, d, L/D, 
Fx, Fz, dfx and dfz. These ascertainments suggest that there are many options to 
consider in building an efficient part quality prediction model. However, given 
the dominant and robust relationships that link dfx and dfz to f, d, L/D and cut-
ting forces, added to the strong correlation between deformations and QCMP, it 
is obviously desirable to include f, d, dfx and dfz in the proposed quasi-optimal 
model (QOM). Accordingly, the model including the selected variables is built 
using a multilayer feedforward network. The topology of the ANN imple-
mented is described in Figure 5. The network configuration selected have 4 
neurons in the input layer corresponding to feed rate (f), depth of cut (d) and 
workpiece radial and axial deflections (dfx and dfz), and 3 neurons in the out-
put layer corresponding to diametral errors (De), circularity errors (Ce) and  
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Table 6. % contributions of cutting parameters and conditions in the modelling perfor-
mances of the designed models. 

 
 De  Ce  Ra  

MSEt MSEv MSEt MSEv MSEt MSEv MSETOT 

S 4.03 2.46 2.42 2.43 2.04 1.69 9.34 

f 12.13 15.85 15.92 14.41 19.2 21.43 11.3 

d 22.25 21.08 11.85 14.91 10.78 13.78 13.47 

L/D 20.08 15.58 15.51 14.93 7.24 9.58 12.84 

Fx 6.75 5.66 14.8 10.41 9.43 8.70 7.14 

Fy 5.48 6.25 10.0 10.17 8.94 8.91 7.92 

Fz 4.97 4.91 9.83 8.66 9.40 6.41 7.50 

Vx 1.38 1.08 0.91 2.88 7.29 0.39 1.80 

Vz 2.22 1.41 2.05 0.70 7.80 6.20 1.50 

AE 0.28 1.08 2.70 4.98 1.63 3.19 1.05 

dfx 12.39 12.41 2.71 3.65 2.73 5.77 11.97 

dfz 5.87 7.50 8.72 8.53 10.21 11.7 11.83 

Error 2.17 4.73 2.58 3.34 3.31 2.25 2.34 

 

 
Figure 5. Artificial neural network architecture. 

 
surface roughness (Ra).  

Figure 6 shows the variation of the network’s prediction accuracy for the 
three quality characteristics. The maximum prediction errors are less than 
3.50%, 4.75% and 5.75% respectively for De, Ce and Ra, and present an excellent 
distribution of predicted points. Thus, it can be concluded that the ANN is able 
to learn complex relationships very well and can be used as an effective predic-
tive tool. The model is then used for prediction using the validation data. Figure 
7 shows the variation of the QOM’s prediction accuracy for the three quality 
characteristics. The maximum prediction errors are under 10%. 

A global evaluation of the achieved results demonstrates that the resultant 
model successfully estimates the QCMP during CNC turning of cantilever bars.  
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Figure 6. Predicted vs measured quality characteristics of the parts in the modelling 
phase: (a) diametral errors, (b) circularity errors and (c) surface roughness. 
 

 
Figure 7. Predicted vs measured quality characteristics of the parts in the prediction 
phase:(a) diametral errors, (b) circularity errors and (c) surface roughness. 
 
The proposed quality prediction approach can successfully contribute to a re-
ducing machined part error by approximately 90%. This model demonstrates 
that it is not necessary to massively instrument the machine tool in order to find 
the relevant information needed for modelling the quality characteristics of ma-
chined parts. Only two sensors probing the tool deflections in the feed and speed 
directions are necessary. These deformations can be eventually estimated with 
good precision using a simplified model based simply on the cutting parameters. 
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5. Conclusion 

The present study is devoted to the development of an integrated model for 
quality prediction in CNC turning of cantilever bars. A systematic modelling 
procedure based on experimental investigations, ANN modelling and various 
statistical tools is designed to produce the most accurate and effective prediction 
model. The effects of several cutting parameters and conditions on the quality 
characteristics of the machined parts are analyzed, and their correlation with 
diametral errors, circularity errors and surface roughness are investigated under 
various practical process conditions. Based on these results and using various 
statistical analysis tools, the most relevant variables to be included in the predic-
tion model are identified and fused using several ANN architectures. Four va-
riables are methodically selected from thirteen possible variables, including cut-
ting parameters, cutting forces, deflections, vibration and acoustic emission. 
Among all these variables, feed rate, depth of cut and workpiece deflections are 
found to provide the needed information for an accurate and efficient prediction 
model. Using these variables, a quasi-optimal model is produced by training an 
ANN using data obtained from structured experiments conducted under a large 
variety of cutting parameters and conditions. The achieved results are very en-
couraging. The dimensional errors, circularity errors and surface roughness are 
predicted with a global error fluctuating between 3.50% and 10% under variable 
machining conditions. These results demonstrate that the proposed modeling 
procedure can be effectively applied to quality prediction and monitoring due to 
its simplicity, accuracy and robustness. 
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