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ABSTRACT 
The numerical analytic research approach of stress-strain state of anisotropic composite finite element area with 
different boundary conditions on the surface, is represented below. The problem is solved by using a spatial 
model of the elasticity theory. Differential equation system in partial derivatives reduces to one-dimensional 
problem using spline collocation method in two coordinate directions. Boundary problem for the system of ordi-
nary higher-order differential equation is solved by using the stable numerical technique of discrete orthogona-
lization. 
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1. Introduction 
Composite finite-element areas have widespread applica-
tion in many fields of modern technology, such as ship-
building, space industry, construction building etc. An 
important issue in terms of providing obdurability when 
exploiting relevant construction elements, is the matter of 
obtaining information about their stress-strain state. The 
pursuance of the research on the basis of the elasticity 
theory spatial model of the finite element composite areas 
of arbitrary shape, is connected with calculation prob-
lems. That’s why one can find limited number of scien-
tific works on the subject. 

Here we suggest an effective numerical analytic re-
search approach of stress-strain state of the layered ani-
sotropic finite-element areas on the basis of the elasticity 
theory. The approach is based upon using the spline ap-
proximation and collocation methods, which helps us to 
reduce our space boundary problem for differential equa-
tion in partial derivatives systems to the corresponding 
problem for ordinary differential equations. The latter is 
solved by using the stable numerical technique of dis-

crete orthogonalization. 

2. Basic Equations 
Let K denote the anisotropic plate composed of con-
joined cubic plates (Figure 1). 

 

 
Figure 1. Anisotropic plate composed of conjoined cubic 
plates. 
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Let us consider the stress-strain state problem of such 
fixed thickness plate in a rectangular coordinate system 
(X, Y, Z). According to the linear elastic theory, original 
equations will appear as follows: 

Equilibrium equations: 
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yzxz zz
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Where ijσ  follows the pairing tangent stress law: 
; ; ;xy yx xz zx zy yzσ σ σ σ σ σ= = =  

Cauchy equations: 
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Physical equations expressing Hooke’s law for aniso-
tropic material: 
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(3) 
As we see, twenty one independent components occur 

in formula (3). Generally in practice, the objects under 
consideration have only one plane of elastic symmetry 
tangent to the coordinate surface z = const. In this situa-
tion, the number of explanatory variables is equal to thir-
teen, and Hooke’s law for such objects changes to: 
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Coefficients ijα  of this system are determined from: 
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In these evaluations: 
xE , yE , zE —elasticity modulus in x, y, z-directions 

respectively; 
, ,yz xz xyG G G —shear modulus for the planes parallel to 

coordinate planes x = const, y = const, z = const respec-
tively; 

yxν , yxν , yxν , yxν , yxν , yxν —Poisson’s ratios 
characterizing lateral contraction when stretched along 
the coordinate axes; ,zx yzµ , ,yz zxµ —ratios characterizing 
shears in the planes parallel to the coordinate planes, 
resulting from shearing stresses that the planes tangent to 
other coordinate planes experience. ,xy yη , ,xy zη —coef- 
ficients of mutual influence characterizing shears in 
coordinate planes, due to normal stresses; 

,x xyη , ,y xyaη , ,z xyη —coefficients of mutual influence 
characterizing expansions in length due to shear stress. 

Further, by applying elementary transformations we 
obtain resolving system of three second-order partial 
differential equations describing the stress-strain state of 
the plate from the systems (1), (2), (4): 
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Coefficients , ,i i ia b c  in system (6), are determined by 
the mechanical characteristics of the material, taking into 
account ratios (5). 

In practice, the formulas for the anisotropic object with 
a single plane elastic symmetry, are developed from the 
formulas for the orthotropic object by rotating the coor-
dinate system by an angle α about axis OZ. 

In this connection, the coefficients of the elastic com-
pliance matrixes ija и ija′  are in both cases interrelated by 
the following formulas: 
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 (7) 
By this means, knowing coefficients ija  for an ortho-

tropic object and the angle of rotation we can formulate a 
well-posed problem for the anisotropic object with a sin-
gle plane of elastic symmetry. 

The solution of (6) will be sought in the form of (8) 
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Here: N, M—the dimension of the collocation grid for 
each cubical plate. K—the number of cubic subplates of 
the plate [1]. 

3. Statement of the Boundary Conditions 
Let’s consider cubic component of the plate [1] (Figure 2). 
Given normal and sheer stresses  

0 0 0
, , , , ,

c x y x yc cz z z z z zσ σ τ τ τ τ  on faces z = 0, z = 1, that will  

determine distribution of stresses, strains and shifts within 
a thick-walled plate. 

One can express from the set of Equations (2), (4) that: 
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In matrix shape, the system is of the form: 
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Shear stresses may be defined as follows: 
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Figure 2. Boundary conditions. 

 
Thus, boundary conditions on the faces z = 0, z = c are 

described by the system: 
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Approximation of solutions of the system (10), is per-
formed with the help of functions (8). 

Boundary conditions of three types, can be set on the 
lateral faces: conditions, corresponding to rigidly fixed 
contour, conditions, corresponding to simply supported 
contour, conditions for free contour. Approximations of 
these boundary conditions is achieved by fitting B3 spline 
coefficients, which determine , , , ,a a
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Let’s consider the cubic component of the plate as an 
example [2] (Figure 2) and boundary conditions on x = 0 
face in case of rigidly fixed and simply supported con-
tours. 

3.1. Rigidly Fixed Contour 
This case corresponds to the conditions: 
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The latter equation follows from  
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For this, we choose the coefficients: 
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As we can see, selected in the form of (17), the coeffi-
cients satisfy the system (16), which automatically caus-
es the conditions (13) fulfillment. Thus, for rigidly fixed 
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This case satisfies the conditions: 
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For specified coefficients according to (22), (23), we 
have: 
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As one can see, the coefficients can to satisfy the 
boundary conditions (21) if selected in the form of (22), 
(23). Therefore, for the simply supported x = 0 contour, 

0 1, , ,a a a v wφ φ =  functions take on the form: 
1 0

0 3 34a B Bφ −= − ⋅ +               (24) 

1 0 1
1 3 3 3

1
2

a B B Bφ −= − +              (25) 

And 0 1,u uφ φ  functions: 
0

0 3
u Bφ =                   (26) 

1 0 1
1 3 3 3

1
2

u B B Bφ −= − +              (27) 

The boundary conditions for the free contour are de-
fined similarly. 

3.3. The Case of Non-Homogenous Orthotropic 
Material 

In the case of non-homogenous Z-coordinate orthotropic 
material, stiffness properties characterizing stress-strain 
state of such plate, will take the form: 

( ) ( ) ( ), ,x y zE z E z E z -elasticity modulus in x, y, z-di- 
rections respectively; 

( ) ( ) ( ), ,yz xz xyG z G z G z -elasticity modulus for the 
planes, parallel to 0, 0, 0x y z= = =  planes respective-
ly. 

In this case, the coefficients of the elastic compliance 
matrix assume the form: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

11 11 22 22 33 33

12 12 13 13 23 23

44 44 55 55 66 66 ;

; ; ;

; ; ;

; ;

z z z

z z z

z z z

α α α α α α

α α α α α α

α α α α α α

= = =

= = =

= = =

    (28) 
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After that, we have the system of three partial diffe-
rential equations of the second order, which describes the 
stress-strain state of thick-walled rectangular orthotropic 
non-homogenous in Z-coordinate plate: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2 2

1 2 32 2 2

2

4 5

2 2 2 2

1 2 32 2 2

2

4 5

2 2 2 2

1 2 32 2

2

4 52

u u u va z a z a z
x yz x y

wa z a z X
x z

v v v ub z b z b z
x yz y x

wb z b z Y
y z

w u v wc z c z c z
x z z yz x

wc z c z Z
y

∂ ∂ ∂ ∂
= + + ∂ ∂∂ ∂ ∂

 ∂ + +
 ∂ ∂

∂ ∂ ∂ ∂ = + + ∂ ∂∂ ∂ ∂


∂ + + ∂ ∂


∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂∂ ∂

 ∂ + +
 ∂

   (29) 

( ) ( ) ( ), , , 1 5i i ia z b z c z i =   coefficients are defined 
by the coefficients of the elastic compliance matrix, de-
scribed by the formulas (28). 

If the material is non-homogenous in three spatial 
coordinates, the coefficients of the system (29) are the 
coefficients of all three spatial coordinates:  
( ) ( ) ( ), , , , , , , , , 1 5i i ia x y z b x y z c x y z i =   

4. Statement of the Problem 
Let us consider a simple-connected body of arbitrary 
shape with an arbitrary mounting on the subsurfaces. Let 
T denote it. We will consider it in the Cartesian XYZ 
reference system. The problem is to find the stress-strain 
state of the current object, consisting of an arbitrary ma-
terial composition, with an arbitrary mounting on the 
surface, at an arbitrary load on it (steady or point load) 
and with arbitrarily given volumetric forces (weight, ther-
mal expansion etc.). 

5. Solution Procedure 
Let us arrange the considered object T in the Cartesian 
reference system in such a way to make XOY, XOZ, 
YOZ planes tangent to the object, and each point of the  
object ( ), ,p p pp x y z  satisfy the condition  

0, 0, 0p p px y z≥ ≥ ≥  (Figure 3). Consider the case of a 
composite layered object. We divide the object into 
horizontal layers, with the lower and upper bounds that 
are parallel to XOY plane. Each of these layers is ap-
proximated by cubic subplates (Figure 1). Stress-strain 
state of K-area, thus obtained, will be described by the 
formulas (6), (10), (13), (21). The boundary conditions at 
the joining point will be predetermined by the formulas: 

 
Figure 3. Simple-connected body of arbitrary shape with an 
arbitrary mounting on the subsurfaces. 

 
1 1 1

1 1 1

, , ,

, ,
zz zz zy zy

xz xz

i i i i i i

i i i i i i

u u

v v w w

σ σ σ σ

σ σ

+ + +

+ + +

= − = =

= = = −
      (30) 

After the approximation of the required displacement 
functions in the form of (8), we obtain the system of 
ordinary differential equations of the following order: 

( )( )1dim 6 1 1R
iiA K N M

=
= ⋅ + +∑        (31) 

Here: R—the number of layers of the simple-con- 
nected T-object, iK —the number of cubic subplates in 
the layer, ,N M —the number of the spline collocation 
points per direction. The problem can be solved by using 
the stable numerical technique of discrete orthogonaliza-
tion [1, 2]. 

6. Conclusion 
This paper presents the numerical-analytic approach to 
solving the stress-strain state problems of an arbitrary 
finite element simple-connected composite object with 
different surface mounting types. The problem is solved 
by using the elasticity theory spatial model. Differential 
equation system in partial derivatives reduces to one- 
dimensional problem using spline collocation method in 
two coordinate directions. End problem of ordinary high-
er-order differential equation system is solved by using 
the stable numerical technique of discrete orthogonaliza-
tion [1, 2]. 
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