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ABSTRACT 
The 6061-T651 aluminium alloy is one of the most common aluminium alloys for marine components and gen-
eral structures. The stress intensity factor (SIF) is an important parameter for estimating the life of the cracked 
structure. In this paper, the stress intensity factors of a slant-cracked plate, which is made of 6061-T651 alumi-
num, have been calculated using extended finite element method (XFEM) and finite element method (FEM) in 
ABAQUS software and the results were compared with theoretical values. Numerical values obtained from these 
two methods were close to the theoretical values. In simulations of crack growth at different crack angles, the 
crack propagation angle values were closer to the theoretical values in XFEM method. Also, the accuracy and 
validity of fatigue crack growth curve were much closer to the theoretical graph in XFEM than the FEM. 
Therefore, in this paper the capabilities of XFEM were realized in analyzing issues such as cracks. 
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1. Introduction 
Fracture and failure are common problems with industry 
equipment. In modern materials science, fracture mechan-
ics is an important tool in improving the mechanical per-
formance of mechanical components. The stress intensity 
factor (SIF) is an important parameter for estimating the 
life of the cracked structure. In reality the stress intensity 
factor is a complicated function of applied loading, bound-
ary conditions, crack growth, geometry, and material prop-
erties. By using the SIF and Paris law, the fatigue crack 
growth at the plate is measured. In fact, the Paris model 
describes the rate of crack growth in terms of material 

properties and the stress intensity factor. The stress in-
tensity factor is performed using theoretical or numerical 
techniques. There are several numerical methods for cal-
culating SIF like displacement extrapolation method, j- 
integral technique and extended finite element method 
[1]. 

The extended finite element method [2-5] can approxi-
mate the discontinuous displacement field near cracks 
independently of the finite element mesh through the use 
of interpolation functions, which can describe the dis-
placement field near cracks in the structure. Therefore, 
crack modelling for stress analyses in the field of fracture 
mechanics can be performed more easily by XFEM than 
by conventional FEM. Since information about the crack  *Corresponding author. 
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geometry is required in order to determine the interpola-
tion functions in XFEM, the level set method, which ex-
presses the geometry implicitly as the zero contour of the 
level set function, can be used to simplify the computa-
tion process in XFEM analysis. Since XFEM can model 
cracks of structures independently of the finite element 
models, the number of laborious and time consuming 
mesh division processes can be reduced. Therefore, XFEM 
can be used to perform crack propagation analyses, which 
is not possible in practice by the conventional FEM, 
which often requires remeshing procedures [5-7]. Thus, 
using extended finite element method to simulate fracture 
behaviours of structures can shorten the time to estimate 
safety of engineering structures and reduce experiment 
costs. Many researchers study the extended finite ele-
ment method to simulate fracture behaviour. Modelling 
quasi-static crack growth in 2-D problems for isotropic 
and biomaterial media using XFEM is described in Su-
kumar and Prevost [8] in which the implementation of 
the crack growth using the XFEM within a general pur-
pose finite element code is also described. The numerical 
applications are performed in Sukumar et al [9]. A 2-D 
numerical model of micro structural effects and quasi- 
static crack propagation in brittle materials using XFEM 
is presented in Sukumar et al [10]. The modelling of 
cracks with multiple branches, multiple holes and cracks 
emanating from holes is presented in Daux et al [11]. 
The implementation is based on using the same enrich-
ment functions for the cracks (discontinuous and tip 
functions) and the enrichment scheme is developed based 
on the interaction of the discontinuous geometric features 
with the mesh. Whereas for holes, new enrichment func-
tion is introduced. Modelling 3-D planar cracks by XFEM 
was first introduced in Sukumar et al [12], who solved 
several planar crack mode-I problems and showed that 
the method compared well with analytical solutions. 

Considering the fact that no one has ever studied the 
comparison between the three methods of theoretical, 
FEM and XFEM on crack growth simulations of a slant- 
cracked plate, in this paper using the XFEM and finite 
element method (FEM), values of stress intensity factor, 
crack propagation direction, fatigue crack growth of a 
slant-cracked plate were calculated by Abaqus 6.10.1 
software and the results were compared with the ones 
from the theoretical method. 

2. Extended Finite Element Method 
For the purpose of fracture analysis, the enrichment Func-
tions typically consist of the near-tip asymptotic func-
tions that capture the singularity around the crack tip and 
a discontinuous function that represents the jump in dis-
placement across the crack surfaces. The approximation 
for a displacement vector function with the partition of 
unity enrichment [13,14] is: 

( ) ( ) ( )i

n 4
a
i

i 1 a 1
iu x u H x a

= =

 
= + + 

 
∑ ∑i aN F x b     (1) 

where Ni(x) are the usual nodal shape functions; ui is the 
usual nodal displacement vector associated with the con-
tinuous part of the finite element solution; the second 
term is the product of the nodal enriched degree of free-
dom vector, ai, and the associated discontinuous jump 
function H(x) across the crack surfaces; and the third 
term is the product of the nodal enriched degree of free-
dom vector, a

ib , and the associated elastic asymptotic 
crack-tip functions, ( )xaF . The first term on the right- 
hand side is applicable to all the nodes in the model; the 
second term is valid for nodes whose shape function 
support is cut by the crack interior; and the third term is 
used only for nodes whose shape function support is cut 
by the crack tip [13-16]. 

3. FE Modeling 
The 6061-T651 aluminium alloy is one of the most com-
mon aluminium alloys for heavy-duty structures requir-
ing good corrosion resistance, truck and marine compo-
nents, railroad cars, furniture, tank fittings, general struc-
tures, high pressure applications, wire products and pipe-
lines. Many of these applications involve variable load-
ing which makes the study of the fatigue behaviour of 
this aluminium alloy very relevant. The problem chosen 
for static analysis is slant-cracked specimen, made of 
6061-T651 aluminium material [17]. The plate has di-
mensions of 20 × 200 and thickness of t = 6 mm with 
half crack length of a = 2.5 mm centered in the plate and 
crack angel 60 as shown in Figure 1. The plate is under 
uniform tensile loading acting on the upper edge result-
ing in magnitude stress of σ0 = 250 MPa. To compute 
SIF values FE and XFEM’s number of elements (NE) 
and number of nodes (NN) are listed in Table 1. The 
material properties used in analysis of specimen is given 
in Table 2. 

3.1. Static Analysis Results 
3.1.1. Calculation of Stress Intensity Factor of the 

Slant-Crack Plate 
As the plate dimensions are large in comparison to the 
crack length, thus the analytical solution given for plate 
for the first and second modes of stress intensity factor 
can be used [18]: 

( )0I
2π osK c= σ a θ           (2) 

( ) ( )0II π sin sK co= σ a θ θ        (3) 

Equations (2) and (3) were used for theoretical solu-
tion. Comparison of SIF values is shown in Figures 2, 3 
and Table 3. All values of SIF are in MPa m . Figure 2 
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shows the comparison between mode-I and mode-II 
stress intensity factor obtained numerically using XFEM, 
two dimensional FEM and analytical results for different 
crack angles with fixed crack half length a = 2.5 mm. 
Figure 3 shows the comparison between stress intensity 
factor obtained numerically using XFEM, two dimen-
sional FEM and theoretical results for crack with inclined 
angle of 60 and different crack half length. Comparison 
of SIFs is tabulated in Table 3. The results of Table 3 
show XFEM KII values that are closer to theoretical val-
ues and XFEM KI values are approximately 3.55% lower 
than theoretical values. But the obtained results from the 
Table 3 show that the FEM KII values are approximately 
2.8% lower than theoretical values and FEM KI values 
are 2.385% higher than theoretical values. As it can be 
realized from these results, very good agreement exists 
between SIFs obtained using XFEM and theoretical re-
sults confirming the robustness and accuracy of the de-
veloped XFEM formulation. 

 

 
Figure 1. A schematic presentation of the plate and its 
loading method. 

 
Table 1. The NN and NE for different meshes. 

3D XFEM (C3D8R) 2D FEM (CPS4R) Description 
4928 5842 Number of elements (NE) 

21,084 6093 Number of nodes (NN) 

3.1.2. Crack Growth Simulation 
Crack growth simulation consists of mainly three steps, 1) 
Crack initiation 2) Crack propagation and 3) Failure [19]. 
All these three steps are simulated using XFEM elements 
in ABAQUS 6.10.1 without any re-meshing near the crack 
tip. The special features used in crack growth simulation 
are outlined below. The maximum principal stress crite-
rion is used which can be represented as 

max
0
max

f
σ
σ
  =  
  

               (4) 

Where 0
maxσ   represents the maximum allowable prin-

cipal stress. The Macaulay brackets  are used to sig-
nify that purely compressive stress state does not initiate 
damage. Damage is assumed to initiate when maximum 
principal stress ratio (4) reaches a value of unity [13,19]. 

1) Computation of crack propagation direction of the 
slant-Crack Plate 

To see the effectiveness and accuracy of the XFEM, 
the calculation of Crack propagation angle θcr was em-
ployed. The direction of the crack propagation θcr is es-
tablished to be a function of the mixed-mode stress in-
tensity factors at the crack tip. There are several criteria 
for calculating Crack propagation angle θcr like the maxi-
mum tangential stress criterion. With this criterion the 
fracture angle of the crack growth is defined to be per-
pendicular to the maximum tangential stress at the crack 
tip. This criterion is based on the work of Erdogan and 
Sih [20] and is given by: 

( ) ( )( )I cr II crK Sin K 3Cos 1 0θ θ+ − =       (5) 

This is demonstrated in the Figure 4. For current in-
vestigation, initial crack is introduced at an angle of 25, 
55, 60 and 80. The crack is propagated for three steps 
with a crack increment of 2.72 mm. Initial crack length 
by width ratio “a/w” was 0.125. The crack propagation 
direction has been simulated using XFEM in ABAQUS. 
For fracture criterion, Maximum principal stress as 242 
MPa was used as criteria for crack initiation. Critical 
energy release rate as 12.367 KN/m and power coeffi-
cient as 1 were used as criteria for crack initiation with 
Power law. From the above Equation (5) we can see that 
for the cases where 0 < θ < π 2 , the fracture angle θcr is 
negative. Obtained results from the XFEM analysis shows 
good agreement with the theoretical and two dimensional 
FEM values which show the accuracy of the method in 
approximating accurately the field. The results are shown 

 
Table 2. Physical and mechanical properties of materials. 

Elongation (%) [Poisson’s Ratio] 
𝜈𝜈 mp ( )pC m

Cycle Mpa

 
 
  
 

pm

m
 Critical Energy Release 

Rate (GIC)KN/m 
Maximum Principal  

Stress (MPa) 
Elastic modulus 

(GPa) aluminum 

10 0.33 4.1098 3.7086 × 10−12 12.367 242 68 6061-T651 
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Figure 2. Comparison of KI and KII values for different 
crack Angle in the infinite plate. 

 
Figure 3. Comparison of KI and KII values for different 
Crack half length. 

 
Table 3. Comparison of SIFs. 

θ a (mm) Theoretical 
KIt 

Theoretical 
KIIt 

2D FEM 
KI 

2D FEM 
KII 

3D XFEM 
KI 

3D XFEM 
KII 

FEM KI 
Error (%) 

FEM KII 
Error (%) 

XFEM KI 
Error (%) 

XFEM KI 
Error (%) 

60˚ 2.5 5.5384 9.5927 5.6705 9. 3240 5.3419 9.5059 2.385 −2.802 −3.546 −0.905 
60˚ 3.5 6.5531 11.3503 6.7093 11.0320 6.3208 11.2478 2.384 −2.800 −3.544 −0.903 
60˚ 4.4 7.3475 12.7263 7.5958 12.3681 7.0869 12.6108 2.380 −2.794 −3.548 −0.907 
25˚ 2.5 18.1968 8.4853 18.7099 8.2480 17.5601 8.4087 2.382 −2.796 −3.499 −0.908 
55˚ 2.5 7.2883 10.4088 7.4623 10.1164 7.0303 10.3153 2.388 −2.809 −3.539 −0.898 
80˚ 2.5 0.6680 3.7884 0.6839 3.3821 0.6443 3.7543 2.387 −2.807 −3.542 −0.901 

 

 
Figure 4. Center crack propagation under uniform tension 
in an plate. 

 
in the Table 4. 

Figure 5(a) shows the plot of the theoretical solution 
and the numerical solutions. Figure 5(b) shows the crack 
propagation for all four orientation of an initial crack. 

2) Fatigue Crack Growth 
Relating the crack growth to LEFM parameters such 

as the stress intensity factor makes it possible to predict 
the crack growth rate under cyclic loading. Thus struc-
ture life time or number of cyclic loading required for a 
crack to grow from its initial length up to the critical 
length causing catastrophic failure can be determined. 
Paris and Erdogan [21] proposed a law for fatigue crack 
growth (FCG) relating the increment in crack advanced 
𝒹𝒹a to the increment in number of cycles 𝒹𝒹N and the 
stress intensity factor range K∆  as: 

𝒹𝒹𝒹𝒹/𝒹𝒹𝒹𝒹 = ( )
mp

pC K∆             (6) 

Where Cp and mp are material constants, determined 
experimentally by standard fatigue test and  

min minK K K∆ = −  is the stress intensity factor range. For 
mixed-mode problems, the stress intensity factor K∆  
can be replaced by an equivalent, epK∆ , which can be 
described as [22]: 

4 44
eq I IIK K 8 K∆ = ∆ + ∆           (7) 

The 6061-T651 aluminium has Paris Law constant Cp 
of 3.7086 × 10−12 pm( m)m Cycle Mpa  and an as-
sumed, deterministic Paris Law exponent mp of 4.1908. 
Using Equations (6) and (7) and the values obtained from 
stress intensity factors of the above three methods, the 
crack length vs. number of cycles were plotted for the 
plate and then the results were compared. The obtained 
results from theoretical show that the lifetime of 5 mm, 7  
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Table 4. Comparison of Crack propagation angle θcr. 

a (mm) θ Theoretical θcr (rad) 2D FEM θcr (rad) XFEM θcr (rad) 2D FEM Error (%) XFEM Error (%) 

2.5 25o −0.67544 −0.6523 −0.68545 −3.424 1.481 

2.5 55o −1.0107 −0.99985 −1.01615 −1.0707 0.539 

2.5 60o −1.04695 −1.03875 −1.0516 −0.7832 0.446 

2.5 80o −1.17265 −1.1642 −1.17415 −0.7205 0.128 

 

 
(a) 

 
(b) 

Figure 5. (a) Comparison of crack propagation angle for Different initial crack configurations; (b) Center crack propagation 
in the infinite plate with different initial crack configurations. 

 
mm and 8.8 mm cracks are 221, 1730 and 2500 cycles 
respectively. In FEM, the lifetime of 5 mm, 7 mm, and 
8.8 mm cracks are 248, 1950 and 2810 cycles respec-
tively. In XFEM, the failure values of 5 mm, 7 mm, and 
8.8 mm cracks are 230, 1800 and 2600 cycles respec-
tively. Thus, The amounts of error in FEM and XFEM 
are approximately 12.4 and 4 percent respectively. The 

results are shown in Tables 5. Also, the accuracy and 
validity of fatigue crack growth diagram in XFEM is 
closer to the theoretical method. These diagrams are pre-
sented in Figure 6 and are compared with each other. 
According to the overall results obtained in this paper, 
we can realize the capability of XFEM in the investiga-
tion of the issues such as cracks. 

θ = 25˚ θ = 55˚

θ = 60˚ θ = 80˚
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Table 5. Comparison of predicted Fatigue crack propagation. 

Crack length (mm) θ Theoretical N (cycles) 2D FEM N (cycles) XFEM N (cycles) 2D FEM Error (%) XFEM Error (%) 
5 60˚ 221 248 230 12.217 4.072 
7 60˚ 1730 1950 1800 12.716 4.046 

8.8 60˚ 2500 2810 2600 12.400 4.000 

 

 
Figure 6. Theoretical, 2D FEM and XFEM crack growth 
curves. 

4. Conclusions 
The main conclusions: 

1) According to the SIF numerical results, XFEM KII 
values are closer to theoretical values and approximately 
1% lower than theoretical values. XFEM KI values are 
approximately 3.55% lower than theoretical values. Thus 
very good agreement exists between SIFs obtained using 
XFEM and theoretical results confirming the robustness 
and accuracy of the developed XFEM formulation. 

2) The crack propagation direction has been simulated 
using the XFEM in ABAQUS. Obtained results from the 
XFEM show good agreement with the theoretical and 
two dimensional FEM values which show the accuracy 
of the method in approximating the field. 

3) The obtained results from Crack Growth Simulation 
show that for the cases where 0 < θ < π 2 , the fracture 
angle θcr is negative. 

4) Efficiently using the XFEM, where no remeshing is 
required, each time the crack grows and there is no Need 
for the crack to be aligned with the elements edges in the 
mesh. 

5) For the advantages of extended finite element 
method in the study of the cracks propagation, it can be 
said that for loading and applying the boundary condi-
tions, exactly the same methods and conditions in the 
standard finite element method are applied. 

6) The accuracy and validity of fatigue cracks values 
were much closer to the theoretical in XFEM than the 
FEM. 

7) In calculation of stress intensity factor for crack 
growth analysis, the stress singularity was fixed for the 
crack tip in XFEM. So using the Paris equation and 

XFEM, it is easier and more accurate to predict the life-
time of the structures. 
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