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ABSTRACT 

The buckling and post-buckling response of a single-degree-of-freedom mechanical model is re-examined in this work, 
within the context of nonlinear stability and bifurcation theory. This system has been reported in pioneer as well as in 
more recent literature to exhibit all kinds of distinct critical points. Its response is thoroughly discussed, the effect of all 
parameters involved is extensively examined, including imperfection sensitivity, and the results obtained lead to the 
important conclusion that the model is possibly associated with the butterfly singularity, a fact which will be validated 
by the contents of a companion paper, based on catastrophe theory. 
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1. Introduction 

The role of distinct critical points, namely symmetric 
(stable or unstable) branching points, asymmetric branch- 
ing points and limit points, has been recognized to be of 
paramount importance in the General Theory of Elastic 
Stability [1-3]. Moreover, the distinct branching points, 
arising in perfect conservative discrete systems, have 
been shown to be essentially one degree of freedom phe- 
nomena [4]. Their study, as well as the effect of initial 
imperfections on their evolution and on the overall sys- 
tem’s response can be performed by applying either the 
Nonlinear Stability and Bifurcation Theory [5] or the 
Catastrophe Theory [6]. 

Both theories start from the formulation of the total 
potential energy function of the system, but proceed af- 
terwards to different directions. The former uses the ex- 
act system potential and its derivatives to evaluate equi- 
librium paths, critical points and their stability and pro- 
duces results concerning the particular system dealt with. 
On the other hand, the latter theory utilizes the structure 
of universal unfoldings of the potential and classifies 
them to the so-called elementary and higher order Catas- 
trophes, which have a priori known features and proper- 
ties. Hence, qualitative general (universal) solutions are 
established, producing a better insight into nonlinear phe- 
nomena, such as discontinuities, singularities and insta- 
bilities. 

The above two theories have their advantages and dis- 

advantages, which—among other causes—are originated 
from the number of degrees of freedom (generalized ac- 
tive coordinates) and the number of control parameters 
and thus on the resulting complexity of the total potential 
energy function. For systems with one or two degrees of 
freedom in particular, there can be cases where both The- 
ories are challenged by sometimes immense mathemati- 
cal difficulties; then, only combining the application of 
both theories may lead to a true understanding of the sta- 
bility response of such a system [7]. 

In the context of the above remark, the present work 
deals with the nonlinear stability analysis of a mechani- 
cal model with a single active variable (degree of free- 
dom) and with four control parameters, which has been 
reported in the literature to exhibit all kinds of distinct 
critical points [8,9]. It is found that the gradual introduc- 
tion of control parameters (including initial imperfection) 
leads to all kinds of elementary singularities for a single 
variable, and that the fully imperfect system is possibly 
associated with the butterfly catastrophe. Analysis and 
proof of these findings via Catastrophe Theory will be 
given in the 2nd part of this work in a companion paper. 

2. Single Degree of Freedom Mechanical 
Model—Geometry, Description and 
General Buckling Equations 

We consider the single-degree-of-freedom (D.O.F.) me- 
chanical model depicted in Figure 1, which, as men- 
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tioned in the Introduction, may exhibit all kinds of dis- 
tinct critical points [9]. The system comprises of a weight- 
less rigid bar of length ℓ, partially pinned at its base via a 
linear rotational spring of stiffness c; its tip is connected 
to an inclined linear extensional spring of stiffness k, 
with the angle of inclination kept always constant and 
equal to α, since the other end of the spring may freely 
slide along equally inclined supports. The tip of the bar is 
acted upon by a gravitational force P. The single degree 
of freedom characterizing the deformation of the system 
is hence the rotation θ of the bar, which in general is 
considered imperfect, by introducing an initial rotation ε. 
At this stage all springs are considered unstressed. For 
the model to be realistic, the values of angles α, ε and θ 
are limited within the following intervals: 

    0 π , π 2 π 2 , π π          . 

If under the action of P the system deforms as shown 
in Figure 1, its total potential energy VT will be equal to 
the sum of the strain energy U and the work of the exter- 
nal force Ω, given in the most general case by: 

21 1

2 2AU k M      .            (1) 

 

 

Figure 1. Geometry and sign convention of the single D.O.F. 
model considered. 

APw   .                        (2) 

where M is the moment developed by the rotational 
spring at the base, δΑ the change of length of the exten- 
sional spring and wA the vertical displacement of the tip, 
which are equal to 

 M c    .                      (3) 
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    sin sinA a a      .        (5) 

Hence, the total potential energy function of the sys- 
tem yields 
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Introducing the following dimensionless parameters 
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the nondimesionalized potential takes the form 
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Within the context of nonlinear elastic stability and bi- 
furcation theory, equilibria, critical points and their cor- 
responding stability will be sought thereafter, by study- 
ing the nature of the derivatives of the energy function 
given above. In doing this, the equilibrium equation is 
acquired thorough the principle of the stationary value of 
the potential, i.e. 

       sin sin cos

sinE

a a a    



        . (9) 

The stability of non-critical equilibrium points depend 
on the sign of the second variation of the total potential at 
these points, which is computed from expression (9) and 
is equal to 
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Finally, the stability of critical points will be estab- 
lished by the sign of higher order derivatives of the po- 
tential energy function. 

It should be noted that the values of β = 0 imply the 
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absence of the rotational base spring, and equivalently 
the presence of a pure hinge. On the other hand, very 
large values of β can be associated by either a very rigid 
base or by a very “light” spring at the tip. 

Evidently, the response of the single D.O.F. model 
dealt with depends on the variation of four control pa- 
rameters, namely of λ, a, β and ε. The last three may be 
considered as perturbations of the fully perfect system (α 
= ε = β = 0), the study of which will be essential for the 
detailed model stability analysis. The individual and 
combined variation of parameters α, β and ε lead to the 
need of studying the response of the following system 
cases: 

Case 1: α = ε = 0, β ≠ 0 
Case 2: β = ε = 0, α ≠ 0 
Case 3: α = β = 0, ε ≠ 0 
Case 4: α = 0, β and ε ≠ 0 
Case 5: β = 0, α and ε ≠ 0 
Case 6: ε = 0, α and β ≠ 0. 
Case 7: The general imperfect system (α, β, ε ≠ 0) 
In these Cases, the inclusion of imperfection ε is a “se- 

vere” perturbation, while of α and/or β “mild” ones [2,5]. 
The fully perfect system (being in fact a mechanism) as 
well as all the aforementioned system Cases will be stud- 
ied in detail in what follows. 

It should be noted that Cases 1 - 3 involve two control 
parameters, Cases 4 - 6 three and Case 7 four control 
parameters, while for all Cases there exists only a single 
active variable, i.e. rotation θ. 

3. Bifurcational Analysis, Numerical Results 
and Discussion 

3.1. The “Fully” Perfect System (α = β = ε = 0) 

Denoting for simplicity 

TV V  and 1

d

d
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from expressions (8)-(10) it is deduced that 
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The equilibrium path of the model, from Equation 
(11b) (in solid line), as well as the second variation of the 
potential, from Equation (11c) (in dashed line), are illus- 
trated in Figure 2. 

As expected, the path possesses a profound symmetry, 
is unstable within the interval (−π, π) and furthermore is  

 

Figure 2. Equilibrium path and 2nd variation of the poten- 
tial for the “fully” perfect system. 
 
associated with an unstable symmetric branching point C 
(for λ = 1) as well as with two limit points S and S’ (for λ 
= −1 and θ = π, θ = −π respectively). This model con- 
figuration will be perturbed thereafter, according to the 
definition of the preceding Cases. 

3.2. Case 1: α = ε = 0, β ≠ 0 

Mildly perturbing the “fully perfect” system, by intro- 
ducing variations of parameter β, i.e. by accounting for 
some semi-rigidity of the base support, while the spring 
at the top is horizontal at the left of the origin, the corre- 
sponding expressions for the potential, the equilibrium 
equation and the 2nd variation of the potential at the 
equilibria are given by: 
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Since no initial imperfection or any rotational distur- 
bance is introduced, it is anticipated that the symmetry of 
the equilibrium paths will be preserved. 

The possible existence of bifurcation points is sought 
by evaluating the intersection of the paths given in Equa- 
tion (12b) with the λ-axis. This is achieved by calculating 
the limit of λΕ as θ tends to zero, which gives 

0
lim 1E c

  


   .            (13) 

This implies that a symmetric branching point (of yet 
unknown stability) always exists, while additional critical 
points (namely limit point ones) of the equilibrium path 
can be found by seeking additional roots (with respect to 
β) of the 2nd variation given in expression (12c) for θ ≠ 0. 
In doing this, it is found that 
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Beyond this value, the system becomes totally stable. 
This observation may be perceived from the correspond- 
ing bifurcation diagram of Figure 4. 

 
2sin

1 cots

  
 

 


.            (14) 

Thus, the locus of the limit points is given by the fol- 
lowing function (a product of substituting relation (14) in 
Equation (12b)): 

3.3. Case 2: β = ε = 0, α ≠ 0 

For this particular Case, being also a “mild” perturbation 
of the “fully” perfect system described in Section 3.1, the 
introduction of the variation of the angular spring-in- 
clination parameter α is expected to alter the nature of the 
branching point (which will be always present since the 
system has no initial imperfection). In the same manner 
as in Case 1, the expressions for V, V1, λΕ and  

,
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Exploring the nature of the analytical function given in 
Expression (15) in conjunction with the limiting value of 

 s   from Equation (14), for 0  , being equal to 
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   it is presumed that the two additional (symmetric) limit 

points and the bifurcation point are degenerated to a sin- 
gle branching point at β = 3, λ = 4. At this critical situa- 
tion there exists a change of stability of the earlier de- 
fined bifurcation point C from unstable symmetric to sta- 
ble symmetric. All the above findings are schematically 
shown in Figure 3. 
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paths are unstable between S and S’, and stable beyond. 
This is valid for β < 3 (λ < 4). Above this value the paths 
are stable throughout. From a bifurcational point of view, 
this specific “mild” perturbation of the “fully” perfect 
system preserves symmetry and up to a specific value of 
β also the nature and stability of paths and critical points.  
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Figure 3. Equilibrium paths and locus of critical points for system Case 1 (the dotted line refers to the “fully” perfect system). 
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Figure 4. Bifurcation diagram of the system of Case 1. 
 

Contrary to the previous Case, where parameter β acts 
linearly, the spring-inclination parameter α of the fore- 
going Case is always included in trigonometric expres- 
sions. This may act as an unsurpassed obstacle in obtain- 
ing analytical expression for the loci of critical points, 
especially limit-point ones. 

The branching point, being the intersection of the equi- 
librium paths given is Expression (17b) with the λ-axis, 
is computed via Equation (17b), producing the following 
result: 

2

0
lim cosE C

 


   .          (18)

 Aiming to quantitatively explore the nature of the 
equilibrium paths and their critical points, the paths for 
two characteristic values of α (0.3 < π/2 and 2.4 > π/2) 
are computed and presented graphically in Figure 5. 

Both paths exhibit an asymmetric branching point (C1 
and C2 respectively) as well as two limit points ( 1 1,S S   
and 2 2  respectively), the latter computed numeri- 
cally. The paths are unstable between the limit points and 
stable beyond those, while—as expected from expression 
(17b)—they have asymptotes at θ = ± π. After these ini- 
tial estimates, one may gain a more comprehensive pic- 
ture of the nature of the system’s response for the fore- 
going Case, from the contents of Figure 6, where equi- 
librium paths for various values of α are presented. 

,S S 

It is readily perceived that for every value of parameter 
α two limit points and an asymmetric branching point 
appear. Starting from small values of α and increasing it, 

the branching point is moved from its original place (for 
the fully perfect system) downwards, until it reaches the 
origin for a = π/2. Similarly, starting from large values of 
α (near π) and decreasing them, identical results are ob- 
tained. The transition of the corresponding limit points 
(as well as of the branching points) is shown in the bi- 
furcation diagram of Figure 7 that follows. 

The load corresponding to the 1st limit point S, for 
values of π 2   shows an increasing pattern, becom- 
ing maximum at π 2  ; same response is observed for 
S   but for π 2 π  , while for π 2   it coin- 
cides with the corresponding branching point (this being 
also true for S for 0 π 2  ). The shape of the dia- 
grams in Figure 7 clearly reveals one individual and two 
dependent cusps at π 2 , with some indication of exis- 
tence of three symmetric folds [6,10]. 

3.4. Case 3: β = α = 0, ε ≠ 0 (Simplest Imperfect 
System) 

Since initial angular imperfection is introduced, this Case 
will be surely associated with symmetry-breaking bifur- 
cations. It is the simplest imperfect system, it constitutes 
a severe perturbation of the “fully” perfect system and 
for this Case it is valid that: 

cos cot sinE     .          (19)

 Typical equilibrium paths for various values of the ini- 
tial imperfection ε (positive or negative) and for θ rang- 
ing from –π to π are shown in Figures 8-11.            

Copyright © 2013 SciRes.                                                                                 WJM 



D. S. SOPHIANOPOULOS 67

 

 

Figure 5. Equilibrium paths with their critical points for Case 2 and two characteristic values of parameter α. 
 

 

Figure 6. Equilibrium paths for Case 2 and various values of α. 
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Figure 7. Bifurcation diagram of the system’s Case 2. 
 

 

Figure 8. Equilibrium paths and critical point of Case 3 for ε > 0 and 0 < θ < π. 
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Figure 9. Equilibrium paths and critical point of Case 3 for ε > 0 and −π < θ < 0. 
 

 

Figure 10. Equilibrium paths and critical point of Case 3 for ε < 0 and 0 < θ < π. 
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Figure 11. Equilibrium paths and critical point of Case 3 for ε < 0 and −π < θ < 0. 
 

Due to symmetry breaking, primary and complemen-
tary equilibrium paths are produced, leading to the birth 
of one or two limit points. Setting the 2nd variation of 
the total potential energy equal to zero, these limit points 
appear for 

3cosS    ,              (20) 

regardless of the value of ε. Moreover, the diagram of 
perturbed bifurcations for this Case is drawn and pre- 
sented in Figure 12. From this Figure one may perceive 
the evolution of the critical points of the “fully” perfect 
system (C, S and S’—see Figure 2) as ε varies. 

More specifically, branching point C (unstable sym- 
metric) transitions into a limit point of ascending equilib- 
rium path, while one of the two limit points is preserved 
and the other disappears; depending on the sign of the 
initial imperfection the limit point that is preserved is the 
one arising for θ having the same sign as ε. Additionally, 
the cusp singularity for C is clearly present along with its 
symmetrical one for S and S’. 

3.5. Case 4: α = 0, β, ε ≠ 0 (Severe Perturbation 
of the System of Case 1) 

Introducing initial angular imperfection ε for the system 
Case 1 (which was found symmetric—see Figure 3), 

once again symmetry breaking bifurcations are expected. 
For the foregoing Case one may write that: 
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Typical equilibrium paths for three characteristic val- 
ues of β and positive ε are shown in Figures 13-15. For 
negative ε the paths are symmetric with respect to the 
vertical axis. In these Figures all critical points are de- 
picted (for both the perturbed and unperturbed system). 

For values of β, for which the corresponding perfect 
system exhibits—beyond the unstable symmetric branch- 
ing point—two limit points, the complementary paths of 
the imperfect system exhibit a limit point, originated 
from the perturbation of one of the limit points of the 
corresponding perfect system; the related primary paths 
exhibit two limit points, one being the perturbation of the 
branching point of the perfect system and the other being 
the perturbation of the remaining limit point of the per- 
fect system. 

Contrary, for β ≥ 3 (existence of only one critical point 
which is a stable symmetric branching one) the one and      
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Figure 12. Diagram of perturbed bifurcations for Case 3. 
 

 

Figure 13. Equilibrium paths for Case 3, β = 0.20 and ε > 0. 
 
only limit point of the perturbed system arises on the 
complementary paths and is in fact a perturbation of the 
branching point, while all primary paths are monotoni- 
cally rising. 

Moreover, where primary paths process two limit po- 
ints, there always exists a critical value of ε where a cut- 
off point (coincidence of these limit points—horizontal 
tangent) is revealed. For larger ε, these paths become 
monotonically rising. The above findings are graphically 
shown in the representative diagrams of perturbed bifur- 
cations of Figure 16. 

 

Figure 14. Equilibrium paths for Case 3, β = 0.75 and ε > 0. 
 
From these graphs it is evident that the system Case 

dealt with in this section, possessing a three dimensional 
control space (λ, β, ε) and one state variable (θ) is associ- 
ated with the swallowtail singularity [2,6]. 

3.6. Case 5: β = 0, α, ε ≠ 0 (Severe Perturbation 
of the System of Case 2) 

Due to absence of symmetry in the corresponding perfect 
system (of Case 2), the effect of the introduction of the 
initial imperfection ε will depend mainly on the salient  
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Figure 15. Equilibrium paths for Case 3, β = 3.00 and ε > 0. 

features of the perfect system itself. Here, the potential 
and the equilibria are given by: 
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From Expression (22b) for the equilibrium paths it is 
readily seen that the initial imperfection is present only 
within the term sin(α-ε), while the equilibrium paths of 
the perfect system (given in Equation (17b)) is equivalent 
to the one given in (22b) if either ε = 0 (common situa- 
tion) or if, for some values of ε,  sin sin  

π
 . The 

latter is valid for cr 2    . This constitutes a 
very special case of parameters combination, for which 
the effect of the initial imperfection ε is essentially de- 
leted; the equilibrium path of the perturbed system be- 

 

 

Figure 16. Diagrams of perturbed bifurcations of Case 4 and various values of β.  

Copyright © 2013 SciRes.                                                                                 WJM 



D. S. SOPHIANOPOULOS 73

 
comes a continuous function of θ (within the interval –π, 
π) and coincides with the related path of the unperturbed 
system, as shown in Figure 17, for α = 1.25. 

Additionally, in the graphs presented in Figures 18 
and 19, equilibrium paths and critical points are depicted, 
for a constant small value of ε (either positive or negative) 
and various values of parameter α. 

Interestingly enough, when ε = 2α the system for θ = 
−π exhibits a critical point for λ = −cos2α, i.e. for λ = −λc, 
where λc is the branching load of the corresponding per- 
fect system. For a better insight on the evolution of criti- 
cal points, diagrams of perturbed bifurcations and corre- 
sponding details are presented in Figure 20 (for α < π/2) 
and Figure 21 (for α > π/2). 

The critical points shown in these Figures are denoted 
as follows: 

 

Figure 17. Equilibria for the special case ε = εcr (α = 1.25). 

 

 

Figure 18. Equilibrium paths and critical points for Case 5, with ε = 0.05 and various values of α. 
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Figure 19. Equilibrium paths and critical points for Case 5, with ε = −0.05 and various values of α. 
 

C, S, S’: Branching point and limit points of the corre- 
sponding unperturbed (perfect) system. 

C’: Critical (limit) point for ε = 2α and λcr = −λc. 
I1, I2: Cut-off (hysteresis) points with equal and oppo- 

site critical loads (tilts). 
I3: Cut-off point for λ = 0. 
C’’: Branching point for ε = 2α-π and λ = λc. 
It can be seen that for certain values of α (but not close 

to π/2) the system exhibits tilted cusps, while for other 
values of a these cusps are degenerated, with the pro- 
gressive appearance of multiple folds of axial symmetry. 
Such phenomena have been reported in the literature [6] 
to be closely related to the swallowtail as well as to the 
butterfly singularity. 

3.7. Case 6: ε = 0, α, β ≠ 0 

The system in this Case evolves from either Case 1 or 

Case 2 by introducing a “mild” perturbation, namely α or 
β respectively. In doing this, we get 

   
2

21
1 cos sin sin

2 2
V

             . (23a) 

     csc cos sin sinE a a a         .  (23b) 

Two sets of equilibrium paths are given below, by 
varying a for some specific values of β in Figure 22 and 
for specific values of α and varying β in Figure 23. 

From these plots it is deduced that as β increases, the 
equilibrium paths are shifted upwards, while for increas- 
ing α the plots are rotated anticlockwise (for α < π/2) or 
clockwise (for α > π/2). Moreover, and for every combi- 
nation of parameters a and β, the system exhibits an 
asymmetric branching point, corresponding to the fol- 
owing value of loading: l    
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Figure 20. Diagrams of perturbed bifurcations and details for Case 5 and α < π/2. 
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Figure 21. Diagrams of perturbed bifurcations and details for Case 5 and α > π/2. 
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Figure 22. Equilibrium paths of Case 6, for specific values of β and for α varying from 0 to π/2. 
 

These are limit points that occur at values of β evaluated 
by zeroing the 2nd variation of the potential. These val- 
ues are given by 

1
1 2 cos 2
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which is equal to β + 1 for a = 0 (as in relation (13)) and 
equal to      csc 2sin 2 sin 2 3 3sin 2
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   for β=0 
which for α = 0 yield the corresponding ones of Case 1 
from relation (14). Hence, the locus of the limit points is 
expressed by 

(as in relation (18)). Except this bifurcation point, the 
equilibrium paths exhibit also other critical points as well.  
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 Its graph is also depicted in Figure 23. 
More specifically, as far as the limit points and their 

emergence or degeneration are concerned, the following 
can be observed: 

 

 

Figure 23. Equilibrium paths of Case 6, for specific values of α and varying β.  
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1) For α < π/2 and for every β, the system always ex- 

hibits a limit point for negative values of θ, and as β in- 
creases the limit point load tends asymptotically to +∞ 
and the corresponding angular deformation θ tends to 
zero. For limit points associated to positive θ, it is valid 
that for relatively small β only one limit point exists, 
being perturbation of the corresponding limit point of the 
system with β = 0. As β increases further, the system 
experiences a 2nd limit point, that can be numerically 
evaluated, which eventually coincides with the 1st limit 
point at a critical values of β = βcr, associated with a cut- 
off point of the equilibrium path. For larger values of β 
these limit points seize to exist. 

2) For α > π/2 similar phenomena occur, but for op-  

posite semi-planes with respect to the loading-axis, i.e. 
for θ of opposite sign. 

Regardless however of α being small or greater than 
π/2, βcr may be evaluated by solving numerically the 
system of equations 

d
,

d
S

E S


 


0

   
 

.            (27)
 

with respect to θ and β, using the expressions given in 
Equations (23b) and (26). One may then draw bifurcation 
diagrams of the system for specific values of α and vary- 
ing β, such as the exemplary ones illustrated in Figure 
24. 

 

 

Figure 24. Bifurcation diagrams and details of system Case 6, for four values of α. 
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Although no imperfection is introduced, there exist 

tilted cusps, birth and vanishing of critical points as well 
as shifts and rotations of paths. These facts indicate a 
much more complicated structure of the equilibria than 
expected, which is attributed to the inclusion of α in the 
control parameters. 

3.8. Case 7: ε, α, β ≠ 0 

Up to now, the Cases considered could be studied rather 
comprehensively via standard procedures of nonlinear 
stability and bifurcation theory, since they involve maxi- 
mum three control parameters and the visualization of 
results was to a significant extent satisfactory and quite 
informative, both quantitatively and qualitatively. How- 
ever, in this Case with four control parameters (as well as 
to some extent for the Cases already studied with three 
control parameters) only ruled surface projections of 
equilibria and critical states on specific parameter planes 
may lead to proper visualizations [10], seen from a Ca- 

tastrophe Theory point of view. This leaves us only with 
limited opportunities when using Nonlinear Stability 
Theory but nevertheless some indicative results may be 
produced. Within the scope of this work, we will demon- 
strate the diagram of perturbed bifurcation of a system 
with α = 0.50, β = 0.75 and varying the initial imperfec- 
tion ε. The equilibrium paths and the critical points of the 
corresponding perfect system are illustrated in Figure 25, 
the data for its critical points are given in Table 1 and the 
aforementioned diagram in Figure 26. 

The above diagram illustrates a typical situation aris- 
ing in the butterfly singularity, which indicates that the 
system is associated with this catastrophe type. Analysis 
and proof of this fact are given in a companion paper. 

4. Concluding Remarks 

From the nonlinear stability analysis of the single-de- 
gree-of freedom mechanical model dealt with, it is con- 
cluded that all distinct critical points can be exhibited, 

 

 

Figure 25. Equilibrium path and critical points for the perfect system with α = 0.50, β = 0.75 (belonging to Case 6). 
 

Table 1. Data of critical points of the perfect system with a = 0.50, β = 0.75. 

Critical point Characterization Angle θ Load λ 

C Asymmetric branching point 0 1.52015 

S1 Limit point 1.0701 1.89289 

S2 Limit point 1.98732 1.76441 

S’ Limit point −1.24749 0.893122 
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Figure 26. Bifurcation diagram for the system with a = 0.50, β = 0.75 and varying a. 
 
whose evolution, as more control parameters are intro- 
duced, is associated with vanishing, birth of new critical 
points, hysteresis points, cusps and tilted cusps and other 
singularities. Behavior closely related to the swallowtail 
and butterfly catastrophes are reported and the system, 
although rather simple in nature, requires also the appli- 
cation of catastrophe theory for a full understanding of its 
stability response. This will be given in a companion 
paper. 
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