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ABSTRACT 

It is known that complex networks in nature exhibit some significant statistical features. We notice power law distribu-
tions which frequently emerge with respect to network structures of various quantities. One example is the scale-free- 
ness which is described by the degree distribution in the power law shape. In this paper, within an analytical approach, 
we investigate the analytical conditions under which the distribution is reduced to the power law. We show that power 
law distributions are obtained without introducing conditions specific to each system or variable. Conversely, if we de-
mand no special condition to a distribution, it is imposed to follow the power law. This result explains the universality 
and the ubiquitous presence of the power law distributions in complex networks. 
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1. Introduction 

Various social relations or natural phenomena can be 
modeled by the network, in which collections of indi-
vidual components are connected via their interactions. It 
is known that complex networks exhibit some significant 
statistical features characterized by quantities such as the 
clustering coefficient or the degree distribution [1-24]. 
For example, the numerous studies in this decade have 
reported the emergence of the scale-freeness in biological, 
sociological, or technological networks [3-19]. The scale- 
freeness is defined as the power law shape of the degree 
distribution 

 P k k                (1) 

with a constant  , where the variable  is the degree, 
the number of links each node has, and  is its dis-
tribution function. It is contrasted with the Poisson dis-
tribution predicted by the random graph model proposed 
by the Erdős and Rényi (ER) [25-27]. 

k
 P k

  One of the fundamental problems regarding statistics 
of complex networks would be the ubiquity of power 
laws. The power law distribution can frequently be ob-
served in complex networks with respect to their topo-
logical quantities which characterize each network struc-
ture. Other than the degree, the betweenness centrality, a 
topological quantity which depends on the global net-
work structure, gives another example. It has been re-
ported that the cumulative distribution of the between-

ness  exhibits the power law in some complex net-
works [20-22]. 

b

The ubiquitous presence of the power law suggests 
that simple statistical laws underlie commonly in various 
types of complex networks. According to the model 
proposed by Barabási and Albert [3,5], scale free net-
works are generated through the process named preferen-
tial attachment, in which each network node prefers to 
make a connection to nodes with large degrees. However, 
taking into account the universality of the power law 
including the scale-freeness, we can expect that the con-
ditions which allow the emergence of the power law 
would be given in more generalized forms which are in- 
dependent to specific systems. In previous studies [23,24], 
we have introduced an analytical model in which the 
scale-free degree distribution is reconstructed. Indeed, it 
has been shown that the scale-free distribution can be 
obtained without introducing conditions other than gen-
eral ones. In this paper, in order to extend this model to 
deal with various types of quantities, we discuss, in detail, 
required conditions which allow the emergence of the 
power law distribution. We find that under conditions 
such as the symmetry with respect to the variable, the 
power law shape of the distributions can not be obtained. 
However the distribution which has no such additional 
condition is naturally reduced to the simple functional 
form, the power law. Therefore, our result provides an 
explanation for the ubiquitous presence of the power law. 
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2. Analytical Framework for Scale-Free 
Distribution 

According to recent studies [23,24] and the framework 
proposed in them, we show that distributions given in a 
general form can be reduced to the power law shape 
without introducing special conditions. We take an ana-
lytical approach in the sense that we deal with the degree 
distribution  as a probability density function de-
fined with a continuous variable. 

 P k

2.1. Basic Notations 

Let us take a variable , the degree of each node in the 
network. We normalize it as 

k
 max 0,1k k X  , where 

 is defined in the interval k  max0,k k . Then we take 
the distribution  with P X  X  and assume that the 
variable X  is a continuous variable defined in the finite 
interval  0,1


. As a probability, we can demand that 

  0,1P X   and 

 
0

1 d
1

X P X  ,                (2) 

where X  is taken in  0,1 .  can be expanded 
with respect to 

 P X
X  in the Taylor series and there exists a 

representation 

 
0

n
n

n

P X p X


                (3) 

with a sequence of coefficients . n

In order to investigate the scaling behavior of 
p

 P X , 
we introduce the scaling parameter  defined 
as 

 0,x 

xX e                    (4) 

in the interval . If we demand the normalizing 
condition to  

 0,x 
 P x



 
0

dxP x 1 ,                 (5) 

 P x  is given as 

      xP x X P X XP X             (6) 

by comparing Equations (2) and (5). Furthermore, if we 
introduce the cumulative distribution   0P x

     0 d dP x X P X xP x   ,          (7) 

then it is given by a positive function  de-
creasing monotonically with increasing of 

 0 0P x 
x . Then we 

can represent  as  0P x

   
0

xP x e                  (8) 

with a function  x  given as an expansion of x  

 
0

n
n

n

x x 


 ,              (9) 

where the coefficients n  are derived from n  in 
Equation (3). With the expression (8), the distribution of 

p

x ,  P x , is given as 

     x
xP x x e    .            (10) 

2.2. Scaling Property of P(x) 

According to the result shown by the study [23], without 
introducing additional conditions for  x  except for 

1 0  ,                       (11) 

we can show that  x  has a general property given by 

  1x x  .                   (12) 

At first, taking  2u x  given by 

 2
2

n
u

n
nx x 



                (13) 

with the terms , we decompose 2n   x  into 
     0 1 2ux x  x   . If we take the average 

p pxX e  by introducing a parameter p , it is 
given by 

     0 1 2
1 2

0

d upx x xpx
x ue x x e    


       .  (14) 

Because Equation (8) defines  x  as the scaling for 
the cumulative distribution,  x  is given as a mono-
tonically increasing function which satisfies the bound-
ary conditions  0 0   and . Then       x  
satisfies an identical relation given by 

     1 2
1 2

0

1 d u px x x
x ux p x e   


           (15) 

where 0 0   due to the boundary conditions of  x . 
Also we can have another relation 

    

     

1 2

1 2

2
0

0

d

d

u

u

p x x
x u

p x x

x x e

c p xe

 

 




  


  








         (16) 

with a function  c p
p

, because integrals on each side 
give functions of  respectively. Combining these rela-
tions (15) and (16), we obtain the relation 

   

   
1 2

10

1
d up x xxe e

p c
 




   

  p
.    (17) 

Because the left-hand side can be regarded as the 
Laplace transform with a parameter , p  1 2ux xe     is 
uniquely determined as the inverse transform of the 
right-hand side. Then we obtain 

   2u x c p x  .             (18) 

However, because the coefficient for 1x  in  2u x  
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expansion is taken to be 0 and the expansion  2u x  is 
free from , it is required that p

  0c p                    (19) 

and Equation (12) is given. 

2.3. A Class of Distributions and the Power Law 

The degree distribution  P k  is derived from  P X  
with embedding from the degree  to the continuous 
variable

k
.X  Substituting the representation (12),  P X  

is given in the power law shape, 

  1 1

1

1
P X X


 ,             (20) 

with a constant 1  and substituting maxX k k  
straightforwardly gives the expression of  in the 
power law shape. 

 P k

However, the relation between  and k X  is not de-
termined uniquely. Indeed, besides a trivial relation such 
as maxX k k  with the maximum value of , , 
we can take arbitrary transforms from  to 

k
X

maxk
[0,1]k  . 

Then we show that distributions which satisfy the condi-
tion (11) comprise a class of distributions. Within this 
class, the basic property (12) is conserved under the 
transforms between distributions. 

Let us take normalized variables X  and  0,1X   
and consider transforms   P X  P X . Generally 
these transforms are given by the polynomial 

n
nX g X                  (21) 

of X  with coefficients ng . At first, if we apply our 
calculating procedure to  P X  , then  is given 
in the power law functional form such as Equation (20). 
However substituting Equation (21) gives  form 
by 

 P X 

P X 

    1 1

1

1 n
nP X g X







          (22) 

with another constant 1  . Comparing this Equation (22) 
to Equation (20), we find that transforms from  to k X  
are represented by the single term expansions such as 

X X                     (23) 

with a constant  . Under these transforms, distributions 
comprise a class that preserves the power law. 

3. Conditions for the Power Law 
Distribution 

In the previous section, we have shown that the distribu-
tion  is imposed to follow the power law shape if 

 satisfies the general condition 1

P X



P X 0   given by 

Equation (11). In this section, we investigate this condi-
tion in more detail. 

As we have shown in the previous section, under the 
condition (11), distributions comprise a general class of 
distributions which follow the power law. As an example 
of exceptional cases, we construct different types of dis-
tributions which are excluded from this class. Introduc-
ing a different condition to the distribution, we show the 
existence of a distribution class which includes the Gaus-
sian distribution. 

As well known, the Gaussian distribution follows a 
profile different from the power law. As an example of a 
different class of distribution, we consider the following 
case to which we can not apply our framework. Let us 
take a variable  ,gx     with a distribution  g gP x  
and assume that it satisfies the condition 

   g g g gP x P x  .             (24) 

If we represent  g gP x  as 

   g gx

g gP x e
               (25) 

with an expanded expression 

  ,
0

n
g g g n

n
gx x 



 ,           (26) 

then  g gx  has the coefficients 

,2 1 0, 1,2, ,g i i               (27) 

due to the condition (24). 
In this case we can not apply our framework given in 

the previous section and the probability density function 
 g gP x  is not included in the class of distributions 

which follow the power law. Within the distribution class 
we defined in the previous section, each element is re-
lated by the transform represented by Equation (23) and 
the power law feature is conserved under these trans-
forms. However, the functional form (26) with coeffi-
cients (27) can not be reduced to the power law due to 
the condition (11). On the other hand, the Gaussian dis-
tribution, for example, explicitly has the symmetry such 
as given by Equation (24). Then there exists no transform 
which relates the Gaussian distribution and the power 
law distribution. 

In this example, the symmetry of the distribution, 
Equation (24), breaks the condition for the power law, 
Equation (11). According to our result, the power law 
emerges as a primitive common feature of distributions. 
However characteristics of each system such as the 
symmetry of the variable work as additional conditions 
to the distribution and break this law. 

4. Concluding Remarks 

As we have discussed, our framework predicts the emer-
gence of the power law distribution when the variable 
satisfies the general analytical conditions. Our model 
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does not depend on specific systems and therefore we 
can apply our framework to describe the statistical be-
havior of various variables other than the degree. Our 
result suggests that the power law distribution is a ubiq-
uitous functional form in real world networks. Then we 
can expect that our model provides one description 
which allows us to deal with various types of complex 
networks and their statistical quantities in a unified 
framework. 
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