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Abstract 
 
The optimal stabilization of a rigid body motion without angular velocity measurements is considered with 
the help of three internal rotors that effected by internal frictions. In this paper, the orientation of the body 
will be described in terms of the Modified Rodrigues parameters (MRPs). The optimal control law which sta- 
bilizes asymptotically this motion and minimizes the require like-energy cost is obtained in terms of the 
MRPs. Numerical study and simulation are introduced. 
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1. Introduction 
 
Most research into attitude motions of rigid bodies sys-
tems always has been and still remains one of the impor-
tant problems of theoretical and applied mechanics. The 
controlling of a rigid body motion means how we can 
select the control law that ensures an asymptotic stability 
of this motion. Physically the control transfers the state 
of rigid body from an arbitrary initial state to the desired 
state. This control law is considered to be optimal if it mi- 
nimizes a selecting performance index. This problem is 
considered one of the important problem in modern me-
chanics since the rigid body is a suitable mathematical 
and physical model for study the motion of satellite, air-
craft, spacecraft and the like.  

Many studies have derived the control laws in terms of 
the angular velocities of the rigid body and parameters 
attitude the orientation of the rigid body with respect to 
the inertial axes (El-Gohary, 2005a; Izzo and Pettazzi, 
2007; Junfengy et al., 2000; Lovera and Astolfib, 2004; 
Tayebi and McGilvray, 2006; Tsiotras et al., 2001). The 
angular velocity measurement is noisy, that is it contains 
high-frequency and noises or random fluctuations. The 
controlling of a rigid body motion without angular veloc-
ity measurement using control torques is studied in 
(Akella, 2001; Costic et al., 2000; Lizarralde and Wen, 
1996; Tayebi, 2006; Tsiotras, 1995). El-Gohary and 
Tawfik (2010) studied the optimal stabilization of a rota-
tional motion of a rigid body using three rotors with in-
ternal friction moments. The control law which stabilizes 

asymptotically this motion is obtained in terms of Euler 
parameters. El-Gohary (2005b) studied the optimal stabi-
lization of an equilibrium position using three rotors with- 
out inertial frictions. The control law which stabilizes 
asymptotically this position is obtained either in terms of 
the Cayley-Rodrigues parameters, or in terms of the 
MRPs. In this paper, the control law which stabilizes 
asymptotically a rotational motion of a rigid body in 
terms of the MRPs is derived. We will take into account 
the inertial frictions of the rotors. Moreover, a special 
case of the studied problem is obtained. 
 
2. Equations of Motion 
 
We consider the rotational motion of a rigid body carry-
ing three symmetrical rotors attached to the principal 
axes of inertia of the body. The rotational motion of a 
rigid body about its centre of mass is described by the 
following equation: 

,A A I     I      
T T

        (1) 

where 1 2 3 , 1 2 3 , ,  ω  , ,    , denote the 
angular velocity vector of the body the rotor angles of 
rotation vector referred to the principal axes of inertia of 
the body, A and I are the inertia matrices of the body and 
the rotors, respectively.  

The equation of the relative motion of the rotors with 
the inertial friction moments is: 

 I C   ω u  ,           (2) 
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where  denote the control vector ap-
plied to the rotors and created by electric motors rigidly 
mounted on the body and 

 T

1 2 3, ,u u uu

 1 2 3diag , ,C C C
C

C  is di-
agonal friction coefficients matrix. The terms   due 
to the rotors friction. Note that the friction coefficients 
depend upon various factors such as temperature, angular 
velocity and other factors. This friction is quasi-viscous.  

In this paper, the orientation of the body is described 
by using the MRPs. The kinematic equation in terms of 
the MRPs takes the form (Schaub and Junkins, 1996): 

 4 χμ μ ω               (3) 

where  

     3 3
T T1 2χ I S

   μ μ μ μ μ2 μ    (4) 

I   is the 3 3  unit matrix. The matrix  S μ  denotes 
the following skew symmetric matrix: 

 
3 2

3

2 1

0

0

0

S 1

 
 
 

 
   
  

μ .       (5)  

The direction cosines matrix of the inertial axes rela-
tive to the principal axes of inertia of the body in terms 
of the MRPs can be written in the form (Schaub and 
Junkins, 1996): 

   
 

 
 

2 2 2 2
1 2 3 1 2 3 1 3 2

2 2 2 2 2
2 1 3 2 1 3 2 3 1

2 2 2 2
3 1 2 3 2 1 3 1 2

4 8 4 8

1 8 4 4 8 4

8 4 8 4 4

Tψ

        

        

        



        
 
          
 
         

μ μ μ

4

.           (6) 

where 
T1 .   μ μ  

Modified Rodrigues parameters are three parameters 
which have the advantage over the Cayley-Rodrigues pa- 
rameters that allow eigenaxis rotations greater than 180˚ 
but can’t be used to describe eigenaxis rotations of more 
than 360˚. 

The system admits the first integrals 

  ψ A I μ ω h           (7) 

where  is the angular momentum vector 
of the whole system referring to the inertial axes can be 
regarded as constant. 

 T

1 2 3, ,h h hh 

Solving Equation (7) with respect to  A I    we 
obtain:  

   T .A I   μ h           (8) 

The vectors   and   can be eliminated from Equa-
tions (1) by using Equations (8) and (2), we get 

     T TA I S        ω ω μ h Aω μ   (9) 

where  1 1 2 2 3 3diag , ,C I C I C I   is positive diagonal 
matrix. 

The system (9) and (3) admit the special solution 
    , tanr r t ω e μ e 4

e



       (10) 

if the control vector take the values 

      T Tr rS A       u e μ h    (11) 

where  is the unit vector that the body ro- 
tates about it, referred to the principal axes of inertia of 
the body. The solution (10) represents a rotational mo-
tion of the body around an axis which is fixed in the 
body with a certain angular velocity 

 T

1 2, ,e e ee

 . 
The optimal control law applied to the rotors which 

stabilizes asymptotically the rotational motion (10) of the 
rigid body can be determined only in terms of the MRPs 
and their estimates without angular velocity measure-
ments. To derive these control law, we start by introduc-
ing the new variables which represent estimates attitude 
parameters. Assume that μ̂  is an estimate of the kine-
matic attitude vector μ . Also we suppose that the kine-
matic attitude vector and its estimate satisfy the follow-
ing auxiliary system of differential equations: 

              ˆ ˆ ˆ ˆ ˆ 4 4r rE LE E E           μ μ μ μ μ μ μ μ μ μ e μ μ μ μ e            (12) 

where         1 1 2 2 3 3ˆ ˆ ˆdiag , , ,E ˆ         μ μ
     r r r

  

   1 21 2 3ˆ ˆ ˆdiag , , ,E          μ μ 3
ˆ


and  

 1 2 3diag , ,L l l l  is positive diagonal matrix  1,2,3il i    

are called the stability constants.  
This system is known as the auxiliary system. Using 

the kinematic Equation (3) the auxiliary system (12) can 
be written in the form: 

              4 4r rE LE E E          ξ ξ ξ ξ ξ μ ω e μ μ μ μ e               (13) 
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where 

ˆ ξ μ μ .                (14) 

The problem is equivalent to find the optimal control 
law such that the rotational motion 

       
      

T

T T

, tan 4 , 0,0,0 ,

ˆ

r r

r r

t

A

 

  

   


      

ω e μ e ξ

u S e μ h e
 (15) 

is asymptotically stable and minimize a selected per-
formance.  

To obtain the equations of the perturbed motion about 
the rotational motion (15) we introduce the following 
new variables 

   , , ,r r      W ω e δ μ μ ς ξ U u u  (16) 

where , ,i i iW    and  1,2,3iU i   are the perturbation 
of the angular velocity of the body, MRPs, error attitude 
parameters and control moments about the rotational 
state (16) at respectively.  

Substituting from (16) into (9), (3) and (13) we get the 
following systems: 

              T T T T T ,r r rA I S S A                  
W e δ μ μ h W δ μ h W U         (17) 

    4 r   δ δ μ W δ e,        (18) 

        
   

4

4

r



   



E ς ς LE ς ς E ς ς μ W

E δ δ e




    (19) 

if  then the systems (17), (18) and (19) 
have an obvious unstable solution 

0 1,2,3iU i  

0, 0, 0, 1,2,3 ,i i iW i           (20) 

which must be stabilized. This stabilization can be 
achieved by using the control moments .  1,2,3iU i 
 
3. Optimal Stabilization Problem 
 
In this section, the optimal control law U which stabi-  

lizes asymptotically the zero solution (20) and minimizes 
an integral performance index is determined on terms of 
the MRPs. The asymptotic stability of the zero solution 
(20) is derived. Moreover, a special case of the studied 
problem is obtained. 

Theorem. The optimal control law 

         
   

T T T

T

0

4

r r

r

S

k

   



        

  

U e δ μ μ h

δ μ δ ς
 (21) 

stabilizes asymptotically the zero solution (20) of the 
system described by Equations (17), (18) and (19) and 
minimizes the integral performance index: 

 

           T T T

0

2
T TT

0

, , , , d

4 dr r r

I t t

A k L S k t    





 

                    





W δ ς U

W W δ δ e δ μ μ h δ μ δ ς U
  (22) 

where k is positive control constant. It should be clear 
that the structure of optimal feedback control law de-
pends upon the choice of the integral performance in-
dex. 

Proof: Assume that, the optimal Liapunov function in 
the form  

  T T2 A I k     W W δ δ ς ςT 
       (23) 

where  A I  is positive diagonal matrix. This func-
tion is a positive definite with respect to stabilize vari-
ables since it consists of the sum of quadratic terms. Us-
ing the Krasovskii’s theorem (Krasovskii, 1966), we have 

        , , , , , , , , , 0.B t
t


            


 W δ ςW δ ς U W δ ς W δ ς U t



              (24) 

Using the conditions of optimality and assuming that  
        T
0 0 0 0

1 2 3, ,U U UU  is the optimal control vector  

which stabilizes asymptotically the zero solution (20), 
the function  must satisfy the following partial dif-
ferential equation: 



      0.
t


         


 W δ ςW δ ς    (25) 

Substituting the function (17), (18), (19), (22) and (23) 
into the partial differential Equation (25), we get 

             
            

T T T T

T T T T

T

2

4

4 0

r r r

r r r

S k

k

    

  

            


               

W e δ μ μ h δ μ δ ς U

S e δ μ μ h δ μ δ ς U  .

 

                (26) 

    



A. EL-GOHARY  ET  AL. 
  

Copyright © 2011 SciRes.                                                                                 WJM 

60 

Thus, the optimal control vector  satisfies the 
Equation (26) are given by (21). Obviously, the present 
control law depend upon the kinematic attitude parame-
ters and the friction coefficients. Moreover this control 
law do not require a knowledge of the rigid body inertial 
moments. 

 0U

Now we will prove that the zero solution (20) is as-
ymptotically stable under the control law (21). The total 
time derivative of the optimal Liapunov function (23) 
using (17), (18), (19) and taking into consideration the 
optimal control law (21) takes the form 

T T 0.
d

k L
dt

    W AW ς ς        (27) 

The function (23) is a positive definite with respect to 
the angular velocities of the body, the kinematic attitude 
parameters and the error attitude parameters. Further-
more, the total derivative of this function as given by (27) 
is a negative semi-definite function (constant sign func-
tion) only. Thus, under the optimal control law (21), the 
zero solution (20) is only stable in the Liapunov sense, 
but not necessarily asymptotic stable. 

To prove the asymptotic stability of the zero solution 
(20) we consider the following function: 

 
  

T
1 4 ,

.r

A I



   


   

W η

η δ μ δ
           (28) 

Using Equations (17) and (21) on the set ( 0  , 

1 2 3 , 1 2 ) the derivative of 
the function (28) is given by 

0W W W   3 0    

 T
1 .k  η η               (29) 

The function  is a positive definite function. Thus 
by using theorem (1.2) in (Matrosov, 1962), the rota-
tional motion (15) is asymptotically stable in the Lia- 
punov sense. 

1

Similarly when neglected the friction of the rotors 
system i.e.   is zero matrix. Thus,  only if 

 and  begin arbitrary. 
But in this case one can find that  which 
leads to the kinematic attitude parameters  
are constants. In this case the Equations (18) and (19) 
reduce to 

0 
3
 1,2,3i 

i i

1 2   3 0  , 1,2,i iW i 
î i 

 1,2,3

 0, 1,2,3 iiW i  . Thus, .  2,3
0

0, 1i  ,
From the above analysis, we conclude that    if 

and only if , ,  Thus the 
zero solution (20) is asymptotically stable in the 
Liapunov sense. □ 

0iW  0i  0 1,2,i i   3

The equilibrium position of the rigid body which oc-
curs when the principal axes of inertia of the body coin-
cide with the inertial axes can be obtained as a special 

case of the studied problem by setting 0   in Equa-
tion (15): 

0, 0, 0, , 1,2,3i i i i i iu v h i           (30) 

The optimal control law which stabilizes asymptoti-
cally this position can be obtained from Equation (21) by 
setting 0   and     T

0,0,0r μ

       T T
1 3 3 4E I k 


     U δ h δ δ ς . (31) 

When the rotors system move without friction, that is, 
the coefficients of the friction  is 
zero matrix, the equilibrium position (30) reduce to 

1 2 3 0C C C    v

 0, 0, 0, 0, 1,2,3i i i iu i       .  (32) 

The optimal control law which stabilizes asymptotically 
this position can be obtained from Equation (31) by set-
ting v zero matrix 

    T 4.E k U δ δ ς         (33) 

This result, as a special case of the obtained results for 
the considered problem, agrees with the result deduced 
by (El-Gohary, 2005b). This shows that the present me- 
thod is more general than the method used by (El-Gohary, 
2005b). 

We compare the optimal control law (21) and the pre-
vious control law publication on this topic (Akella, 2001; 
Costic et al., 2000; Lizarralde and Wen, 1996; Tayebi, 
2006; Tsiotras, 1995). The control law (21) stabilizes 
asymptotically the general rotational motion of a rigid 
body not an equilibrium position. Moreover, this control 
law applied to the internal rotors that effected by fric-
tions not control torques. 
 
4. Numerical Examples 
 
The results of this paper are more useful for the rigid 
body application such as satellite, spacecraft, aircraft and 
others. In this section, we study the effect of the control 
constants and stability constants of the angular velocity, 
MRPs, error attitude parameters and control moments. 
We adopt the numerical values of a rigid body rotating 
around the third axis of inertia of the body with an angu-
lar velocity 0.2 rad s  , the inertial moments of a ri- 
gid body A1, A2, A3, the inertial moments of the stabilizer 
rotors system I1, I2, I3, the constants of the angular mo-
mentum of the system h1, h2, h3, initial values of the an-
gular velocities of the rigid body ,  1W t  2W t ,  3W t , 
MRPs  i t  and their estimates  ˆi t

2 2

 as follows: 
2

1 2 310 kgm , 15 kgm , 20 kgm ,A A A    
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22 2
1 2 30.8 kgm , 0.5 kgm , 0.5 kgm ,I I I    

2 2
1 2 310 kgm rad s , 5kgm rad s , 17 kgm rad s ,h h h   2  

     1 2 30 0.5 rad s, 0 0.1 rad s, 0 1 rad s,W W W     

     1 2 30 0.3532, 0 0.1466, 0 0.6118     ,  

     1 2 3ˆ ˆ ˆ0 0.8468, 0 0.9534, 0 0.2882      .  (34) 

The results are shown in Figures 1(a)-3(d). Figures 
1(a)-1(d) show the time histories of state variables, error 
attitude parameters and control moments for the values 

 2  3   1  2 , 

3 . Figures 2(a)-2(d) show the time histories of 
state variables, error attitude parameters and control 
moments for the values , , 3 , 

, 1 , 2 , 3 , Figures 3(a)- 
3(d) show the time histories of state variables, error atti-
tude parameters and control moments for the values 

  3   1 , 

2  3  Recall that increasing the values of 
the friction coefficients of the rotors system, control con-  

1 0.1,C 
45l 

200k 

1 0.6,C 
520,l 

0.2,C 

220l 

2 0.C 
550l 

0.3,C 

1C
240l 

8, C 
,

100,k 

0.3 2C
26l 

0.6, k 

25,l 

0.4
0

5000,

30l 

0.5C 

500l 

stants and stability constants has the effect of decreasing 
the time for the control process, but these figures have 
the same behavior. 

Based on the above numerical simulation study we 
conclude that, for the same initial state the control proc-
ess depends on the friction coefficients of the rotors sys-
tem, control constants and stability constants. The nec-
essary time for the control process depend upon the fric-
tion coefficients, control constants and stability constants 
and becomes more effective for the large values of these 
control. 
 
5. Conclusions 
 
In this paper, the control law (21) which stabilizes as-
ymptotically the rotational motion (15) of a rigid body in 
terms of the MRPs is derived. The inertial frictions of the 
rotors are taken into account. Global asymptotic stability 
is shown by applying Matrosov theorem. The equilib-
rium position (30) of the rigid body which occurs when 
the principal axes of inertia of the body coincide with the 
inertial axes is studied to be asymptotically stable as a spe-  

 

   
(a)                                                      (b) 

 

   
(c)                                                      (d) 

Figure 1. Show the above data at 1 0.1,C   2 0.2,C   3 0.3,C   100,k   1 25,l    . 2 30,l  3 45l 
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(a)                                                      (b) 

   
(c)                                                      (d) 

Figure 2. Show the above data at  1 0.3,C  2 0.4,C   3 0.5,C   200,k   1 220,l    . 2 240,l  3 260l 
 

   
(a)                                                      (b) 

   
(c)                                                      (d) 

Figure 3. Show the above data at  1 0.6,C  2 0.8C ,  3 0.6,C   5000,k   1 500,l    . 2 520,l  3 550l   
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cial case of the studied problem. Numerical examples of 
the results are presented. 
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