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Abstract 
A new model of dendritic growth and solute distribution of Fe-0.04%C binary 
alloys was developed, which is based on the sharp interface model of dendritic 
growth. This innovative model improved the cellular automaton method, 
combined with the finite difference method, considered concentration field, 
temperature field and the shape of molten pool. This model simulated the 
growth morphologies of single equiaxial crystal, the relationship between tip 
growth velocity and time, multi-equiaxed crystals’ growth morphologies and 
solute distribution, the growth of columnar crystals, columnar-to-equiaxed 
transition after coupling temperature field, and compared with experimental 
results. The results indicate that crystallographic orientation has certain in-
fluence on dendritic morphologies, that the tip growth velocity tends to be 
stable with the extension of time in the end, that the shape of molten pool in-
fluences the growth morphologies of columnar crystals and that the solute 
mainly concentrates in dendritic roots and among grain boundaries. The si-
mulated results are in accord with experimental results. 
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1. Introduction 

The dendritic microstructure determines material microstructure and mechani-
cal properties during the process of metal solidification [1]. Therefore, it is im-
portant to control dendritic growth in the process of solidification if there is a 
need to get high-quality metal castings. The traditional method [2] [3] is time- 
consuming, expensive and can’t be directly observed in most cases to explore the 
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microstructure of solidification. In recent years, with the development of com-
puter technology, the numerical simulation of metal solidification can be rea-
lized on the computer. This makes up for the deficiencies of the traditional ex-
periment, and more directly and deeply explores metal solidification. 

There are many detailed simulation models at present, such as the Phase Field 
(PF) method, Monte Carlo (MC) method, Cellular Automaton (CA) method, 
and Front Tracking method [4] [5]. The CA model [6] [7] [8], lately developed 
and widely used, is based on the physical mechanism of dendritic growth and 
“probabilistic” thought, expands the calculation scale, and is able to display the 
temperature and concentration field in the process of solidification. Based on the 
above reasons, the CA model has become an effective research method in simu-
lating the solidification process of casting and has obtained certain achievements 
[9] [10] [11] [12]. For the complexity of the welding process, such as fast cooling, 
high temperature and kinetics, and the CA method is imperfect, there have been 
no successful results on simulating microstructure evolution of solidification 
process in weld molten pool using the CA method, which is applied rarely in the 
welding field. Huang et al. [13] have put forward the feasibility and advantages 
of competitive growth in simulating weld solidification using the CA method by 
analysis in 2003, preliminarily have established weld solidification model based 
on the CA method, have simulated the growth process of grains with crystallo-
graphic orientation in molten pool by CA method and have better reflected the 
characteristics of weld metal solidification in 2008 [14]. Zhan et al. [15] have si-
mulated the columnar crystals and equiaxial crystals’ competitive growth of 
Al-Cu binary alloys with the CA method by approximating weld fusion line to 
segment. Zhang et al. [16] have achieved columnar-to-equiaxed transition (CET) 
in solidification of weld molten pool based on the CA method, but this model 
has not yet considered the influence factor of molten pool shape. In fact, molten 
pool is a kind of arc shape, and there are few simulations about dendritic mor-
phology and solute distribution in molten pool of specific shape. In order to 
solve the above problem, this work combines the CA method with the finite dif-
ference method (FD), namely the CA-FD method, assumes that the molten pool 
has a standard arc shape, establishes the molten pool model, temperature field 
model, dendritic nucleation, growth, and solute redistribution and diffusion mod-
els, and then simulates the growth morphology and solute distribution of single 
crystal and multi-equiaxed crystals with different crystallographic orientations in 
the center of arc-shaped molten pool, and analyzes the relationship between tip 
growth velocity of dendrite and time. It also simulates the growth of columnar 
crystals in the weld center and columnar-to-equiaxed transition after coupling 
temperature field. 

2. Model Description 

A description of a two-dimensional model is provided. The two-dimensional 
calculation domain was divided into 400 × 800 cells of uniform orthogonal ar-
rangement. The grid size was 0.5 μm . The specific algorithms for the shape of 
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molten pool, temperature field, dendritic nucleation and growth, and energy/ 
solute transport were described by both FD and CA methods. 

2.1. Molten Pool Model  

The weld molten pool is actually an irregular arc shape, and it continuously 
changes during solidification. In order to simplify the model, this work uses an 
ideal model by setting the radius of molten pool and assuming that the shape of 
molten pool remains the same during solidification. The interior of the molten 
pool distributes liquid alloy, and the outside is solid. If there is a crystal nucleus 
( )0 0,x y  in the molten pool, the equation governing molten pool shape is given 
by: 

( ) ( )2 22
0 0r x x y y= − + −                       (1) 

2.2. FD Model for Temperature Field  

The temperature field of molten pool was simulated by the FD method. There are 
two kinds of finite difference calculations about welding heat conduction. One is 
the steady-state heat conduction of finite difference; the other is transient heat 
conduction of finite difference. Because of the characteristics of welding heat 
source, including concentration, mobility and instantaneity, the transient heat 
conduction of finite difference equation is used to describe the temperature field 
of molten pool in this paper. 

The boundary conditions are assumed as follows: the top of the molten pool is 
adiabatic; and, the wall of molten pool is heat-dissipation. Then the basic partial 
differential equation [17] is given by: 

1
2 2

2 2
p

T T T
c tx y
λ
ρ
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                        (2) 

where λ  is the thermal conductivity, pc  is specific heat, and ρ  is density of 
alloy. 

The explicit difference scheme is used to solve Equation (2) and the obtained 
( )nT t  of solidification area is written as: 

( ) ( ) ( ) ( ) ( ) ( )1
1, 1 1, , 1 1, 4n nT t F T i j T i j T i j T i j T t
F −
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 (3) 

Here, F  is the fourier number: 2
p

tF
c x
λ

ρ
∆

=
∆

. Where t∆  and x∆  are re-  

spectively time step and the length of the CA cell side. 

2.3. CA Model for Microstructure 
2.3.1. Nucleation and Growth Model 
In this paper, the quasi-continuous nucleation model is adopted, which is put 
forward by Rappaz et al. and Thevoz et al. [18] [19]. This model uses the Gaus-
sian distribution function to describe the relationship between grain density and 
degree of undercooling, as shown below: 
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               (4) 

where maxn  is maximum density of nucleation given by the integral of the total 
distribution, Tσ∆  is the standard degree of curvature undercooling, and NT∆  
is the degree of undercooling when the nucleation density is maximum.  

The sharp interface model of dendritic growth established by Chen et al. [20] is 
used in this work, which is said that the interface has no thickness and the physi-
cal quantities of solid and liquid phases sharply change on both sides of interface. 
Grains after nucleation begin to steadily grow at the effect of undercooling. The 
undercooling mentioned here includes curvature undercooling rT∆ , composi-
tion undercooling cT∆  and heat undercooling tT∆ . The thermal diffusion can 
be ignored for the reason that thermal diffusion is usually 3 - 4 orders of magni-
tude higher than solute diffusion in the process of solidification. The general un-
dercooling T∆  is calculated by: 

( ){ } ( )0 01 15 cos 4 l l sT K m C Cε θ θ ∆ = Γ − − + −              (5) 

here curvature undercooling is represented by  
( ){ }01 15 cos 4rT K ε θ θ ∆ = Γ − −   and composition undercooling by  

( )0c l l sT m C C∆ = − , where Γ  is the Gibbs-Thomson coefficient, ε  is the 
anisotropy strength of solid-liquid interfacial energy, θ  is the angle of the 
normal to the interface with respect to the x-axis, 0θ  is the angle of crystallo-
graphic orientation with respect to the same axis, lm  is liquidus slope, 0C  is 
the initial solute concentration, l sC  is liquid solute concentration at the inter-
face, and K  is the curvature of the solid/liquid interface, which can be deter-
mined by: 

( )
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where ( )sf i  is the solid fraction of neighboring cells, and N  is the number of 
the nearest and the second nearest neighboring cells ( )8N = . 

2.3.2. Solute Redistribution and Diffusion Model 
Solute redistribution is one of the most important steps in the process of den-
dritic growth. Assuming that the solid/liquid concentration at the interface satis-
fies the following equation: 

s l l sC kC=                                 (7) 

where s lC  is solid solute concentration at the interface, and k  is equilibrium 
partition coefficient. The liquid solute concentration at the interface l sC  is 
adopted as: 

( )0
1 eq

l s l r
l

C C T T T
m

= − − − ∆                    (8) 

where eq
lT  is the equilibrium liquidus temperature at the initial composition, and 

T  is the local temperature. 
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The discharge of solute will inevitably lead to rising in liquid solute concentra-
tion around dendrites, forming a big concentration gradient, promoting the dif-
fusion of solute, and being uniformly distributed to the adjacent liquid cells in the 
end. In fact, the diffusions of solute include diffusion in liquid phase, solid phase 
and interface. These three kinds of diffusions occur simultaneously and interact 
with each other. In order to simplify the model, the simulation assumes that the 
diffusion only occurs in liquid phase. Then the governing equation [21] for solute 
conservation of liquid phase is illustrated below: 

2l
l l

C D C
t

∂
= ∇

∂
                             (9) 

where lC  is the solute concentration in liquid phase, and lD  is the solute dif-
fusion coefficient in liquid phase. 

There are some restrictions about the selection of a time step. In this paper the 
explicit difference scheme of diffusion equation is adopted and obtains the time 
step according to the stability of discrete equation, meanwhile, the time step also 
meets the provisions of the CA method. So the time step can be determined by: 

2
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d dd min ,
4 l

x xt
D V

 
≤  

 
                        (10) 

where dx  is the cell size, and maxV  is the maximum growth velocity obtained 
by scanning the velocities of all interface cells during each time step. 

3. Simulation Results and Discussions  

The numerical model of dendritic growth was established by researching and ap-
propriately simplifying the theory of solidification. Fe-0.04%C binary alloys are 
selected as object to simulate the dendritic growth morphology of solidification 
process, solute distribution and temperature field in arc-shape molten pool. The 
physical parameters of Fe-0.04%C binary alloys are listed in Table 1. 

3.1. The Simulation of Single Equiaxial Crystal 

Figures 1(a)-(c) show the single dendrite morphology with different crystallo-
graphic orientations after 0.67 × 10−4 min. It is found that there is a big differ-
ence in secondary dendrites morphology of different crystallographic orienta-
tions by comparing the three dendritic morphologies. That is to say, the growth  
 
Table 1. Thermophysical properties of Fe-0.04%C binary alloys used in calculation. 

Parameter Value 

Alloy composition ( )0 %C  0.04 

Liquid slope ( )lm k  −80 

Solute diffusion coefficient 
in the liquid phase ( )2 1m slD −⋅  3 × 10−9 

Partition coefficient ( )k  0.17 

Anisotropy strength ( )xG  0.3 

Gibbs-Thompson coefficient ( )Γ  1.9 × 10−7 
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Figure 1. Single dendrite morphology of different crystallographic orientations of Fe- 
0.04%C binary alloys: (a) 0˚, (b) 30˚, (c) 45˚. 
 
velocity of secondary dendrites with crystallographic orientation of 45˚ is slower 
than the other two orientations under the same growth time. The dendrite 
morphology with crystallographic orientation of 0˚ has the best symmetry. The 
difference of morphology is caused by mesh dependency, and this article will 
further improve CA growth algorithm to reduce the mesh dependency of simu-
lations. 

Figure 2 shows the relationship between tip growth velocity of dendrite and 
time. At the beginning of dendritic growth, the tip growth velocity is quick, then 
rapidly decreases with time extending and tends to a stable value after about 
0.17 × 10−4 min, the velocity fluctuation is less than 0.006 m/min. The reason is 
that dendrite rapidly grows at the beginning of solidification under the effect of 
supercooling. As the solidification proceeds, the discharged solute concentrates 
at the front of liquid/solid interface and restrains the growth of dendritic tip. 
Only when the rate of discharging solute in the interface is equal to the diffusive 
rate of solute from the interface to surrounding liquid phase, the growth velocity 
of dendritic tip will tend to a stable value. 

3.2. The Simulation of Multi-Equiaxed Crystals 

Multi-equiaxed crystals with random crystallographic orientations of Fe-0.04%C 
binary alloys free growing from an undercooling melt after 0.50 × 10−4 min and 
0.83 × 10−4 min were simulated. The time step was 0.17 × 10−7 min. Assuming 
that the temperature in arc-shape molten pool was isothermal during the solidi-
fication. A continuous cooling condition with a constant cooling rate of 1200  
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Figure 2. The relationship between tip growth velocity of dendrite 
and time. 

 
K/min was imposed in the arc-shape molten pool. 

Figure 3(a) and Figure 3(d) show the simulated evolution of multi-dendrites 
growth. It is notable that all the dendrites grow along their crystallographic 
orientations at the beginning of solidification, and the primary trunks grow fast 
and the secondary dendrite arms begin emitting from the unstable solid/liquid 
interface of the primary trunks. When the time is 0.83 × 10−4 min, the primary 
trunks meet each other and almost stop growing as shown in Figure 3(d). At the 
same time, the secondary and the tertiary dendrites grow quicker and coarsening 
occurs. As a result, the multi dendrites become asymmetric structures, owing to 
the restriction and compete with each other among the multi dendrites. 

Figure 3(b) and Figure 3(e) show the solid composition field at different 
times, and the contrast strip on the right side represents the value of solute con-
centration. It is notable that the solid composition uniformly distributes in pri-
mary trunks, and the solid solute concentration in the secondary and the tertiary 
dendrite arms is higher than the primary trunks. It also can be seen that the solid 
solute concentrates in the roots of the secondary dendrites at the beginning of 
the solidification process, and gradually decreases with the growth of the sec-
ondary dendrites. The reason is that the reticular gaps formed by the mutual 
crisscross among dendritic arms hinder the diffusion of the solid solute, while 
the solid solute in dendritic tip can quickly spread to surrounding liquid phase. 
As the solidification proceeds, grains contact each other and the enriched solute 
in the reticular gaps eventually becomes solid. The degree of solute concentra-
tion is not serious eventually. 

Figure 3(c) and Figure 3(f) show the liquid compositon field at different 
times. It can be seen that the areas of solute concentration mainly distribute in 
the regions that are surrounded by dendritic arms. Moreover, the smaller the 
areas are, the higher the degree of enrichment, and the grain boundary segrega-
tion appears in the end of solidification. 
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Figure 3. The multi-dendrite growth morphology, and the liquid and solid solute distri-
bution of Fe-0.04%C binary alloys at different times: (a) dendritic morphology after 0.50 × 
10−4 min, (d) dendritic morphology after 0.83 × 10−4 min, (b) solid concentration distri-
bution after 0.50 × 10−4 min, (e) solid concentration distribution after 0.83 × 10−4 min, (c) 
liquid concentration distribution after 0.50 × 10−4 min, (f) liquid concentration distribu-
tion after 0.83 × 10−4 min. 

3.3. The Simulation of Columnar Crystals 

The simulated growth morphology of columnar crystals and the observed mi-
crostructure of the experiment are presented in Figure 4. The time step is 0.33 × 
10−2 min. It can be seen that there are a large number of crystal nuclei on the 
molten pool wall, which rapidly grow and contact each other, thereby forming 
the fine equiaxed crystals. The unstable grains in front of the interface competi-
tive grow as dendrites, owing to the solute diffusion and undercooling. Some of 
the dendrites in advantageous positions survive from competition and block 
other dendrites. During the process of gradually eliminating the dendrites in 
disadvantageous positions, the columnar crystals are formed. Due to the effect of  
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Figure 4. Columnar crystals morphology of Fe-0.04%C binary alloys: (a) t = 0.17 × 10−2 
min, (b) t = 0.50 × 10−2 min, (c) t = 0.83 × 10−2 min. 
 
arc-shaped molten pool, another phenomenon should be noted that the colum-
nar crystals on the bottom of molten pool are more concentrated than those on 
the edage of molten pool, and the dendritic arms of which are thinner. 

3.4. The Simulation of CET after Coupling with Temperature Field 

In previous studies, for the simulation of dendrites freely growing from a con-
stant undercooled melt, the calculation domain was maintained at uniform tem- 
perature field. However, the actual temperature field has a gradient transforma-
tion, thus affecting the growth morphology of dendrites. In order to accord with 
the actual solidification process of molten pool, the simulated CET was coupled 
with the changed temperature field in this model. 

Figure 5(a) shows the macroscopic temperature field. The contrast strip on 
the right side represents the temperature value. It can be seen that the tempera-
ture in the center of molten pool is the highest, and due to the heat dissipation of 
molten pool wall; the closer to the edge of molten pool, the lower the tempera-
ture is, thus forming the temperature gradient. Moreover, the temperature gra-
dient inside the molten pool is small, and the closer to the edge of molten pool, 
the bigger the temperature gradient is, owing to the heat dissipation of molten 
pool wall is faster than that inside the molten pool. 

By comparing Figure 5(b) with Figure 5(c), it can be noted that the shape 
of molten pool mainly affects the crystallographic orientations of columnar crys-
tals on the molten pool wall, and has no effect on the internal equiaxial crystals.  



M. Zhang et al. 
 

184 

 
Figure 5. Temperature field and dendritic morphology of CET of Fe-0.04%C binary al-
loys: (a) temperature field, (b) dendritic morphology in arc-shape molten pool, (c) den-
dritic morphology in rectangle-shape molten pool. 
 

Metal solidification theory holds that the columnar crystals’ spindles have 
strict crystallographic orientations as they begin to grow. The base metal grains 
are anisotropic on the molten pool wall of arc shape, and it is beneficial for co-
lumnar crystals to grow when the crystallographic orientations of columnar crys-
tals’ spindles exactly match the base metal grains. However, the base metal grains 
are isotropic on the molten pool wall of a rectangle, and such an idealized model 
has a large difference with actuality. 

The solid/liquid solute distributions are shown in Figure 6, and the contrast 
strip on the right side represents the value of solute concentration. It can be 
found that the solid solute concentration of fine grains region on the surface is 
the lowest. With the growth of columnar crystals, the solid solute concentration 
increases gradually, and mainly concentrates in the end of the primary trunks 
and the secondary interdendrite. Likewise, the degree of solid solute segregation 
of equiaxial crystals in the primary trunk tips and the secondary/tertiary inter-
dendrite is the biggest. The cause of solute enrichment is that the solute of den-
dritic roots is hampered by dendritic arms and not easily spread into the liquid 
phase of molten pool. Because the heat dissipation of molten pool wall is faster 
than molten pool center and the dendrites grow with more discharged solute, 
the liquid solute concentration enriches in the roots of columnar and equiaxial 
crystals; in addition, the degree of solute enrichment of the former is higher than 
the later. 
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Figure 6. Solute distribution of CET of Fe-0.04%C binary alloys: (a) solid concentration 
distribution, (b) liquid concentration distribution. 

4. Conclusions 

A newly-coupled two-dimensional CA-FD model was developed to quantitatively 
predict the dendritic growth and solute distribution during the solidification of 
Fe-0.04%C binary alloys in arc-shape molten pool. The following main results 
were gained: 

1) The numerical simulations were performed for single equiaxial crystal and 
multi-equiaxed crystals with different crystallographic orientations. At the be-
ginning of solidification, the tip growth velocity rapidly decreased, and tended to 
a stable value after about 0.17 × 10−4 min, while the velocity fluctuation was less 
than 0.006 m/min. Dendritic morphology varied with the crystallographic orienta-
tion. The microsegregation of solute was mainly among grain boundaries or 
along the dendritic arms. 

2) The growth morphology of columnar crystals after different times was si-
mulated. Some of the dendrites in advantageous positions competitively grew by 
blocking other dendrites and become columnar crystals. Owing to the effect of 
molten pool shape, the columnar crystals on the bottom of molten pool were 
more compact compared with the columnar crystals on both sides of the molten 
pool. The CA simulated results for columnar crystals were found to be in agree-
ment with theoretical prediction and experimental result. 

3) The simulated dendrite morphology by CA-FD model which was coupled 
with a nonuniform temperature field was more consistent with solidification theory 
and closer to the actual solidification conditions than the original model of this 
article’s authors. The solute mainly enriched in the roots of dendrites, and the 
solute concentration of columnar crystals’ roots was higher than equiaxial crys-
tals’ roots. 
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