
World Journal of Condensed Matter Physics, 2019, 9, 102-111 
https://www.scirp.org/journal/wjcmp 

ISSN Online: 2160-6927 
ISSN Print: 2160-6919 

 

DOI: 10.4236/wjcmp.2019.94008  Oct. 9, 2019 102 World Journal of Condensed Matter Physics 
 

 
 
 

Surface Recombination Concept as Applied to 
Determinate Silicon Solar Cell Base Optimum 
Thickness with Doping Level Effect 

Masse Samba Diop1, Hamet Yoro Ba2, Ndeye Thiam2, Ibrahima Diatta1, Youssou Traore1,  
Mamadou Lamine Ba2, El Hadji Sow1, Oulymata Mballo1, Grégoire Sissoko1 

1Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh 
Anta Diop, Dakar, Senegal 
2Laboratory of Sciences and Techniques of Water and Environment, Polytechnic School of Thiès, Thiès, Senegal 

 
 
 

Abstract 
New expressions of back surface recombination of excess minority carriers in 
the base of silicon solar are expressed dependent on both, the thickness and 
the diffusion coefficient which is in relationship with the doping rate. The op-
timum thickness thus obtained from the base of the solar cell allows the sav-
ing of the amount of material needed in its manufacture without reducing its 
efficiency. 
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1. Introduction 

The quality control of the solar cell aims at optimizing the various stages of its 
manufacture through, the doping rate respectively in the emitter and the base 
(Nb (D)), the crystallinity of the material and its orientation, as well as the thick-
nesses [1] [2] [3] [4] [5]. These different parameters influence the volume and 
surface recombination of the minority carrier [6] [7] in the solar cell. 

Thus the recombination of the minority carrier is located: 
 in the volume, through the lifetime (τ) and the diffusion length (L) connected 

by the relation of Einstein [8]; 
 on the emitter-base (junction) surface [9] [10], which indicates the operating 

point (from open circuit to short circuit) [11] [12]; 
 at the back of the base (p/p+) [13] [14] [15] [16]; 
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 at the grain boundaries in the 3D model [17] [18]. The aim is to uncouple the 
recombination of the minority carrier in the volume, from that appearing on 
the surfaces [19]. 

The recombination of the minority charge carrier is studied in order to eva-
luate their effect on the current response or voltage of the solar cell, under dif-
ferent conditions: 
 of illumination wavelength [20] [21] and illumination level n [22] [23] [24] 

or under dark [25];  
 of operating mode in particular, in static regime [26], the dynamic frequency 

regime [27] or transient dynamic regime [28] [29] [30]); 
 of external action by applied electromagnetic field [31] [32], or irradiation of 

nuclear particles [12] or a change in temperature [33]; 
In this work, the phenomenological parameters, such as the recombination 

velocity of the minority carrier in volume (τ), at the emitter-base junction (Sf) and 
at the rear face (Sb) of the thickness base (H), are studied. The optimum thick-
ness (H) of the silicon solar cell base leading to the maximum short circuit cur-
rent is determined according to the doping rate Nb (D), for a low level of illu-
mination n.  

2. Theory 

Figure 1 represents a silicon solar cell of type n+-p-p+ under polychromatic il-
lumination [34] [35]. The space charge region (x = 0) constitutes the junction 
(n+-p), allowing the separation of photogenerated electron-hole pairs, subjected 
to a velocity (Sf), called recombination velocity at the junction [9] [10] [11]. The 
rear face corresponds to a zone of higher doping rate (p+), in x = H, produces an 
electric field (back surface field), which allows the return of the minority carrier 
towards the junction, and characterized by a recombination velocity (Sb) [10] 
[16] [20].  

When the solar cell is under illumination, the density of the photogenerated 
carrier in the base is governed by the following continuity equation: 
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τ and D are, respectively, the lifetime and the diffusion coefficient of excess 
minority carrier in the base, connected by the relation of Einstein. 

( ) ( ) ( )2L Nb D Nb Nbτ= ⋅                      (2) 

with L the diffusion length of the minority carriers in excess. The diffusion coef-
ficient and the lifetime of the excess minority carrier are related to the doping 
rate of the base (Nb in cm−3) by the following empirical relations [36] [37]: 
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Figure 1. Structure of a solar cell of type (n+-p-p+) 
illuminated by the emitter. 

 
T is the temperature of the solar cell, 23 2 2 11.43 10 m kg s Kbk − − −= × ⋅ ⋅ ⋅  is the 

Boltzmann constant and 191.6 10 Cq −= ×  the elementary charge. 
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( )xδ  is the density of photogenerated carrier in the base, it is produced by 
the generation rate [38], expressed by the following equation: 

( )
3
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= ∑                       (6) 

where n is the number of sun or level of illumination, indicating the concentra-
tion of light [39]. 

ai and bi are coefficients obtained from the modeling of the radiation under 
A.M.1.5. 

The expression of the density of the minority carrier of charge in excess in the 
base is given by the resolution of the continuity equation and is written: 
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A and B are coefficients determined from the boundary conditions which re-
spectively introduce the recombination velocity of the minority charge carrier at 
the junction (Sf) and at the rear face (Sb) [40]. 
• at the junction (x = 0)  
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• at the back surface (x = H): 
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Sf represents the recombination velocity of the carriers across the junction. Sb 
is the recombination velocity of minority carrier at the back surface [25] [26] 
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[28]. 
In x-H, where there is a rear electric field (p/p+, low-high junction), which re-

turns electrical charges, towards the junction (SCR), to be collected. The first so-
lar cells did not have this technology, therefore the contact was ohmic type, and 
the recombination velocity Sb then, was very high. At this surface where there is 
a potential barrier, a part of the minority carrier can cross this junction p/p+ 
[34]. 

3. Results and Discussions 
3.1. Photocurrent Density 

The expression of photocurrent density is given by Fick’s law.  
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From Expression (8), we represent in Figure 2 the profile of the photocurrent 
density as a function of the recombination velocity of the minority carrier at the 
junction for different thickness values at constant level of illumination. 

For values of Sf < 102 cm/s, the photocurrent is practically zero, which cor-
responds to an open circuit operating point of the solar cell. For the recombina-
tion velocity range from 102 cm/s to about 104 or 105 cm/s, the photocurrent in-
creases. Beyond 105 cm/s, the photocurrent is virtually constant with increasing 
Sf and corresponds to the short circuit current Jphsc. It increases with the level 
of illumination. 

Now we represent in Figure 4 the profile of the photocurrent density as a func-
tion of the recombination velocity at the junction for different diffusion coeffi-
cients.   

3.2. The Recombination Velocity in Back Surface 

Figures 2-4 indicate a plateau regardless the values of, D, H, and n. Thus the de-
rivative of the expression of the photocurrent density with respect to the recom-
bination velocity vanishes [10] [13] [17] [26] and is written as: 
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The resolution of this equation leads to the expressions of ( )1 , ,iSb b H D  and 
( )2 ,Sb H D  the recombination velocity at the back face. 
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Figure 2. Photocurrent density as a function of the recombination velocity at the junction 
for different thickness values (n = 1.1, D = 26 cm2/s). 

 

 

Figure 3. Photocurrent density as a function of the recombination velocity at the junction 
for different illumination levels, H = 0.0144 cm. 

 

 

Figure 4. The profil of the photocurrent density as a function of the recombination ve-
locity at the junction for different diffusion coefficients (H = 0.0144 cm, n = 1.1). 
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where appears the effect of the absorption of the light in the material through the 
coefficients (bi) and leads to a generation rate for ( 1ib H⋅  ). Sb1 indicates the 
recombination velocity of the minority carrier sent back to the junction n+/p, to 
participate in the photocurrent. 

( ) ( ) ( )
2 , tanhD HSb H D

L D L D
 

= − ∗   
 

               (14) 

Sb2 < 0, indicates the flow of the minority carrier through the junction p/p+ 
(FICK law), justifying the potential that introduces the electric field in the rear 
face [34]. It represents the intrinsic recombination velocity of the minority car-
rier at the p/p+ junction. The recombination velocity Sb1 and Sb2 yield an asymp-
tote under the conditions where 1H L  and is equal to D/L, representing the 
diffusion rate [10] [13] [26]. 

Figure 5 gives the profile of the two expressions of recombination velocity at 
the rear face versus the solar cell base thickness, for different values of the diffu-
sion coefficient of the minority carrier in the base. 

The intercept point of the curves Sb1 and Sb2, gives the optimum thickness of 
the base of the solar cell, for each diffusion coefficient sought by other authors 
[41] assuming fixed rates of recombination.  

Table 1 summarizes the variation in the thickness of the solar cell base for 
each diffusion coefficient and the respective short-circuit currents Jsc1 and Jsc2 
which remain maximum and constant. 

Figure 6 gives the representation of the thickness of the solar cell base neces-
sary for each case of the diffusion coefficient. 

The correlation between the diffusion coefficient and the optimum thickness 
of the base is established for 26 cm2/s < D < 35 cm2/s: 

( ) ( ) 4cm 2 102 10H D Nb −= ⋅ + ⋅                    (15) 

It allows the realization of the silicon solar cell with Hopt thickness for a given 
doping of the base [42] [43]. 

 

 

Figure 5. Recombination velocity at the back surface versus solar cell base thickness. 
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Figure 6. Depth H as a function of diffusion coefficient D. 
 
Table 1. Thickness of the solar cell base, for different diffusion coefficients. 

Nb (cm−3) 3.283 × 1016 2.274 × 1016 1.464 × 1016 5.196 × 1015 2.261 × 1014 

D (cm2/s) 26 28 30 33 36 

H (cm) 0.0143 0.0146 0.0149 0.0154 0.0157 

Jsc1 (A/cm2) 0.03 0.031 0.031 0.031 0.031 

Jsc2 (A/cm2) 0.038 0.038 0.038 0.038 0.038 

Sb1 (cm) 7734.9 8139.4 8505 9003 9386.9 

Sb2 (cm) 1144.6 11783 1208.7 1250.2 1282.2 

4. Conclusion 

In this work, a method for determining the optimum thickness of the base of the 
silicon solar cell by the technique of the intercept curves of back surface recom-
bination velocity is proposed. The calibration curves of the photocurrent as a 
function of the recombination velocity of minority carrier at the junction are 
represented for different levels of illumination, of the thickness of the base and 
for different diffusion coefficients of the minority carrier. Thus, the back surface 
recombination velocity, dependent on both, the base thickness and the diffusion 
coefficient of the minority carrier, is deduced. The study of the profile of the re-
combination velocity of minority carrier on the back surface through these two 
expressions obtained, made it possible to establish the optimum thickness of the 
base, associated with a specific base doping rate, leading to a high short-circuit 
current, through a mathematical correlation, which leads to the economy of ma-
terial in the manufacture of the solar cell and consequently the reduction of sell-
ing prices. 
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