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Abstract 
For many years, a Lorentz factor of L = 1/3 has been used to describe the local electric field in thin 
amorphous dielectrics. However, the exact meaning of thin has been unclear. The local electric 
field Eloc modeling presented in this work indicates that L = 1/3 is indeed valid for very thin solid 
dielectrics (tdiel ≤ 20 monolayers) but significant deviations from L = 1/3 start to occur for thicker 
dielectrics. For example, L ≈ 2/3 for dielectric thicknesses of tdiel = 50 monolayers and increases to 
L ≈ 1 for dielectric thicknesses tdiel > 200 monolayers. The increase in L with tdiel means that the 
local electric fields are significantly higher in thicker dielectrics and explains why the breakdown 
strength Ebd of solid polar dielectrics generally reduces with dielectric thickness tdiel. For example, 
Ebd for SiO2 reduces from approximately Ebd ≈ 25 MV/cm at tdiel = 2 nm to Ebd ≈ 10 MV/cm at tdiel = 
50 nm. However, while Ebd for SiO2 reduces with tdiel, all SiO2 thicknesses are found to breakdown 
at approximately the same local electric field (Eloc)bd ≈ 40 MV/cm. This corresponds to a coordi- 
nation bond strength of 2.7 eV for the silicon-ion to transition from four-fold to three-fold coordi- 
nation in the 3O Si O− ≡  tetrahedral structure. 
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1. Introduction 
Early on it was recognized by Mossotti and Clausius that the local electric field played a very important role in 
the polarization/distortion of molecules in the dielectric [1] [2]. Somewhat later, H. A. Lorentz [3] showed that 
the local electric field could be expressed (in rationalized mks units) as:  
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where Ediel (=ΔVdiel/tdiel) is the average field in the dielectric, ΔVdiel is the voltage drop in the dielectric, P is the 
dielectric polarization (dipole moment per unit volume), ε0 is the permittivity in free space, and L is now com-
monly referred to as the Lorentz Factor. The local electric field arises from the superposition of fields produced 
by the conduction charges (on the conductive plates of capacitor) plus the field contribution from all the dipoles 
in the dielectric material. The local electric field plays a critically important role not only in polarization/distortion 
of molecules in the dielectric but it also plays a critically important role in the dielectric breakdown strength Ebd 
and in time-dependent dielectric breakdown (TDDB) [4]. 

In linear, homogeneous and isotropic dielectrics, the polarization P can be written:  

( )0 01diel dielP E k Eχε ε= = − ,                               (2) 

where χ is the electric susceptibility and k is the dielectric constant. Using Equation (1) and Equation (2), the 
Lorentz equation is produced for the local electric field: 

( )1 1loc dielE L k E= + −   .                                (3)   

To determine L for a dielectric, Lorentz imagined a spherical cavity of dipoles (around an arbitrary lattice site 
in the dielectric) and treated their contribution to the local electric field discretely (by summation). The radius R 
of the sphere was chosen to be much larger than the lattice constant. Lorentz showed that, for such a spherical 
collection of dipoles (in a crystal with cubic symmetry), the dipolar contribution to the local electric field was 
zero. To find the local field contribution for dipoles outside of the sphere, Lorentz placed a surface polarization 
charge density σsurface = Pcosθ on the sphere, as illustrated in Figure 1.  

Integrating the surface polarization charge density over the Lorentz sphere, as illustrated in Figure 1, gives a 
contribution to the local electric field at the origin that is commonly referred to as the Lorentz field:  

( )π 2 2π
2

Lorentz Field 2
0 00 0

cos cos1 12 sin d d
4π 3
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R
θ θ

θ θ φ
ε ε

    
= ⋅ =    

     
∫ ∫ .          (4) 

Comparing Equations (1) and (4), we see that the Lorentz factor is: L = 1/3. Thus, L = 1/3 has long been used 
and assumed to be valid for dielectrics having either cubic crystalline structure or having an amorphous structure 
[5] [6]. 

For hyper-thin dielectrics, construction of a Lorentz sphere is difficult/impossible because the radius R of the 
sphere, as Lorentz suggested, should be chosen such that R is much larger than the lattice constant. For this rea-
son, recently an alternative method to the standard Lorentz sphere approach is published for local electric field 
determination in hyper-thin dielectrics where the dielectric thickness may only be a few monolayers [7]. Fortu-
nately, while this new method is used in local-field determination for hyper-thin dielectrics, the method is gen-
eral enough that it can be easily extended to thicker dielectrics.  

 

 
Figure 1. Lorentz sphere with a surface polarization charge density of σsurface = Pcosθ.               
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2. Approach for Local Electric Field Determination  
The Lorentz sphere approach is apparently impossible to apply for hyper-thin dielectrics where the dielectrics 
may only be a few monolayers thick. Thus, an alternative approach is needed to determine the local electric field. 
To properly determine the local electric field, care must be taken to account for all charges that are acting at an 
arbitrary site of interest. As illustrated in Figure 2, the local electric field is the cumulative field (at the site of 
interest) due to all the other charges acting. For a parallel plate capacitor (the greatest interest here) the charges 
include: external conduction charge density of σq on electrode surfaces, depolarization charge density of −σP on 
surface of dielectric, polarization charge density of σP near to the surface of dielectric, plus the impact of the all 
the other dipoles in the bulk of the dielectric referred to here as bulk dipoles.  

First, we consider the average/macroscopic electric field in the dielectric Ediel due to the external charge den-
sity σq on electrode plates plus the dielectric surface depolarization charge density −σP. Using Gauss’ law for 
infinite parallel plate capacitors one obtains (in rationalized mks units): 

0

0 0 0

q P q q diel
diel

P E
E

σ σ σ σ ε χ
ε ε ε
− − −

= = = ,                         (5) 

where χ is the electric susceptibility. Using the fact that the dielectric constant k is given by k = 1 + χ, and solv-
ing Equation (5) for Ediel, one obtains  

0

q
dielE

k
σ
ε

= .                                      (6) 

Ediel is the macroscopic/average-field in the dielectric. Integrating d ddielV E x= − ⋅  from x = 0 to x = tdiel gives 
Ediel = ΔVdiel/tdiel, where ΔVdiel is the voltage drop in the dielectric. It is important to emphasize that Ediel is the 
macroscopic electric field that must be used in Maxwell’s equations for dielectric materials and is often referred 
to as the Maxwell field [Note that if electric displacement D is defined as 0diel diel qD E k Eε ε σ= = = , then the 
lines of D start and terminate only on conduction charges]. Since the dielectric surface depolarization charge 
density −σP is already incorporated into Ediel, then next we must account for the sheet of near-surface polariza-
tion charge density σP as well as the field contribution from the bulk dipoles.  

As illustrated in Figure 2, the total local electric field Eloc at an arbitrary site of interest in the hyper-thin di-
electric becomes: 

Conduction Charges Dipoles

Conduction Charges Surface Dipole Layers Bulk Dipoles

Bulk Dipoles
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P

loc

diel

E E E

E E E

E E E E
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σ σ σ

σ

−

= +

= + +

= + + +

= + +

                      (7) 

 

 
Figure 2. This figure shows various charges that contribute to 
the local electric field. The physical thickness (tdiel) of the hy-
per-thin dielectric illustrated is three monolayers.                                 
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The surface dipole layers (shown in Figure 2) have been treated in Equation (7) as closely spaced parallel 
sheets of uniform charge density σP, but with opposite polarity. The conduction charge layer σq plus the 
dielectric surface depolarization charge layer –σP have been incorporated to produce Ediel. The remaining charge 
layer σP will be treated separately and will be referred to as the near surface polarization charge layer σP. For 
parallel- plate capacitors, the field due to the sheet of near-surface polarization charge σP can be written as: 

0 0
P

P PEσ
σα α
ε ε

   
= =   

   
.                                 (8) 

In Equation (8), α is a dimensionless parameter that is purely device-structure dependent (not a function of 
polarization or field). α can be determined from Coulomb’s Law by integrating/summing over the uniform sheet 
of near-surface polarization charge σP [7]. For an infinite parallel plate capacitor structures, α = 1.  

Next we consider the bulk dipole contribution to the local electric field. As Lorentz orginially suggested, the 
dipolar contribution to the local electric field will be assumed to be proportional to the dielectric polarization P 
and can be written as,    

Bulk Dipoles
0

PE β
ε

 
=  

 
,                                   (9) 

where β is a dimensionless structure-dependent parameter. Thus, using Equations (7)-(9), we obtain 
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 From Equation (10), we see that the Lorentz factor for dielectrics, in an infinite parallel plate capacitor ar-
rangement, is given by: L = 1 + β.  

3. Lorentz Factor L Determination 
The dielectric polarization P is the number of dipoles per unit volume, and for cubic symmetry we have:  

#dipoles
Volume

op qP
abc abc

δ
= = = ,                               (11) 

where po = qδ is molecular dipole moment (that is field induced) and the lattice parameters a = b = c for a crys-
tal with cubic symmetry. Using Equations (9) and (11), we obtain for β: 

0 Bulk Dipoles 0
Bulk Dipoles

E abc E
P q

ε εβ
δ

= = ,                           (12) 

The method used for summing the bulk dipole contribution to the local electric field is illustrated in Figure 3. 
Referring to Figure 3, the electrostatic potential at r , due to the bulk dipoles located at ′r  in the bulk di-

pole layer, can be determined by: 

( ) ( ) ( ) ( ) ( )Bulk Dipoles
, ,0

1 1
ˆ ˆ4π , , 2 , , 2l m n

qV r
l m n z l m n zε δ δ

 
= − 

′ ′+ − + − −  
∑ r r r r

,        (13) 

where:  
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and 
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Figure 3. This figure shows the location of the bulk dipoles (in this cu-
bic arrangement of dipoles). The dipole moment at each lattice site is p0 = 
qδ where the displacement δ is induced by the electric field Ediel.                   

 

( ) ( ) [ ] [ ] [ ]2 2 2ˆ, , 2 2l m n z la x mb y nc zδ δ′ + − − = − + − + − −r r .             (15) 

In the above dipole summation, the bracketed lattice sites , ,l m n  means that the summation is conducted 
over all lattice sites in the bulk dielectric, but with the origin excluded. Taking the gradient of the above dipolar 
electrostatic potential and considering only the z component of the dipolar field at origin, one obtains: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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      (16)  

Using Equation (12) and Equation (16), we obtain the structural parameter β for the bulk dipoles: 

 
( ) ( ) ( ) ( ) ( ) ( )
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    + + + + + −      

∑ .    (17)

 4. Layered Bulk-Dipole Summations  
It is found to be most convenient (in order to gain relatively rapid convergence) to do bulk layered-dipole sum-
mations as originally suggested by Nijboer and De Wette [8]. By layered summation, it is meant that for each 
integer value of n [representing each monolayer of added bulk-dipole dielectric thickness] the field contribution 
to the local electric field Eloc (at the origin) is fully comprehended for all dipoles in the x-y plane. This is accom-
plished by allowing l and m to range as far as needed such that dipoles contributions outside this range make a 
negligible contribution to Eloc. Thus, in the layered dipole summation approach, β is given by: 

n

n
n

β β
−

= ∑ ,                                    (18) 

where βn is the full dipolar contribution from the nth layer of bulk dipoles. This layered-dipole summation ap-
proach for an elementary cube of dipoles is illustrated in Figure 4. 

The dipole sum for the elementary cube shown in Figure 4 is β = 0. However, it is very important to emphas-
ize that the net dipole sum is β = 0 for all cubes, independent of cube size. This is shown in Figure 5 where a  
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Figure 4. Layered bulk-dipole summation approach illustrated for an elementary cube. For the n = 0 reference plane, the 
contribution from dipoles in this plane β0 is opposite (negative) to the macroscopic field in the dielectric Ediel. The contribu-
tion from dipoles above n = 0 plane (β1) and below the reference plane (β−1) are positive such that net contribution to the lo-
cal electric field is zero ( 1 0 1 0β β β β−= + + = ) for the elementary cube. For calculation purposes, a = 2.5 Å was used.                
 

 
Figure 5. Monolayer-by-monolayer bulk-dipole contributions to β. For demonstration purposes, the planar bulk-dipole 
summations were conducted with l and m varying from −25 to +25. Each monolayer of dielectric thickness (assumed to 
be a = b = c = 2.5 Å) is indexed by n so that the thickness impact on β can be studied in detail. The reference plane (n = 0) 
produces the greatest single-layer bulk-dipole contribution to β. The negative sign means that the local field contribution of 
the β0 reference plane is actually opposite to Ediel. Note that each of the other monolayers of dielectric make a much smaller 
but positive contribution to β. Note also that when l, m, and n all range from −25 to +25, the macroscopic sample is in the 
shape of a perfect cube and the dipole sum, as expected, produces β = 0.                                                          
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more extensive layered dipole summation is illustrated with l, m, and n all extending from −25 to +25 lattice 
sites. Note that, even for this much larger cube of dipoles, the net dipole summation β is still zero.  

Figure 5 and the inserted summation table are very useful. For the n = 0 reference plane of bulk dipoles, that 
contains our origin, the reference-plane bulk-dipole summations (with l and m ranging from −25 to +25 lattice 
sites) produce β = β0 = −0.7012. The negative sign means that the contribution of the dipoles to the local electric 
field in the reference plane is opposite to Ediel. Let us now add a monolayer of bulk dipoles above and below the 
reference plane. The dipolar sum now becomes: ( ) ( )0 1 1 0.7012 0.0437 0.0437 0.6138β β β β+ −= + + = − + + = − . 
If we add two monolayers of bulk dipoles above and below the reference plane, then the planar dipolar sum be-
comes: ( ) ( ) ( ) ( )0 1 1 2 2 0.7012 0.0437 0.0437 0.0176 0.0176 0.5786β β β β β β+ − + −= + + + + = − + + + + = − . Note 
that, as we add more monolayers, above and below the reference plane, β becomes more positive. Finally, if we 
continue to add more and more monolayers, finally reaching a total of 25 monolayers above the reference plane 
and 25 monolayers below the reference plane, then the bulk planar dipolar sum will become: β = −0.7012 + 
(0.3506 + 0.3506) = 0. This is expected since, with l, m, and n all ranging from −25 to +25, the macroscopic di-
electric is in the shape of a perfect cube and, in agreement with Lorentz, the bulk dipole sum for a perfect cube 
of dipoles is β = 0 . 

It is very important to emphasize that the n = 0 reference plane (that contains our origin) tends to dominate all 
the other individual dipole planes and its value is β0 ≈ −0.7. The reason for this is illustrated in Figure 6. All the 
dipoles in the n = 0 reference plane make a constructive contribution to the local electric field and the all these 
contributions are opposite to the macroscopic/Maxwell field Ediel in the dielectric.  

The net contribution to the local electric field, from each of the other dipolar planes βn≠0 is in the same direc-
tion as Ediel but the individual-plane contributions are much smaller than β0. Thus, the value of the Lorentz factor 
L for hyper-thin dielectrics (a few monolayers of dielectric in an infinite parallel-plate capacitor structure) will 
be reasonably close to L ≈ 1 + β0 ≈ 1/3 and this is found to be in good agreement with the usual Lorentz factor 
assumption. However, for very thick dielectrics we expect β to asymptotically approach 0; thus, we expect L = 1 + 
β to asymptotically approach 1 for very thick dielectrics. 

Before leaving this section, a question should be addressed: what must be the extent of the planar dipole 
summations (l and m) to insure that the contribution of the dipoles in each plane is fully comprehended? First, 
we note that, in the layered dipole sum approach, the dielectric thickness tdiel fixes the number of n monolayers 
(in the z-direction) that must be included in the β summation. However, the extent of the planar x-y dipole sum- 
mations is still an open question.  

Since the n = 0 reference plane is the dominant plane, let us see how it is impacted as we extend the l, m 
summation range. The extended dipole summation results for the n = 0 reference plane are shown in Figure 7. It 
can be seen that planar dipole summation approach leads to a relatively rapid convergence for β0. This is because  

 

 
Figure 6. All bulk dipoles in the n = 0 reference plane make a constructive con-
tribution to the local electric field and the local electric field contribution from 
this plane is opposite to macroscopic/Maxwell field Ediel.                                     
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Figure 7. For the reference plane (n = 0), the x-y planar dipole summations 
were conducted over the indicated l and m ranges. Planar dipole summa-
tion convergence occurs relatively quickly with a summation error of only 
2% when l and m extend from −25 to +25 lattice sites. A summation error 
of <1% results when l and m extend from −50 to +50 lattice sites. The 
asymptotic value for β0 is −0.7166.                                     

 
dipole fields drop off relatively sharply as (1/r3). A summation error of <1% occurs in β0 determination if the 
planar dipole summations (l and m) are extended from −50 to +50 lattice sites. The infinite-plane asymptotic 
summation value for β0 (=−0.7166), shown in Figure 7, was obtained using a geometrical series approximation 
for the converging summation series [7]. This asymptotic value for β0 is consistent with values previously re-
ported for the n = 0 reference plane: −0.7189 found in [9] and −0.72 found in [10] [So as to avoid confusion for 
reader, it should be noted that the actual value reported in [9] is −9.033622 but this value has to be divided by 4π 
to be consistent with the rationalized mks system of units used in this paper]. Therefore, planar dipole summa-
tions with l and m ranging from −50 to +50 lattice sites tend to produce an error of <1% in β0 determination. 
Thus, the range of l and m for planar summations will be from −50 to +50 lattice sites in the rest of this paper. 

5. Bulk Layered-Dipole Summations for Thicker Dielectrics 
A detailed example of planar dipole sums, for a moderately thick dielectric of 9 monolayers, will be now be 
conducted and then the method will be generalized to very thick dielectrics. Shown in Table 1 are the summa-
tion results for a dielectric that has a physical thickness of 9 monolayers thick (7 bulk dipole monolayers are 
summed). To minimize error (<1%) in the construction of Table 1, the x-y planar dipole summations were con-
ducted with both l and m ranging from −50 to +50 lattice sites.  

Since the local field contribution from the dielectric surface dipole-layers are already incorporated in the 
model, the bulk-dipole layer summations (shown in Table 1) are over 7 bulk monolayers of dipoles. As indi-
cated in Table 1, the variation in L (with position within the dielectric thickness) was determined by shifting the 
reference plane from the bottom of the dielectric to the top. The results are illustrated in Figure 8. 

These planar dipole summation results indicate that some L variation does exist within thickness the dielectric, 
but generally the variations are small. Also, we note that the average value of the Lorentz factor does increase 
with thickness, but the average value <L> = 0.39 is still consistent with the common practice of using L = 1/3 for 
hyper-thin dielectrics. The results from Table 1 are shown plotted in Figure 8.  

Using the summation approach [used for the construction of Table 1], we show the results for much thicker 
dielectrics. For each added monolayer of thickness [assumed to be 2.5 Å and indexed by n], all planar summa-
tions (l and m) were extended from −50 to +50 lattice sites. When n also extends over the range −50 to +50, the 
dipole sum becomes β = 0, thus L = 1 + β = 1. 
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Table 1. Lorentz factor across dielectric thickness.                                                                         

Plane  
Identification 

Number n 

Ref Plane at 
Top of  

Dielectric 
Thickness 

  

Ref Plane in 
Middle of 
Dielectric 
Thickness 

  

Ref Plane at 
Bottom of 
Dielectric 
Thickness 

6       0.00876 

5      0.00881 0.00881 

4     0.00884 0.00884 0.00884 

3    0.00887 0.00887 0.00887 0.00887 

2   0.00894 0.00894 0.00894 0.00894 0.00894 

1  0.03497 0.03497 0.03497 0.03497 0.03497 0.03497 

0 −0.70994 −0.70994 −0.70994 −0.70994 −0.70994 0.70994 −0.70994 

−1 0.03497 0.03497 0.03497 0.03497 0.03497 0.03497  

−2 0.00894 0.00894 0.00894 0.00894 0.00894   

−3 0.00887 0.00887 0.00887 0.00887    

−4 0.00884 0.00884 0.00884     

−5 0.00881 0.00881      

−6 0.00876       

Dipole Sum: β= −0.63075 −0.60453 −0.60440 −0.60437 −0.60440 −0.60453 −0.63075 

L = 1 + β= 0.36925 0.39547 0.39560 0.39563 0.39560 0.39547 0.36925 

<L>= 0.38804       

 

 
Figure 8. Lorentz factor L determination for a dielectric of physical thickness of 9 monolayers. Only 7 monolayers are ac-
tually considered in the bulk dipole sum because the contribution of the surface dipole layers, to the local electric field, has 
already been included in model. The L variation within the thickness of hyper-thin dielectrics is found to be relatively small. 
Location points for the bulk dipole summations are indicated. The average value of L (<L> = 0.39) is in reasonably good 
agreement with the usual assumed Lorentz value of L = 1/3 for thin dielectrics.                                                                         
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Figure 9 needs some discussion. The flat-top region in Figure 9(d) occurs because the full cube (with l, m, 
and n all ranging from −50 to 50 lattice sites) can fully fit within the dielectric thickness; in these locations β = 0, 
thus L = 1 + β = 1. A very thick dielectric (1001 monolayers) is illustrated in Figure 10. In most regions of the 
thick dielectric l, m, n can range unrestricted from −50 to +50 lattice sites so β = 0 and L = 1 + β = 1 over most  

 

 
Figure 9. Shows Lorentz factor L as a function of position in dielectric thickness. The average value of the Lorentz factor 
<L> is also shown. (a) tdiel = 21 monolayers. (b) tdiel = 51 monolayers. (c) tdiel = 101 monolayers. (d) tdiel = 201 monolayers. 
More variation about the mean value <L> occurs in thicker dielectrics because layered bulk-dipole summation index n be-
comes truncated near the top and bottom portions of the dielectric. Near the top and bottom regions of the dielectric L = 2/3 
while L ≈ 1 in the other regions of a thick dielectric.                                                                         

 

 
Figure 10. Note that if the dielectric is very thick, then bulk-dipole cubes (with l, m, and n all ranging from −50 to +50) can 
easily fit within the thickness of the dielectric and β = 0 for these cubes. Therefore, the average value of the Lorentz factor 
<L> = 1 + β will asymptotically approach 1 for very thick dielectrics. At top and bottom surfaces of the thick dielectric the 
summation over n becomes truncated such that L = 1 − 0.36 ≈ 2/3.                                                                         
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of the very thick dielectric. However, as one approaches the top and bottom of the thick dielectric, the summa-
tion over n [Equation (18)] becomes truncated such that at the top and bottom surfaces of the thick dielectric 
layer: L = 1 − 0.36 ≈ 2/3. The dipole layer truncation, as one approaches the top and bottom dielectric surfaces, 
will cause more variation in L (from 2/3 to 1) within the thickness of thicker dielectrics. 

The above results are summarized into a single curve (see Figure 11) where the average Lorentz factor <L> is 
plotted versus dielectric tdiel. Note that for very thin films, tdiel < 20 monolayers, the standard Lorentz value of L = 
1/3 is reasonable. For dielectric thicknesses 20 < tdiel < 50 monolayers, the average Lorentz values are much 
closer to 3/5. For dielectric thicknesses 50 < tdiel < 100 monolayers, the average Lorentz value increases to ap-
proximately 4/5. For dielectric thicknesses 100 < tdiel < 200 monolayers, the average Lorentz value is much 
closer to 9/10. For dielectric thicknesses tdiel > 200 monolayers, the average Lorentz factor asymptotically ap-
proaches 1. 

6. Impact of Increases in L on Dielectric Breakdown Strength  
One of the great mysteries in time-dependent dielectric breakdown (TDDB) physics has been: why does the di-
electric breakdown strength Ebd reduce with increases in dielectric thickness tdiel? Until now, only extrinsic ar-
guments have been given: thicker dielectrics are hypothesized to have greater pre-existing defect densities thus 
making it easier for percolation path development resulting in lower breakdown strength. 

The fact that Ebd reduces with tdiel is well established. Early investigations by Klein and Gafni showed this to 
be true [11]. They found that, by testing silicon oxides deposited on glass, Ebd reduces with increases in tdiel. 
While the quality of these early-produced deposited-oxides can be certainly questioned, extensive work done 
much later by Dumin [12] showed clearly that, for thermally-grown semiconductor-quality SiO2 [see Figure 12], 
Ebd reduces with increases in tdiel. Figure 12 indicates that, for SiO2, Ebd~(1/tdiel)s with s = 0.22. The reduction in 
Ebd with increases in tdiel is not just a SiO2 characteristic but seems to be a general trend for all polar solid dielec-
trics [13] [14]. 

The reduction in Ebd with tdiel is also reflected in time-dependent dielectric breakdown (TDDB) data. For con-
stant field, thicker dielectrics fail faster, or equivalently, for a constant time-to-failure TF (e.g., TF = 10 sec), the 
Failure Field reduces with tdiel. The Suehle TDDB data [15], reproduced in Figure 13(a), are in good agreement 
with the Dumin breakdown data. The Wu TDDB data [16] for hyper-thin SiO2 [when stressing voltages are 
converted to fields (Eox = ΔV/tox)] are shown in Figure 13(b). While there is more dispersion in the Wu TDDB 
data, a power-law dependence (s = 0.18) is still evident. 

The fact that thicker dielectrics breakdown at lower fields (and have lower TDDB performance) has been a 
great mystery and challenge for TDDB modeling. For current-based TDDB models, why would thinner SiO2  

 

 
Figure 11. Average Lorentz factor as a function of dielectric thickness. For a very 
thin dielectrics (tdiel < 20 monolayers), < L > ≈ 1/3. For very thick dielectrics, <L> in-
creases monotonically, asymptotically approaching 1.                                     
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Figure 12. Dumin breakdown data [12] for SiO2. Shows Ebd versus dielectric thickness tox . The 
breakdown data shows an inverse-thickness power-law dependence with s = 0.22. The breakdown 
strength Ebd reduces sharply initially with dielectric thickness but then a more gradual reduction 
with dielectric thickness.                                                                         

 

 
Figure 13. (a) Re-plotting of the Suehle TDDB data [15], using Failure Field @ TF = 10 sec, reveals 
a power-law dependence (s = 0.22) reduction in failure-field with tox varying from 65 Å to 220 Å. (b) 
When converted to field (Eox = ΔV/tox), re-plotting of the Wu TDDB data [16], using Failure Field 
@ TF = 10 sec, also indicates a power-law dependence (s = 0.18) with tox varying from 16.5 Å to 
26.7 Å.                                                                                                             

 
dielectrics have better breakdown strength and better TDDB performance when they tend to have higher lea-
kages? As for field-based models, why isn’t the breakdown strength independent of thickness? To circumvent 
these fundamental reliability physics questions, TDDB models have tended to use the extrinsic hypothesis: 
thicker dielectrics must possess a greater pre-existing defect density. The extrinsic hypothesis is illustrated in 
Figure 14. 

The extrinsic hypothesis (of a higher density of pre-existing defects in thicker dielectrics) has been widely 
embraced, without serious objections. The extrinsic hypothesis has gained wide acceptance because the thick-
ness dependence can be easily incorporated into all commonly used TDDB models: E, 1/E, Root-E, or V−n [19]. 
All of these TDDB models have an adjustable pre-factor term into which the empirical thickness dependence 
(1/tdiel)s can be easily incorporated (as is commonly done for area scaling). Thus, all TDDB models tend to cir-
cumvent the thickness-dependence physics by simply hypothesizing that thicker dielectrics must have a much 
higher density of pre-existing defects.  

After 50 years of intensive and extensive SiO2 dielectric research (by hundreds of investigators), if higher de-
fect density was the fundamental reason for Ebd reduction with tdiel, then surely someone would have found (as is 
allowed by the Poisson distribution) a single thick-oxide capacitor having a breakdown strength of >20 MV/cm.  
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Figure 14. (a) Pre-existing defects can exist in dielectrics at time zero. Defects can be also 
generated during TDDB testing. (b) Percolation path develops and breakdown occurs when a 
combination of pre-existing defects and generated defects form a continuous conduction path. 
[17] [18].                                                                                                             

 
However, apparently, these thick-oxide/high-breakdown-field unicorns do not exist. Thus, the extrinsic hypo-
thesis will be rejected and an effort is undertaken to find a more fundamental physics-based model for describ-
ing why thicker dielectrics have lower breakdown strength and lower TDDB performance. This has great relev-
ance for low-k interconnect dielectrics [20] and high-voltage capacitors [21] where the dielectrics can be rela-
tively thick.  

The extrinsic hypothesis (of higher defect density) as for why Ebd reduces with tdiel has never been seriously 
challenged because, until now, there has never been an intrinsic/fundamental-physics reason presented for this. 
However, the increase in L with dielectric thickness (shown in Figure 11) is just the fundamental physics that is 
required to explain why the Ebd reduces with tdiel. Using Equation (3), we see that the Ebd can be written as: 

( )
( )1 1

loc bd
bd

E
E

L k
=

+ −
.                                 (19) 

It is clear from Equation (19) that the breakdown strength of the dielectric is predicted to reduce when the di-
electric constant k increases [22] and also this work shows that Ebd reduces with increases in L (which increases 
with thickness).  

Using Equation (19), with the thickness dependence of <L> shown in Figure11, Figure 15 shows the model 
fit to the Dumin data. A constant value (Eloc)bd = 40 MV/cm was used in the modeling and the relatively good fit 
to the breakdown data suggests that all SiO2 thicknesses tend to breakdown at approximately same local electric 
field.  

A local electric field of 40 MV/cm corresponds to a bond strength of 2.7 eV [19]. This is in good agreement 
with the energy required to break bond-coordination [19] [23], when the Si-ion goes from its normal 4-fold to 
3-fold coordination in the 3O Si O− ≡  tetrahedral structure. 

7. Impact of Local Electric Field on Bond Breakage 
The local electric field Eloc, that distorts polar bonds (by stretching, compressing, bending, etc.) and brings about 
the polarization, also serves to weaken polar molecular bonds. The local electric field thus reduces the bond 
strength ΔH (activation energy required for bond breakage). Weakening of the molecular bonds is very impor-
tant for any bond-breakage process, regardless of the actual breakage mechanism (standard Boltzmann processes 
and/or current driven processes). In previous work [23], this author has shown that the reduction bond strength 
can be described by:  

( ) ( ) ( )0 0, , 1 1loc dielH H p i j E H p i j L k E∆ = ∆ − ⋅ = ∆ − ⋅ + −   ,               (20) 
where ΔH0 is the energy required to break the bond in the absence of field and p(i,j) is the dipole moment associated  
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Figure 15. Comparison of model with Dumin breakdown data. The model shows 
clearly that Ebd reduces with dielectric thickness as (1/tox)s. The relatively good model 
fit to Dumin data suggests that the local electric field at breakdown is a constant 
(Eloc)bd ≈ 40 MV/cm for all SiO2 thicknesses.                                     

 
with coordination bond breakage. The parameters i and j are the repulsive and attractive exponents, respectively, 
associated with the Mie-Gruneisen bonding potential. For strong polar/ionic bonding, the power-law molecular 
repulsive component “i” and the attractive ionic component “j” are typically given by i = 9 and j = 1, respec-
tively. These polar molecular components produce a dipole moment for bond breakage of [23] 

( ) ( ) ( ) ( ) ( )1* *
0 09,1 9,1 1.67p z e r z e rη

−
= =   .                         (21) 

For SiO2, with tetrahedral bonding, the Si cat-ion has a charge state of ( )* *4 4 0.6 2.4z e f e e= = =  (because 
the Si-O bond is about 60% polar). With a Si-O bond distance of r0 = 1.7 Å, then p(9,1) ≈ 6.8e Å. Thus, Equa-
tion (20) becomes: 

( ) ( ) ( )0 06.8 6.8 1 1loc dielH H e E H e L k E∆ = ∆ − = ∆ − + −  Å Å ,                 (22) 

where k (=3.9) is the dielectric constant for SiO2. With a bond strength of ΔH0 = 2.7 eV, then the ultimate 
breakdown strength (ΔH→0) for very thin SiO2 (with L = 1/3) becomes: (Ediel)bd ≈ 20 MV/cm whereas the 
ultimate breakdown strength for very thick SiO2 (with L = 1) is (Ediel)bd ≈ 10 MV/cm . 

8. Impact of Local Electric Field on TDDB 
Time-dependent dielectric breakdown (TDDB) is a very important failure mechanism for metal oxide field ef-
fect transistors (MOSFETs) and capacitors [24]-[29]. As for the thermochemical TDDB model [4] for SiO2, 
bond strength ΔH reduction occurs because of the local electric field and bond breakage occurs due to 
Boltzmann/thermal processes: 

( ) ( ) 0
0 0

0
0

6.8 1 1
exp exp

exp ,

diel

B B B

diel
B

e L k E HHTF A A
K T K T K T

HA E
K T

γ

 + −   ∆∆  = = − +  
    

 ∆
= − + 

 

Å

                (23) 

where the field acceleration parameter γ is given by : 

( ) ( )6.8 1 1eff

B B

e L kp
K T K T

γ
+ −  = =

Å
.                            (24) 
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For very thin SiO2 dielectric (with L ≈ 1/3) the effective dipole moment for bond breakage is peff = 13.4e Å 
and this value is widely observed in the TDDB data for thin SiO2 [23]. However, for very thick SiO2 (with L ≈ 
1), Equation (24) predicts that peff should approximately double for very thick dielectrics. Therefore, while the 
breakdown strength Ebd is expected to decrease with thickness, the field acceleration parameter γ is expected to 
increase with dielectric thickness (because L increases with thickness) 

9. Discussion 
The local electric field Eloc (the field that polarizes, distorts, and weakens polar molecular bonds) is given by 

( )1 1loc dielE L k E= + −    where L is the Lorentz factor, k is the dielectric constant, and Ediel is the macroscop-
ic/average/Maxwell field in the dielectric. It has been shown that the Lorentz factor can be expressed as L = 1 + 
β, where β is determined purely from bulk dipole summation.  

It has been determined that the n = 0 reference bulk-dipole plane dominates all the other individual planes 
above and below the reference plane. All the bulk dipoles in this n = 0 reference plane make a constructive con-
tribution to the local electric field that is opposite to the macroscopic field Ediel in the dielectric. Therefore, the 
bulk-dipole sum for this n = 0 reference plane is negative and for an infinite reference plane of bulk dipoles: β0 = 
−0.72.  

As for the layered bulk-dipole summations, it has been shown in this work that beyond 50 lattice constants the 
planar bulk-dipole contributions to the local electric field are very small/negligible. Thus, a planar bulk-dipole 
sum with (l,m) from −∞ to +∞ monolayers is approximately equal (an error of <1%) to the planar bulk-dipole 
sum with (l,m) varying from −50 to + 50 monolayers.  

Since the other individual bulk-dipole planes (n ≠ 0) make a positive, but much smaller contribution to the 
local electric field, then for very thin dielectrics: 01 1 1 0.72 1 3L β β= + ≈ + = − ≈ . However, for much thicker 
dielectrics the cumulative positive contributions from all the other bulk-dipole layers, above and below the n = 0 
reference plane, start to make a significant contribution to the local electric field such that β = β0 + Sum (βn≠0) ≈ 
0 and L = 1+ β ≈ 1. Thus, for any location in the dielectric where the thickness of the dielectric is sufficient to 
allow 50 monolayers of bulk-dipoles above and 50 monolayers of bulk-dipoles below the n=0 reference plane, 
then a perfect cube of dipoles forms and β = 0. Thus, L = 1 + β ≈ 1 at any location in a thick dielectric where 
(l,m,n) can all be summed unrestricted from −50 to +50 monolayers. 

Even though two different thicknesses of a dielectric may have exactly the same macroscopic field Ediel in the 
dielectric, the local electric field is not the same. The thicker dielectric will have a larger L and thus a larger lo-
cal field Eloc. Because of the higher local electric field Eloc in the thicker dielectric, the thicker dielectric will 
have lower breakdown strength. The definitions of thin and thick dielectrics have been established through pla-
nar bulk-dipole summations for L determination. L increases from L ≈ 1/3 for thin dielectrics (<20 monolayers) 
to nearly L ≈ 1 for very thick dielectric (>200 monolayers). The increase in Lorentz factor L with increase in di-
electric thickness tdiel leads to higher local electric fields that produce more polar-bond distortion, thus a wea-
kening of such bonds. Bond weakening leads to lower breakdown strength in thicker dielectrics and is indepen-
dent of actual bond-breakage mechanism (field, current, or hydrogen release).  

While the Ebd tends to reduce with dielectric thickness, all thicknesses tend to breakdown at approximately the 
same local electric field. As for SiO2, the local electric field at breakdown is (Eloc)bd ≈ 40 MV/cm and is inde-
pendent of thickness. This local electric field (40 MV/cm) corresponds to a coordination bond energy of 2.7 eV. 
This is consistent with the reported energy required to transform the silicon-ion from four-fold coordination to 
three-fold coordination in the 3O Si O− ≡  tetrahedral structure. 

10. Conclusion  
A Lorentz factor of L = 1/3 has long been assumed valid without consideration for dielectric thickness. While L = 
1/3 is valid for thin dielectrics (having either cubic crystalline or amorphous structure), it is not valid for thick 
dielectrics. L increases from L ≈ 1/3 for thin dielectrics (<20 monolayers) to nearly L ≈ 1 for very thick dielectric 
(>200 monolayers). The increase in L with tdiel leads to higher local electric fields that produce more polar-bond 
distortion and thus a weakening of such bonds. Bond weakening leads to lower breakdown strength in thicker 
dielectrics and is independent of actual bond-breakage mechanism (field, current, or hydrogen release). While 
the Ebd tends to reduce with thickness, all thicknesses tend to breakdown at the same local electric field. As for 
SiO2, the local electric field at breakdown is (Eloc)bd ≈ 40 MV/cm and is independent of thickness. This local 
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electric field of 40 MV/cm corresponds to an energy of 2.7 eV that is required to break bond-coordination in the 
3O Si O− ≡  tetrahedral arrangement. 
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