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Abstract 
We study the mixed spin-1 and spin-3/2 Blume-Capel model under crystal field in the tridimen-
sional semi-infinite case. This has been done by using the real-space renormalization group ap-
proximation and specifically the Migdal-Kadanoff technique. As a function of the ratio R of bulk 
and surface interactions and the ratios R1 and R2 of bulk and surface crystals fields on the spin-1 
and spin-3/2 respectively, we have determined various types of phase diagrams. Besides second- 
order transition lines, first-order phase transition lines terminating at tricritical points are ob-
tained. We found that there existed nine main types of phase diagram showing a variety of phase 
transitions associated with the surface, including ordinary, extraordinary, surface and special 
phase transitions. 
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1. Introduction 
The problems of surface magnetism have been investigated for many years. Among them the effects of surface 
on phase transitions in semi-infinite systems have received increasing interest. Real systems have surfaces, in-
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terfaces or boundaries and the translational symmetry is not preserved. This gives a set of surface phase dia-
grams richer than the infinite bulk one [1]-[4]. The simplest model is to assume that the surface is single planar, 
which defines the semi-infinite model. 

Several experimental studies show a critical behaviour of the surface different than the bulk. As example, we 
mention the work done on mixed compounds NbSe2 [5], NiO (111) [6] and Co/Ni (111) overlayers [7], on 
which are observed surface and extraordinary phase transitions. In those cases, the surface has a critical tem-
perature greater than the bulk. In other pure samples of Gd [8], the surface and the bulk are at the same critical 
temperature, the transition is ordinary. The practice researches in magneto-electronic and materials using carri-
ers based on spin properties instead of electrons and holes in traditional semiconductors are motivated by the 
development and application for information storage [9] and other applications in thermo-magnetic recording 
[10]. In the other hand, the theoretical studies of the critical surface effects have been developed during the last 
years, using a variety of approximations and mathematical techniques. An interesting literature review of the 
subject is in the work of K. Binder and Diehl [1]-[3]. The existence and critical behaviour of surface, extraordi-
nary, special [11] [12] and extraordinary phase transitions have been illustrated using different approaches [2] [3] 
[13]-[16], and various situations as pure, quenched and random systems at bulk or surface [17]-[20] have been 
studied. Also, the exact solution of the 2D semi-infinite Ising model has been proved [21]-[24]. The semi- 
infinite Blume-Capel model was also used to describe the wetting phenomenon. In reference [25], the authors 
show that critical wetting in d = 2 is equivalent to a “bulk” critical phenomenon. A detailed study with a rich 
bibliography is found in reference [26]. 

The three-dimensional semi-infinite spin-1 Ising model with a crystal field has been studied [27]. The spin-1 
ferromagnetic Ising model with a crystal field has been introduced independently by Blume [28] and Capel [29] 
and is often called the Blume-Capel (BC) model. An extension of the BC model is the possibility of inclusion of 
higher spin values. Various types of phase diagram of a three-dimensional semi-infinite ferromagnetic spin-3/2 
BC model were obtained within the framework both of the mean field theory and renormalization-group tech-
niques [30]. 

In the last years, a great attention has been devoted to systems of mixed spins and this is related to their im-
portance in the study of magnetic materials with ferrimagnetic properties [31]. The system of mixed spins S = 
1/2 and S = 1 has been one of the simplest to be studied early and largely, namely by the techniques of renorma-
lization group [32] [33], the Bethe-Peierls approximation [34], the effective field theory [35] [36], the Monte- 
Carlo simulation [37] [38] and the finite cluster approximation [39].  

Recently, this attention has been expanded on systems of mixed spins higher than 1/2, like the case S = 1 and 
S = 3/2, which has been also studied by several methods, as the mean field approximation (MF) [40], the Bethe 
lattice recursion relations [41] [42], the effective field theory [43] [44], the Monte-Carlo simulation [45], the 
Green’s function [46], the recursion relations on Cayley tree [47] and the real space renormalization group 
theory [48]. 

Our aim in this present paper is to determine the various types of phase diagram in the semi-infinite system of 
mixed spins S = 1 and S = 3/2 on the Blume-Capel model [28] [29], which we study by using a renormalization 
group (RG) method, namely the Migdal-Kadanoff one [49] [50], combining the decimation as well as the bond 
shifting. Our study focuses on the effect of two different single-ion anisotropies in the phase diagram of the 
mixed spin-1 and spin-3/2 Ising ferrimagnetic system. We organize our paper as follows. In Section 2, we treat 
the formalism of our method and we establish the Migdal-Kadanoff recursion equations. In Section 3, we 
present our results and discuss important points. Finally, we give our conclusion in Section 4. 

2. Model and Method 
2.1. Infinite Blume-Capel Model 
We consider a two sublattice mixed spin-1 and spin-3/2 Blume-Capel model with different single-ion anisotro-
pies ΔA and ΔB acting on the spin-1 and spin-3/2, respectively. The Hamiltonian of the system is given by  

2 2
i j A i B j

i A i A j B
j B

H J S S S Sβ
∈ ∈ ∈
∈

− = +∆ +∆∑ ∑ ∑                            (1) 

where the sites of sublattice A are occupied by spins iS , which take the values of 1±  and 0, while those of the 
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sublattice B are occupied by spins jS , which take the values of 1 2±  and 3 2± . J is the reduced bilinear ex-
change interaction and ( ) 1

Bk Tβ −
=  (with Bk  the Boltzmann constant and T the absolute temperature). The 

first summation is over all nearest neighbor pairs of spins, the second and the third summations one over all 
sites. 

In the Blume-Capel model, the reduced biquadratic interaction K is equal to zero, but we will take it into ac-
count due to the renormalization group technique we are using. We also introduce one additional interaction C 
to obtain self-consistent recursion relations. Thus, the Hamiltonian we will effectively use in the remainder of 
our work is as follows: 

2 2 2 2 3
i j i j A i B j i j

i A i A i A j B i A
j B j B j B

H J S S K S S S S C S Sβ
∈ ∈ ∈ ∈ ∈
∈ ∈ ∈

− = + +∆ + ∆ +∑ ∑ ∑ ∑ ∑ .                 (2)  

The renormalization does not keep in general the parameters space of the Hamiltonian. The terms added to the 
original Blume-Capel Hamiltonian model, in addition to their role in the conservation of the parameter space, 
can be used in the improvement of critical exponents and precision Monte Carlo simulation: scaling correction 
[51]. 

For example, in the Blume-Emery-Griffiths model, the three parameters ,J K  and ∆  are insufficient to 
stabilize the ferromagnetic phase which has been obtained by all the methods of effective fields. 

To have a more reliable qualitative appreciation of the phase transitions characteristics, we use an approxima-
tion of the real space renormalization group, namely the Migdal-Kadanoff one, which combines decimation and 
bond shifting and is tractable in all space dimensionalities. In order to implement the renormalization machinery, 
we consider a one-dimensional chain (Figure 1) of four spins 1 2 3, ,S S S  and 4S  ( { }1 3, 0, 1S S ∈ ±  and  

{ }2 4, 3 2, 1 2S S ∈ ± ± ), coupled by the interactions ,J K  and C.  
The spatial factor rescaling, denoted by b, is chosen as an odd integer to keep the possible sublattice symme-

try breaking character of the system. In our present study, we take 3b = . Furthermore, we have to take into ac-
count the coordination number of the site i in the crystal field term. With these considerations, we can write the 
reduced Hamiltonian of the four spins cluster as  

( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
1 2 2 3 3 4 1 2 2 3 3 4

2 2 2 2 3 3 3
1 3 2 4 1 2 2 3 3 4        2 + 2A B

H J S S S S S S K S S S S S S

S S S S C S S S S S S
z z

β− = + + + + +

∆ ∆
+ + + + + +

                (3)  

After performing the decimation on the two middle spins 2S  and 3S , the previous chain becomes as shown 
in Figure 2. We obtain a two spins cluster described by the following reduced Hamiltonian H : 

2 2 2 2 3
1 4 1 2 1 4 1 4+A BH J S S K S S S S C S S

z z
β

∆ ∆
− = + + +

 

                          (4) 

with , , ,A BJ K ∆ ∆     and C  the interactions after decimation and functions of , , , ,A BJ K C∆ ∆  and the coordi-
nation number 2z d= . 

 

 
Figure 1. Chain of four spins, S1, S2, S3 and S4. J and K denote, re-
spectively, the reduced bilinear and biquadratic interactions, while ∆i 
(i = A, B) is the crystal field at site i. Decimation will be performed 
on the two middle spins, S2 and S3.                                                                

 

 
Figure 2. Chain after decimation.                                                                
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By using the renormalization group equation, we can make the link between (3) and (4) to obtain 

( ) ( )
2 3

0
,

exp exp
S S

H A Hβ β− = −∑                               (5) 

with 0A  a constant produced by the renormalization scheme. 0A  is useful for the determination of the free 
energy and therefore of all the thermodynamic quantities of system.   

Replacing the expressions of the Equations (3) and (4) in Equation (5), and knowing that 2 3 2, 1 2S =± ±  
and 3 0, 1S = ± , we obtain the following equation 

( )

( )

2 2 2 2
1 4 1 4

2 2 2 2
1 4 1 4

9 9 9 3 272 2
34 4 4 2 8

1 4 1 4

3 27
32 8

1 4 1 4

1 1 12 2
4 4 4

3 272e e
2 8

3 27e
2 8

2e

A B

A B

K S S S S J Cz z

J C

K S S S S
z z

ch J S S C S S

ch J S S C S S

∆ ∆   + + + + + + +   
   

− −

∆ ∆  + + + + + +  
  

      + + +     
     
     + − + −     

     

+

2 2 2 2 2 2
1 1 4 1 1 4

1 1
32 8

1 4 1 4

1 1
32 8

1 4 1 4

9 9 1
4 4 4 2

1

1 1e
2 8

1 1e
2 8

3 272e 2e
2 8 2

A B A B

J C

J C

K KS S S S S S
z z z z

ch J S S C S S

ch J S S C S S

J C J Cch S ch


+



− −

∆ ∆ ∆ ∆   + + + + + +   
   

      + + +     
     

     + − + −     
     

  + + + +  
  

1

2 2 2 2 3
0 1 4 1 4 1 4 1 4

8

exp A B

S

A JS S KS S S S CS S
z z

  
  
  

 ∆ ∆
= + + + +  

 

 

 

        (6)  

Since 1 0, 1S = ±
 

and 4 3 2, 1 2S =± ± , the previous relation can take twelve forms. But taking into account 
the fact that cases ( )1 4,S S  and ( )1 4,S S− −  are equivalent, we obtain six different forms 

1 4,S SF  that we re-
port below: 

For ( ) ( )1 4, 1,3 2S S =  

0

27 3 27 3 27 3 27
4 4 2 8 2 8

11 3 11 7
4 4 2 8 2 2

9 27
4

93 9 27exp
2 4 4 8

272e e 3 e
8

7 132e e 2 e
2 4

2e

A B

A B

A

A B

K J C J C
z z

K J C J C
z z

K
z

J K CA
z z

Cch J

C Cch J ch J

∆ ∆ + + + − − 
 

∆ ∆ + + + − − 
 

∆ ∆
+ +

 ∆ ∆
+ + + + 

 

   = + +  
   

     + + + +    
     

+

  

11
4 4 4

1,3 2
3 27 2e
2 8 2 8

B A BK
z z zJ C J Cch ch F

∆ ∆   + +   
      + + + =   

   

            (7)  

For ( ) ( )1 4, 1, 3 2S S = −  

0

3 2727 3 27 3 27
4 4 2 8 2 8

3 1111 7
4 4 2 8 2 2

9
4

93 9 27exp
2 4 4 8

272e e e 3
8

13 72e e e 2
4 2

2e

A B

A B

A

A B

K J C J C
z z

K J C J C
z z

K
z

J K CA
z z

Cch J

C Cch J ch J

∆ ∆ + +  + − −
 

∆ ∆ + +  + − −
 

∆
+ +

 ∆ ∆
− + + + −  
 

   = + +  
   

     + + + +    
     

+

   

27 11
4 4 4

1, 3 2
3 27 2e
2 8 2 8

B A BK
z z zJ C J Cch ch F
∆ ∆ ∆   + +   

   
−

   + + + =   
   

            (8) 
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For ( ) ( )1 4, 1,1 2S S =  

0

19 3 19 3 27 3 27
4 4 2 8 2 8

3 3 3 9 19
4 4 4 42 8 2 8

exp
2 4 4 8

7 132e e 2 e
2 4

2e e e 2e
4

A B

A B A B

A B

K J C J C
z z

K KJ C J C
z z z z

J K CA
z z

C Cch J ch J

Cch J ch

∆ ∆ + + + − − 
 

∆ ∆ ∆ ∆   + + + ++ − −   
   

 ∆ ∆
+ + + + 

 

     = + + +    
     

   + + + +  
   

  

3
4 4

1,1 2

3 27
2 8

2e
2 8

A BK
z z

J C

J Cch F
∆ ∆ + + 

 

 + 
 

 + + = 
 

           (9) 

For ( ) ( )1 4, 1, 1 2S S = −  

0

19 3 19 3 27 3 27
4 4 2 8 2 8

3 3 3
4 4 2 8 2 8

9 19
4 4

exp
2 4 4 8

13 72e e e 2
4 2

2e e e
4

2e

A B

A B

A B

A B

K J C J C
z z

K J C J C
z z

K
z z

J K CA
z z

C Cch J ch J

Cch J

c

∆ ∆ + + + − − 
 

∆ ∆ + + + − − 
 

∆ ∆ + + 
 

 ∆ ∆
− + + + − 
 

     = + + +    
     

   + + +  
   

+

  

3
4 4

1, 1 2
3 27 2e
2 8 2 8

A BK
z zJ C J Ch ch F
∆ ∆ + + 

 
−

   + + + =   
   

             (10) 

For ( ) ( )1 4, 0,3 2S S =  
9 2 27

22 4
0

5 2 11
2 4

27 11
4 4

0,3 2

9 3 27exp 4e
4 2 8

3 274e
2 8 2 8

2e 2e

A B

A B

B B

K
z zB

K
z z

z z

J CA ch
z

J C J Cch ch

F

∆ ∆ + + 
 

∆ ∆ + + 
 

∆ ∆   
   
   

 ∆  = +   
  

   + + +   
   

+ + =



                (11) 

For ( ) ( )1 4, 0,1 2S S =  
5 2 19
2 4

0

2 3 19 3
22 4 4 4

0,1 2

3 27exp 4e
4 2 8 2 8

4e 2e 2e
2 8

A B

A B B B

K
z zB

K
z z z z

J C J CA ch ch
z

J Cch F

∆ ∆ + + 
 

∆ ∆ ∆ ∆     + +     
     

 ∆    = + +     
    

 + + + + = 
 



           (12) 

The Equations (7) to (12) and the bond-shifting process yield the final renormalized couplings , , ,A BJ K′ ′ ′ ′∆ ∆  and C′ . Thus, we obtain the Migdal-Kadanoff renormalized interactions: 
9 8 1 24 1 4 1 4 1 2

1,1 2 1, 3 2 1,3 2 1, 3 2 0,1 21 1
9 8 1 24 1 4 1 4 1 2

1, 1 2 1,3 2 1,1 2 1, 1 2 0,3 2

9 16 9 16 1 8 1 2
1,1 2 1, 1 2 0,3 2 0,3 21 1
1 16 1 16 9 8 1 2

1,3 2 1, 3 2 0,1 2 0,1 2

ln ; ln ;

. .
2 ln ; 2 ln ;

. .

d d

d d d
A B

F F F F F
J b K b

F F F F F

F F F F
b d b d C b

F F F F

− −− −

− −

−− − −

−

⋅ ⋅ ⋅
′ ′= =

⋅ ⋅ ⋅

′ ′ ′∆ = ∆ = =
1 6 1 2

1,3 2 1, 1 21
1 6 1 2

1, 3 2 1,1 2

ln
F F
F F

−

−

⋅

⋅

       (13) 

Numerical analysis of these equations gives the flow in the parameter space of the Hamiltonian. We have al-
ready obtained [48] phase diagrams of the infinite Blume-Capel model (2D and 3D) and the table of fixed points 
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that govern the phases and phase transitions. In the reference [48], the second-order phase transitions are de-
scribed by the fixed point C, the first order by the fixed point A and the tricritical point by the fixed point T. The 
various phase diagrams of the infinite model were also obtained according to the ratios of the interactions of the 
model. 

Our results in the infinite model can be compared with those obtained by other methods: concerning the exis-
tence of tricritical point and its domain according to the values of the ratios of the interactions, we are in agree-
ment with mean field theory result [52], cluster variational theory [53] and Monte Carlo study [54]. At low tem-
peratures, those approaches predict the possibility of first order transition between two ordered phases terminat-
ing at an end point. In our Migdal-Kadanoff approximation, we find only first order transition between ordered 
and disordered phases. Another common point is that there is no universality violation in the phase diagrams 
obtained. There is no marginality in all the fixed points obtained by Migdal-Kadanoff approach. Note that in 
general theory, the universality in phase transitions and critical phenomena is expressed explicitly by the exis-
tence of the non marginal fixed point describing a line or surface phase transitions. Each line or surface is con-
sequently described by the same critical exponent evaluated at the fixed point by linearizing the renormalization 
group transformation. 

Another comparison is possible, with the pure BC model S = 1 or S = 3/2. In this case all those approxima-
tions are in agreement with the existence of the tricritical point in the integer spin case, but for the half integer 
spin, there exist a first order transition between two ordered phases at low temperature and the non existence of 
disorder in this domain. In reference [53], we are agreeing with the fact that the phase diagrams obtained in the 
mixed BC model are reminiscent of that in pure model. 

2.2. Semi-Infinite Blume-Capel Model 
We consider a system consisting of two mixed spin-1 and spin-3/2 sublattices, limited by a surface where the 
single-ion anisotropies acting on the spin-1 and spin-3/2 are denoted, respectively, 

SA∆  and 
SB∆ .  

In the bulk, we keep the same notations of Section 2.1. On the surface, the reduced bilinear exchange interac-
tion J, the reduced biquadratic interaction K and the interaction C mentioned in the Hamiltonian (2), are denoted 
by sJ , sK  and sC . Therefore, our system is described by the following reduced Hamiltonian: 

2 2 2 2 3

2 2 2 2 3
S S

i j i j A i B j i j
i A i A i A j B i A
j B j B j B

s k l s k l A k B l s k l
k A k A k A l B k A
l B l B l B

H J S S K S S S S C S S

J S S K S S S S C S S

β
∈ ∈ ∈ ∈ ∈
∈ ∈ ∈

∈ ∈ ∈ ∈ ∈
∈ ∈ ∈

− = + +∆ + ∆ +

+ +∆ + ∆ +

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
               (14) 

Each spin at the surface can interact with a spin located in the bulk and increasingly with its first neighbors at 
the surface. With this new environment, some new critical properties will appear at the surface which will have 
recursion equations coupled to the bulk. This latter keeps the same equations as in the infinite model, forming an 
invariant subspace.  

Concerning the surface, we can write the recursion equations in the following compact form [55] [56]: 

( ) ( ) ( )1 21, , , , 1 , , , ,
2S S

d d
s s s A B s A BX b X J K C b b X J K C− −′ = ∆ ∆ + − ∆ ∆                 (15) 

with { }, , , ,
S Ss s s A B sX J K C′ ′ ′ ′ ′ ′∈ ∆ ∆ . The functions X , obtained by decimation, are those defined for the infinite  

model 1
1
dX X

b −
 ′= 
 
 , b is the space scale factor and d is the geometric dimension. 

We introduce the ratios 
s

JR
J

= , 1
S

A

A

R ∆
=
∆

 and 2
S

B

B

R ∆
=
∆

 linking the bulk and surface interactions. The  

phase diagrams are constructed in the plane ( ),1
SA S SJ J∆  according to the values taken by 

( )1 2, , ,
SB sR R R J∆  and in the plane ( ),1

SB S SJ J∆  according to the values taken by ( )1 2, , ,
SA SR R R J∆ .     

In the renormalization procedure, the critical behaviors are derived from fixed points, by evaluating the ein-
genvalues of the transformation as iyb . But this is only the asymptotic critical behavior, and there are some 
corrections due to the nonlinear scaling fields. In reference [51], for precision Monte Carlo studies of the critical 
behavior of the 3d Ising model, the author gives the value of the anisotropy of the BC model, for which the am-
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plitude of leading corrections to scaling vanishes. 
In our case, the additive terms of the infinite and semi infinite (bulk terms) model can be considered useful for 

finding a point of the second order transition line for which the irrelevant field vanishes. 

3. Results and Discussions 
The calculation of the critical temperature of infinite Blume-Capel model with mixed spins SA = 1 and SB = 3 /2 
(Section 2.1), in the three-dimensional case d = 3, shows three main types of diagram, labelled I, II and III. 
These types of diagrams can be classified as follows: 

Type I: appears in the diagrams ( ),1A J J∆  for: 9 3A J− < ∆ < −  (Figure 3 is an example of this 
type). 

Type II: appears in the diagrams ( ),1B J J∆  for: 3A J∆ > −  (Figure 4 is an example of this type). 
Type III: appears in the diagrams ( ), 1A J J∆  and ( ),1B J J∆  for: { }9; 3A J∆ ∈ − −  (Figure 5 is 

an example of this type). 
The phase diagrams in the ( ), 1A J J∆  plane for 1B J∆ = −  and for the three-dimensional system are 

shown in Figure 3. *T  denotes the tricritical temperature for d = 3. This type of diagram is characterized by 
the transitions of first- and second-order which are separated by the tricritical point.  

The second and third types of phase diagrams (Figure 4 and Figure 5) are characterized by the presence of 
only second-order transitions and they have different shapes. 

Using renormalization-group calculations in the semi-infinite case (Section 2.2), we have obtained five ge-
neric types of phase diagram, illustrated in the ( )1,

SA S sJ J −
∆  plane for several values of 1 2, ,R R R  and 

SB SJ∆ , reported in Figures 6(a)-(e). They show a variety of ordinary, extraordinary and special phase transi-
tions. To classify the different types of phase diagram, we shall proceed as follows: 
1) For 1 20.8, 1, 1.2R R R= = =  and 2

SB SJ∆ = , the surface and the bulk order at the same temperature. The 
system exhibits only an ordinary phase transition of second order. Figure 6(a) represents a typical phase di-
agram. 

 

 
Figure 3. (Diagram of type I): The transition temperature of the mixed spin-1 and spin-3/2 Ising sys-
tem as a function of A J∆  for the parameter B J∆  = −1 and d = 3. *T  denote the correspond-
ing tricritical point. The solid and dotted lines, respectively, indicate second and first-order phase tran-
sitions (Reference [48]).                                                                                                                               
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Figure 4. (Diagram of type II): The transition temperature of the mixed spin-1 and spin-3/2 Ising sys-
tem as a function of B J∆  for the parameter A J∆  = 10 and d = 3 (Reference [48]).                                                                

 

 
Figure 5. (Diagram of type III): The transition temperature of the mixed spin-1 and spin-3/2 Ising sys-
tem as a function of A J∆  for the parameter B J∆  = 0 and d = 3 (Reference [48]).                                                                

 
2) For 1 20.5, 1, 1.2R R R= = =  and 2

SB SJ∆ = , we have indicated in Figure 6(b) a typical phase diagram 
among three qualitative types which have been determined. We have shown ordinary, extraordinary and sur-
face phase transitions of second order. For a particular value of 

SA SJ∆  there exist a special point S cha-
racterizing the phase transition. 

3) For 1 20.8, 1, 1.2R R R= = =  and 1
SB SJ∆ = − , the surface and the bulk order at the same temperature.  
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Figure 6. Typical phase diagrams in the plane ( )1 ,
SS A SJ J∆  for the three-dimensional semi-infinite BC model with 

mixed spins (SA = 1 and SB = 3/2). * *, and sS T T  represent a special point, an ordinary tricritical point and a special tri-
critical point, respectively. The symbols SD, BD, SO and BO denote, respectively, surface disorder, bulk disorder, surface 
order and bulk order phases.                                                                                       

 
This ordinary phase transition can be first-order, second-order or tricritical. Figure 6(c) represents a typical 
phase diagram. 
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4) For 1 20.4, 0.5, 0.6R R R= = =  and 0.75
SB SJ∆ = − , we can observe ordinary first-order, ordinary second- 

order, extraordinary second-order and surface second-order phase transitions. For two particular values of 
SA SJ∆ , we can also observe an ordinary tricritical point and a multicritical point. A typical phase diagram 

showing the various phase transitions is represented in Figure 6(d). 
5) For 1 20.4, 1, 1.2R R R= = =  and 0.5

SB SJ∆ = − , we can observe ordinary first-order, extraordinary 
second-order and surface second-order phase transitions. For a particular value of 

SA SJ∆ , we can also 
observe a special tricritical point *

sT . Figure 6(e) represents a typical phase diagram. 
Thereafter, we present the phase diagrams in the ( )1,

SB S sJ J −
∆  plane. In addition to the five phase dia-

grams found in the plane ( )1,
SA S SJ J −

∆ , we have obtained four generic types of phase diagrams. Figure 7 
shows the dependence of the critical temperature 1

sJ −  on 
SB SJ∆  for different values of the parameters 

1 2, ,R R R  and 
SA SJ∆ . We show a variety of phase transitions associated with the surface, including certain 

types of ordinary, extraordinary and special phase transitions. To classify the different types of phase diagrams, 
we shall proceed as follows: 
a) For 1 20.8, 2, 5R R R= = =  and 6

SA SJ∆ = , the system exhibits only an ordinary phase transition of 
second order. Figure 7(a) represents a typical phase diagram. 

b) For 1 20.3, 2, 5R R R= = =  and 6
SA SJ∆ = , the corresponding phase diagram is characterized by ex-

traordinary and surface second-order phase transitions. A typical phase diagram showing the various phase 
transitions is represented in Figure 7(b). 

 

 

Figure 7. Typical phase diagrams in the plane ( )1 ,
SS B SJ J∆  for the three-dimensional semi-infinite BC model with 

mixed spins (SA = 1 and SB = 3/2), from the global renormalization-group technique, calculated for (a) R = 0.8; (b) R = 0.3; 
(c) R = 0.6; (d) R = 0.53. The parameters are: 1 22; 5 and 6

SA SR R J= = ∆ = . 1S  and 2S  represent two special points. 
The symbols SD, BD, SO and BO denote, respectively, surface disorder, bulk disorder, surface order and bulk order phases.                
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c) For 1 20.6, 2, 5R R R= = =  and 6
SA SJ∆ = , we have indicated in Figure 7(c) a typical phase diagram 

among three qualitative types which have been determined. We have shown ordinary, extraordinary and sur-
face phase transitions of second-order. For two particular values of 

SB SJ∆  there exist two special points 
( 1S  and 2S ) characterizing the special phase transition, where a second-order transition line meets two 
second-order transition lines, particularly lines of extraordinary and surface transitions. At these special 
points the surface and the bulk of the system become ordered simultaneously.  

d) For 1 20.52, 2, 5R R R= = =  and 6
SA SJ∆ = , we obtain three main qualitative types of phase diagrams; 

one of them is reported in Figure 7(d). It shows ordinary, extraordinary and surface phase transitions of 
second-order. The three transition lines meet at two special phase transition points ( 1S  and 2S ). 

Let us comment the types of phase diagrams obtained by Migdal-Kadanoff renormalization: 
1) The presence of a semi infinite surface gives rise to a variety of new phase diagrams. Are highlighted, ordi-

nary transitions (e.g. Figure 6(a)), extraordinary transitions (Figure 6(b)), surface transitions (Figure 7(b)) 
and special transitions (Figure 7(d)). 

2) Each of these phase transitions is represented by a different fixed point, and that they belongs to a new un-
iversality class different from that of the bulk. For example, the surface performs two different types of 
second order phase transitions. The first has a temperature higher than that of the bulk; this surface transition 
is described by the fixed point (OB, CS), where OB is the fixed point (disorder) of the bulk [48], and CS is that 
of the surface: CS (JS = 1.55, KS = 0, ΔA(S) = ∞. ΔB(S) = −∞, CS = −0.47). The second possible transition oc-
curs at the same temperature as that of the bulk; it is the special transition, represented by another different 
fixed point (CB, CSp). CB is the second order fixed point of the bulk [48], and CSp the surface one with coor-
dinates CSp (JS = 1.29, KS = 0, ΔA(S) = ∞, ΔB(S) = −∞, CS = −0.074). 

3) The topology of the phase diagrams obtained is compared with that already established in the references [57] 
[58] for pure semi infinite BC models with S = 1 and S = 3/2. As in the infinite case [53], this similarity is 
the result of the competition effects of the two different anisotropies in the system. For example, Figures 
6(c)-(e) remind types obtained in reference [58] by the same approximation for the spin model S = 1. Whe-
reas Figures 7(a)-(d) are to be compared with the results [30] of the pure semi infinite BC model with S = 
3/2. The remaining two diagrams, Figure 6(a) & Figure 6(b), are non existing types for the same model 
with spin S = 1 or S = 3/2 by the Migdal-Kadanoff renormalization approach. 

4) In these types of phase diagrams obtained by using the Migdal-Kadanoff approximation, we note the absence 
of successive (surface/bulk) first order phase transitions and only the successive (surface/bulk) second-order 
phase transitions can occur. Also, simultaneous phase transitions of different orders are not observed. This 
was already met in the study of pure semi infinite models, see references [32] [57] [58]. But, the mean field 
theory finds such situations [30] [59]. 

Lipowski had already mentioned the expected difference between the two approaches (MF and RG), in the 
study of semi infinite Potts model [60]. In fact the mean field treats the bulk as field acting on the surface and 
the surface order parameter can cause a non ordinary first order phase transition. In the Migdal-Kadanoff renor-
malization procedure, the fixed point surface obeys the bond-moving relation (15). When the bulk fixed point is 
at a finite temperature, the surface may converge to a finite fixed point and have a surface transition. While, if 
the bulk fixed point is at T = 0 K (JB infinite), the surface one is also at 0 K. In particular, the fixed point of the 
bulk first order phase transition is precisely at 0 K, which causes ordinary first order transitions at surface. 

The experimental results confirm the existence of a continuous transition at surface, while the bulk exhibit 
simultaneously a first order transition, what is called in the literature “surface induced disordering” (SID). This 
type of transition was highlighted in the Cu3Au alloy, see reference [61]. It has been observed that when the 
bulk exhibits a first order transition, the order parameter of the surface vanishes continuously and in reference 
[62], a theoretical study has been made using landau free energy. For a complete comparison, it is interesting to 
treat this model by the mean field approximation and to compare the types of phase diagrams with those ob-
tained by renormalization. 

4. Conclusions 
During this work, we have studied the pure Blume-Capel model in the semi-infinite case. To achieve our goal, 
we have determined the global phase diagrams of the mixed spin-1 and spin-3/2 in the semi-infinite system with 
different single-ion anisotropies acting on the spin-1 and spin-3/2 (on the surface and in the bulk) by using the 
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Migdal-Kadanoff renormalization group technique, which combines decimation (with a space scale ration b = 3) 
and bond shifting. In the phase diagrams, the critical temperature lines versus single-ion anisotropies are shown. 
We have classified the various phase diagrams at fixed 1,R R  and 2R , finding new types of phase diagrams 
featuring a variety of phase transitions and multicritical points . 

A comparison with the types of phase diagrams in the pure semi-infinite model with S = 1 and S = 3/2 ob-
tained by the renormalization and the mean field approaches was performed. 

In perspective, we hope that this work could stimulate further theoretical and experimental works on ferri-
magnetic systems such as mixed spins with random fields in finite, infinite and semi-infinite systems. 
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