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Abstract 
Quantum theory with conjecture of fractional charge quantization, eigenfunctions for fractional 
charge quantization, fractional Fourier transform, Hermite function for fractional charge quanti-
zation, and eigenfunction for a twisted and twigged electron quanta is developed and applied to 
resistivity, dielectricity, giant magneto resistance, Hall effect and conductance. Our theoretical re-
lationship for quantum measurements is in good conformity and in agreement with most of the 
experimental results. These relationships will pave a new approach to quantum physics for deci-
phering measurements on single quantum particles without destroying them. Our results are in 
agreement with 2012 Physics Nobel Prize winning Scientists, Serge Haroche and David J. Wine-
land. 
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1. Introduction 
Experimental results in quantum physics since last three decades brought significant changes in our under- 
standing. The discovery of quantum Hall effect in heteorostructure semiconductors results in the Nobel Prize 
winning award for the year 1987 to Von Klitzing [1]. With this discovery, the experimental results of quantum 
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conductance are reported by Van Wees et al. [2] in the two dimensional electron gas of a GaAs-AlGaAs 
heteorostructure. The visible range photons used to illuminate water molecules are studied with absorption and 
Fourier transform infrared spectroscopies [3]. The biological specimens are also considered for chromotherapy 
[4]-[7]. A new conjecture of fractional charge quantization with newly developed theory is coined to look into 
the shape of eigenfunctions, determine the energy eigenvalues and validate the quantum scattering [8]. Mean- 
while, new experimental results on giant magneto resistance (GMR) to enhance storage capacity with charges 
are reported. This discovery of GMR led Albert Peter and Paul Gruebber to win the Nobel Prize for the year 
2007 [9]. During the last decade (2000-2010), surprising results are noticed on dielectrics and dielectricilty. A 
new quantum theory, with our conjecture of charge quantization, on dielectricity is presented in which we 
modify the Clausius Mossotti and Debye equations [10]. The same quantum theory of dielectricity is applied on 
Faujasite-type molecular sieves and on dolomite [11] [12], respectively. The quantum theory of dielectrics and 
dielectricity is further extended and modified by using Hermite function for fractional quantum states and 
fractional Fourier transform .  

Now, we witnessed again new exciting experimental results on individual quantum systems which led the 
Nobel Prize winning award in physics by Serge Haroche and David J. Wineland in the year 2012. We studied 
American Institute of Physics (AIP) reports of 2012 prize winning award and all relevant research papers 
[13]-[21]. Most of the experimental results of physics Nobel Prize winners like Von Klitzing, Albert Peter and P. 
Gruebber, Haroche and Wineland fit to our “conjecture of fractional charge quantization” and indeed “theory”. 
A new theory is described “how charge being a constant entity, on anelectron in the momentum space is 
fractionally quantized while interacting with a photon, with twisting and twigging effects of an electron quanta” 
[22] [23]. The eigenfunction for an electron quantum wire or string with sub-quanta (twigs) on its lateral surface 
at different locations namely above its surface, at the surface and within the sub-quanta and the electron string 
with beaded fractional quantized states for the fractional charges are determined [23]. 

2. Results and Discussions  
The fractional Fourier transform (FRFT) of order α  of ( )x t  is defined by Almeida [24]  
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where α  is a rotational angle in the time-frequency plane, and αF  is the FRFT operator. For π 2α =  the 
kernel coincides with the kernel of Fourier transform (FT). Saleem Iqbal et al. developed fractional Fourier 
integral theorem and fractional Fourier Cosines and Sines transforms [25]. [23] developed Hermite function for 
the fractional quantum states, i.e.,  

( ) 2 ;0.1 0.9.f
f

n
n fH nξ = ≤ ≤                                 (2) 

Equation (2) is consistent with other definitions of Hermite polynomials. Saleem Iqbal [21] obtained the 
eigenfunction for a twisted and twigged electron quanta by using Equations (1) and (2), i.e.,  

1
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.                                  (3) 

Equation (3) represents plane wave for a rotation vector alpha (discussed in [21]) for all corresponding 
fractional quantum numbers, i.e.,  

0.1 0.9 and 0.17 1.53fn α≤ ≤ ≤ ≤ .                              (4) 

We shall use Equations (1)-(3) and relation (4) to obtain interesting results for different cases of physics 
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problems.  

2.1. Case I—Quantum Resistivity 
We know that the electrical resistivity is the inverse of conductivity. The electrical conductivity according to 
Drude Model (classical) is defined as:  

2

e

ne
m
τσ =                                        (5) 

where n is the number of charge carriers, e the charge of an electron, τ  the relaxation time and em  the 
effective mass of an electron. With the advent of single electron transistors (Spintronics), one could expect 
quantum conductivity across the interface states. The single electron tunneling will follow a helicon profile with 
each turn of the helix corresponding to fractional quantum states (charges are fractionally distributed on sub- 
quanta, i.e., twigs). Changing n with fn  (Equations (2) and (4)), e with ( )1 2, , , onsub-quanta

fnQ q q=   and  

em  with 2
E
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=  in Equation (5), we have  
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where 
fnκ  is fractional wave number. f

f

n

n

Q

κ
 can be determined from Raman spectroscopy [26]. 

fnQ  can be  

determined from relative heights of Raman peaks. The helicon profile of an electron is due to spinning or 
gyroscopic motion. To our conjecture, the dual nature of a quantum particle is a metaphoric states, i.e., it 
simultaneously behaves as particle and quanta. The fractional quantized state of charge in the momentum space 
are the manifestations of gyroscopic constant, ( )2 0.02 0.08g c − . Equation (6) shows that the quantum 
conductivity follows periodicity of fractional quantum numbers,. i.e., 0.1 0.9fn≤ ≤  and is inversely pro- 
portional to quantum action (energy becomes oscillatory). The quantum resistivity is the inverse of quantum 
conductivity, i.e.,  
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Remember that the conductivity is different from conductance.  

2.2. Case II—Quantum Dielectricity and Giant Magneto Resistance (GMR) 
The mesoscopic fields in a cavity are the manifestations of quantum mechanical dipole moments (fractional 
charge quantization to a single electron or many electrons systems) due to either molecules, atoms, ions or even 
the charge, being a constant physical entity, of an electron in the momentum space while interacting with 
photons. To our conjecture the quantum mechanical dipole moment is a fractional charge quantization, i.e.,  

0.9

0.1
quantum mechanical dipole moment ,

f
f

n
n

hQ D λ
=

= ≡∑                    (8) 

whrer D is the displacement of charge either on an electron or in many electrons system, λ  the wavelength of 
the interacting photons and “≡” congruent operator. Using fractional Fourier transform (FRFT), Hermite 
function for the fractional quantum states, i.e., Equations (1) and (2), quantum mechanical dipole moment 
[Equation (8)] and the quantum theory of dielectric suscaptibility is obtained with a constant [27]. The constant 
is ascribed to giant megneto resistance is discussed and the calculation of quantum electric susceptibility of 
dielectric material with particular reference to mesoscopic fields in a cavity is established in [27] [28], i.e.,  
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where op  is the polorization in a cavity at zero kelvin, 0.1 0.9fn≤ ≤ , qα  the quantum electron polorizability 
(orientation of sub-quanta (twigs) of an electron string or wire either due to single electron or many electrons 
system), mE  the molecular field inside the cavity, gyroscopic constant (0.02 - 0.08), 2g c ;  the real 
permittivity and  the imaginary permittivity. They ascribe the constant the GMR, i.e.,  

1
3 234πGMR o

f q m

p g
n E cα

 
=   
  

.                                (10) 

The most attractive quantum electrodynamic potential of an electron or electron quanta (the interior of which 
is envisaged as a potential well and is defined by the strength of the quantum well)  

( )
1 2

1 2 4π2 π ;0.1 0.9
f

e f
n e f f

r n
r n n

µ
γ µ

 
= = ≤ ≤ 

 


 

                    (11) 

where µ  is the reduced mass of electron (equivalent to quanta of electron), er  is the radius of electron 
varying with the depth of the quantum well and fn  is the fractional quantum numbers corresponding to 
varying strips of the depth of quantum well. GMR is associated with quantum electrodynamic (QED) potential 
in a cavity with mesoscopic fields preferably due to fractional charge quantization. The concept of quantum 
capacitance is also floated [11] which follows the shape/profile of Gaussian tail. The fractional charge 
quantization if oriented in a preferential direction will results in to GMR. 

2.3. Case III—Quantum Hall Effect (QHE) 
The megnetoresistance in quantum Hall effect should depend on magnetic field when an electron (charge as a 
constant physical entity) is fractionally quantized with twisting and twigging of an electron quanta. This is why 
we are interested in quantum Hall effect on heteorostructure semiconductors by Von Klitzing [1]. The electric  

field is fractionally quantized with a gap of quantum Hall resistance, i.e., 2~ ~ 25813q
hR
e

Ω . To our under-  

standing, this resistance is a manifestation of twisting and twigging effects of an electron quanta. This is visible  

in our Equations (9) and (10), with a gyroscopic constant, 
2g
c

, i.e., 
2

0.02 0.08g
c

≤ ≤


. Magnetoresistance is of two  

types, one is longitudinal and the other is transverse. The longitudinal magnetoresistance is associated with 
magnetic field parallel to the current. The excitonic quantized Hall state at total Landau level filling factor is 
unity with longitudinal component vanishing and Hall component developing. The Lorentz force, in QHE, for a 
single electron, is  

( )d
d
p pF e E v B
t τ

= = − + × − .                               (12) 

Changing E  with QE , i.e., electric field due to fractional distribution of charges in sub quanta or twiggs on  

an electron wire or string, v  with 
e

k
m
 , em  with 2

fnE

c
 where 

fnE  is the energy due to sub-quanta of an  

electron and τ  with Qτ  where Qτ  is the relaxation time for twiggs on an electron wire. After simplification 
of Equation (12) with substitutions, the quantized Lorentz force due to single electron is  
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where 0.9
0.1f ffn nnQ Q

=
= ∑ , 

fnν  is an integrated vibrational frequency of each of the twigs at different fractional  

quantum numbers, i.e., 0.1 0.9fn≤ ≤ . In quantum Hall effect, the current is not independent of time because 
the fractional charge in their corresponding sub-quanta (twigs) of an electron is dependent on twisting time or 
energy operator. Thus, we change the following relationships of classical Hall effect, i.e.,  
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Using eigenfunction 
fnψ  for an electron (Equation (3)) in Equation (15), we get two sets of energy eigen- 

value equations  
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where α  is rotational angle of FRFT ((defined in Equation (1)) in (time, frequency) plane. Equation (16) can  
be solved by considering ( )

xQ c yeE kω− +   and ( )
yQ c xeE kω− +   as Hermitian Hamiltonian operators. The 

cyclotron frequency for each of sub-quanta, i.e., twigs) on the lateral srrface of an electron string will be 
different from each other despite the fact that they are integrated on a lateral surface of an electron wire, as a 
consequence of which, we shall encounter GMR. The twisting time of an electron quanta for each sub-quanta 

will vary. This shows that 
t
α∂
∂

 will also vary with different rotation angles and with the frequency of each 

sub-quanta. The classical Hall coefficient usually depends on the number of charge carriers and also on 
moderate to high magnitude fields. For QHE, the Hall coefficient becomes insignificant due to single electron 
and due to fractional charge quantization either on a single electron or many electron system. The GMR is 
enhanced, especially due to the transverse component of the magnetic field. Therefore, it is suggested that the 
Hall coefficient in QHE should be replaced by drag coefficient or resistance known as quantam Hall resistance,. 

i.e., the drag resistance is quantized in terms of 2
h
e

. The classical cyclotron frequency is defined as:  

c
c
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fnvλ . λ  is also changed with 2π
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 in Equation  

(17). After substitutions and simplifications, Equation (17) is changed in to quantum cyclotron frequency for 
each of sub-quanta on the lateral surface of electron wire, i.e.,  
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With resonance Raman Scattering in the fractional regime, f
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 can be easily determined.  
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2.4. Case IV—Quantum Conductance  
Quantum conductance was first experimentally observed by Wees et al. [2]. They observed that the  

conductance did not increase continuously but rather in quantized steps of 
22e

h
, where h is Planck’s constant.  

When the electronic mean free path of a wire exceeds the wire length, the wire behaves like an electron wave 
guide. Each wave guide mode or channel (ballistic conductors) contributes an amount 0G  to the total 
conductance of the wire, i.e.,  

2

2
2 2 2

o
qH

eG
h Rh e

= = =                                  (20) 

where qHR  is the quantum Hall resistance, i.e, 2 ~ 25813qH
hR
e

= Ω . Usually, we know that the combined  

effect of Ohemic resistance and dynamic resistances (capacitive reactance and inductive reactance) is called 
impedance. The inverse of the impedance is termed as admittance. To our opinion, the inverse of the quantum 
Hall resistance is quantum conductance thus Equation (19) is modified as  

2oG G= .                                       (21) 

We consider the current density j equal to current I,. i.e., ( )1 2j ev µ µ= − − , where v is the velocity of 
electron, 1µ  and 2µ  are chemical potentials connecting the two reservoirs adiabatically for a one dimensional 
wire and e the charge of an electron. Since ( )1 2 eVµ µ−  is the electromotive force to drain the current in 
between the two reservoirs and V is equal to voltage. The resulting conductance G will be determined as follows:  
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With our conjecture of fractional charge quantization, change e with 
fnQ , v with fn

e

k

m



, em  with 2
fnE

c
, c  

with 
fnλν , we get the modified definition of  
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where 
fnv  is the velocity of sub-quanta or twigs on the lateral surface of an electron string or wire. Looking 

carefully Equation (23) and comparing with Equation (21), oG  can be regarded as conductance for fractional 
quantized charges on sub-quanta. The current density or current due to twigs (sub-quanta) on the lateral surface 
of an electron wire, according to our calculations is now defined by the following relationship 

( ) ( )
2

0.9

1 2 1 2
0.1

or 2π f

f
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n
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n n

j I ev Q
k

ν
µ µ µ µ
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 

∑                   (25) 

where 
fnν  is the fractionally quantized frequency of twigs. Equation (24) can be calculated for data from 

resonant Raman scattering in the fractional Hall regime. The velocity 
fnv  in Equation (23) for each of the 

twigs on the lateral surface electron wire can be determined from cyclotron frequencies of the corresponding 
twigs and, of course, with resonant Raman Scattering.  

3. Conclusion 
Formulas for quantum resistivity (Quantum conductivity) and quantum conductance are developed by using 
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fractional Fourier transform. Formulas for quantum behaviour of dielectricity and giant magneto resistance are 
suggested by using fractional Fourier transform. Formulas for quantum Hall effect following the fractional 
electric field are suggested. Raman and resonance Raman spectroscopy are suggested for measuring diverse 
parameters pertaining to quantum behaviour of resistivity, dielectricity, GMR, Hall effect and conductance. 
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