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Abstract 
The mixed spin-2 and spin-3/2 Blume-Emery-Griffiths (BEG) Ising ferrimagnetic system is studied 
by the Bethe lattice approach. The ground-state phase diagram is constructed. The influence of the 
crystal-field and the biquadratic interactions among neighboring spins on the thermal behaviors 
of the system is singled out. The system displays very rich critical behaviors with the existence of 
tricritical points. Compensation points where the global magnetization of the system vanishes 
have been detected for appropriate values of the system parameters. 
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1. Introduction 
Ising systems have attracted much interest in the three last decades because of their critical behaviors. Mixed Is-
ing systems, beyond their theoretical purposes, have been proposed as possible systems to describe ferrimagnet-
ic materials [1]. Moreover, the increasing interest in these systems is mainly related to their technological appli-
cations in the area of thermomagnetic recording [2]. They have less translational symmetry than their single spin 
counterparts; therefore, they exhibit many novel phenomena. The study of these systems can be relevant for the 
understanding of bimetallic molecular based magnetic materials [3]. They are also useful to study the effect of 
inhomogeneities on the phase diagram of Ising systems. When defined on hierarchical graphs as the Bethe lat-
tice or the Cayley tree, interesting statistical properties are expected. 

One of the earliest, simplest and the most extensively studied mixed-spin Ising model is the spin-1/2 and 
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spin-1 mixed system. Different approaches have been used: renormalization-group technique [4], high-temper- 
ature series expansions [5], the free-fermion approximation [6], the recursion method [7], the Bethe-Peierls ap-
proximation [8], the Monte-Carlo simulation [9] [10], the numerical transfer matrix study [11] and the cluster 
method in pair-approximation [12]. Most of these studies have focused on the mixed spin-1/2 and spin-s 
( )1 2s >  Ising systems. Mixed-spin Ising systems consisting of higher spins are not without interest. Indeed, 
several theoretical studies of mixed spin-1 and spin-3/2 Ising models have been reported, based on different ap-
proaches: the effective-field theory, on the simple cubic, honeycomb and square lattices, mean-field theory 
based on the Bogoliubov inequality for Gibbs free energy [13] and by the means of recursion relations on the 
Bethe lattice [14]-[16]. 

Recently, these investigations have been extended to high order mixed spin ferrimagnetic systems in order to 
study their magnetic properties. Bobak et al. [13] investigated the effect of the crystal-field on the phase dia-
grams of the mixed spin-2 and spin-3/2 Ising system by the use of mean-field theory based on the Bogoliubov 
inequality for the energy. By means of exact recursion equations, Albayrak investigated the magnetic properties 
of the mixed spin-2 and spin-3/2 Blume Capel (BC) Ising model with different crystal-fields on the Bethe lattice 
[17]. Deviren et al. [18] used the effective field-theory to study the magnetic properties of the ferrimagnetic 
mixed spin-2 and spin-3/2 BC Ising model with equal crystal-field in a longitudinal magnetic field on the ho-
neycomb and a square lattice and got interesting results. Fathi [19] studied the same model with different crys-
tal-fields for the two sublattices arranged alternatively using the mean-field theory based on the Bogoliubov in-
equality for the Gibbs free energy. It should be emphasized that all these above mentioned works don’t include 
the biquadratic exchange interactions. 

In this work, we study the mixed spin-2 and spin-3/2 Blume-Emery-Griffiths (BEG) ferrimagnetic system on 
the Bethe lattice in terms of exact recursion equations to investigate the influence of the crystal-field and biqua-
dratic spin interactions on the critical behaviors of the model. It has been shown that the partition function in the 
Bethe lattice approach is that of an Ising model in the Bethe-Peierls approximation [20]. The Bethe lattice ap-
proach calculations provide exact solutions and results that are qualitatively better for the regular lattices than 
those obtained by the conventional mean-field theories [21]. 

The remainder of this work is organized as follows. In Section 2, a brief formulation of the Bethe lattice ap-
proach is given. Section 3 is devoted to the formulation of the critical temperatures of the model. In Section 4, 
besides the ground-state phase diagram, the thermal properties of the model are presented and discussed in de-
tails in the model parameters’ space. Some concluding remarks are given in the last section. 

2. The Bethe Lattice Approach Formulation 
A Bethe lattice is an infinite Cayley tree, i.e. a connected graph without circuits. It consists of a central spin 0S  
which may be called the first generation of spins. 0S  has a number q of nearest-neighbors which form the 
second generation of spins. Each site of the second generation is joined to ( )1q −  nearest-neighbors. Thus, the 
second generation has ( )1q q −  nearest-neighbors which form the third generation and so on to infinity as 
shown in Figure 1. 

The Hamiltonian of the system is given by: 

2 2 2 2

, ,
,i j i j A i B j i j

i j i j i j i j
H J S K S D S D h Sσ σ σ σ

 
= − − − − − − 

 
∑ ∑ ∑ ∑ ∑ ∑                  (1) 

where each spin iS  located at site i on the lattice is a spin of type 1 and each spin jσ , located at site j is a spin 
of type 2. The Bethe lattice is arranged such that the central spin is a spin of type 1, the next generation spins are 
of type 2, and the next generation spins are again, spins of type 1 and so on. The first sum runs over all near-
est-neighbor pairs of the bipartite lattice. J and K are the bilinear exchange and the biquadratic coupling interac-
tion stengths respectively. AD  and BD  are the crystal-fields acting on spins of sublattices A and B respective-
ly. h is the external field. 

The partition function of the model reads: 

( )e ,H

Spc
Z P Spcβ−= =∑ ∑  

where ( )P Spc  is taken as an unnormalized probability distribution over the spin configuration, Spc (e.g.  
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Figure 1. A Bethe lattice with coordination q = 3 consisting of two different 
types of magnetic atoms A and B with spin variables si and σj respectively. 

 
,S σ ). iS  and jσ  indicate the spins’ values at sites i and j respectively. If the Bethe lattice is cut in some cen-

tral point with a spin 0S , spin of type 1, then it splits up into q identical branches; i.e. disconnected pieces. Each 
of these is a rooted tree at a central spin 0S . This implies that ( )0P S , i.e. 0Spc S= , of a spin configuration 
with the spin value 0S  at the central site, can be written as: 

( ) ( ) ( )2
0 0 0exp q

A nP S D S g Sβ =                                  (2) 

( ) ( ) ( )2
1 1 1 1exp ,q

B nP D gσ β σ σ−
 =                                (3) 

where, 0S  is the central spin value of the lattice, ( )0ng S  the partition function of an individual branch and 
the suffix n represents the fact that the sub-tree has n shells, i.e., n steps from the root to the boundary sites. 
Therefore, ( )0ng S  is written in terms of summation over spins set { }σ  as: 

( )
{ }

( ) ( )
1

12 2 2
0 0 1 0 1 1 1 1 1exp .

q
n B ng S JS KS D h g

σ
β σ σ σ σ σ

−

−
 = + + +    ∑                 (4) 

Advancing along any branch, we get a site that is next-nearest to the central spin, hence ( )1 1ng σ−  is ex-
pressed: 

( )
{ }

( ) ( )
2

12 2 2
1 1 2 1 2 1 2 2 2 2exp

q
n A n

S
g JS KS D S hS g Sσ β σ σ

−

− −
 = + + +    ∑                 (5) 

Let us give some examples of the calculated ( )0ng S  and ( )1 1ng σ− : 

( )
{ }

( ) ( )
1

12 2
1 1 1 1 1 1

1 19 3 9 33 9 3 9
4 2 4 2

1 1

11 1 1 1
4 2 4 2

1

2 exp 2 4

3 3e e
2 2

1e e
2

B B

B B

q
n B n

q q
J K D h J K D h

n n

q
J K D h J K D h

n

g J K D h g

g g

g

σ

β β

β β

β σ σ σ σ σ
−

−

− −   ± + + ± + +   
   

− −

− ± + + ± + + 
 

−

 ± = ± + + ±    

   −    = +            

  + +    

∑

∓ ∓

∓ ∓
1

1
1 .

2

q

ng
− 

 
 

−
 −  

    

             (6) 
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{ }
( )

( ) ( ) ( ) ( )

( ) ( )

2

12 2
1 2 2 2 2 2 2

1 13 9 4 2 3 9 4 2
2 2

3 9 3 91 4 11 12 4 2 4
2 2

3 3 9exp
2 2 4

e 2 e 2

e 1 e 1

A A

A A

q
n A n

S

q qJ K D h J K D h
n n

J JD h D hq q
n n n

J Kg S S D S hS g S

g g

g g g

β β

β β

β
−

− −

− −± + + ± + +
− −

   ± + + ± + +   − −   
− − −

 ±    ± = + + ±            

= + −      

+ + − +      

∑
∓ ∓

∓ ∓

( ) 1
2 0 .

q−
  

        (7) 

In order to find the recursion relations, we introduce the following variables as a ratio of ng  functions for 
the spin-2 as follows: 

( )
( )

( )
( )

( )
( )

( )
( )

2 2 1 1
, , ,

0 0 0 0
n n n n

n n n n
n n n n

g g g g
W X Y Z

g g g g
+ − + −

= = = =                         (8) 

and for the spin- 3
2

 as the ratio of 1ng −  functions 

1 1 1

1 1 1

1 1 1

3 3 1
2 2 2, ,
1 1 1

2 2 2

n n n

n n n

n n n

g g g
A B C

g g g

− − −

− − −

− − −

+ − +     
     
     = = =
− − −     

     
     

                        (9) 

The BEG model is characterized by two order parameters, the magnetization M and the quadrupolar moment 
Q. Four order parameters: ,A BM  and ,A BQ , where A, B refer to the two sublattices may be considered. Their 
expressions follow: 

{ }
( )

{ }
( )

0 0

1 1 2
1 0 0 1 0 0, .A A

S S
M Z S P S Q Z S P S− −= =∑ ∑                          (10) 

They are easily expressed in terms of the recursion relations, namely Equation (10), and calculated as: 
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
4 2 2

4 2 2

2e e e e e e

e e e e e e 1

A A

A A

D h h D h hq q q q
n n n n

A D h h D h hq q q q
n n n n

W X Y Z
M

W X Y Z

β β β β β β

β β β β β β

− −

− −

− + −
=

+ + + +
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

4 2 2

4 2 2

4e e e e e e

e (e e ) e e e 1

A A

A A

D h h D h hq q q q
n n n n

A D h h D h hq q q q
n n n n

W X Y Z
Q

W X Y Z

β β β β β β

β β β β β β

− −

− −

+ + +
=

+ + + +
 

Similarly, we get: 
9 3 3 1 1 1
4 2 2 4 2 2

1 1 1

9 3 3 1 1 1
4 2 2 4 2 2

1 1 1

3e e e e e e

2e e e 2e e e

B B

B B

D h h D h h
q q q
n n n

B
D h h D h h

q q q
n n n

A B C

M

A B C

β β β β β β

β β β β β β

− −           
           
           

− − −

− −         
         
         

− − −

   
   − + −
   
   =
 
 + + +
 
 

 
 
 

 
 
 
 

 

9 3 3 1 1 1
4 2 2 4 2 2

1 1 1

9 3 3 1 1 1
4 2 2 4 2 2

1 1 1

9e e e e e e

4e e e 4e e e

B B

B B

D h h D h h
q q q
n n n

B
D h h D h h

q q q
n n n

A B C

Q

A B C

β β β β β β

β β β β β β

− −           
           
           

− − −

− −         
         
         

− − −

   
   + + +
   
   =
 
 + + +
 
 

 
 
 

 
 
 
 

 

The energy F of the system is defined as ( )logF kT Z= −  and its expression in the thermodynamic limit as 
( )n →∞  is given in terms of the recursion relations by setting 2n n= − =�  and 1 3n n− = − =�  [14] as 
follows [22] 
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( ) ( )

( ) ( ) ( ) ( ){ }

4 2 4 21 1

1 12 4 2 4

4 2 4 21 1 1 1

9 3
4 2

1 1 ln e e
2

e e 1

1 ln e e e e 1

1 1 ln e
2

A A

A A

A A A A

B

J D K h J D K hq q
n n

J K J KD h D h
q q

n n

D h D h D h D hq q q q
n n n n

D h

qF J W X
q

Y Z

W X Y Z

q

β β

β β

β β β β

β

β

β

β

− + + + + + −− −

−   + + + + + −   − −   

+ − + −− − − −

 +

 −= − + − 
+ + + 


 − + + + + 

−
−

9 3
1 1 14 2 4 2 4 2
1 1 1e e e .

B B BD D Dh h h
q q q
n n nA B C

β β β      − + −       − − −       
− − −

    + + + 
    

         (11) 

Then, the phase diagrams of the system for a given coordination number q are obtained by studying the 
thermal variations of the order parameters and the free energy. 

In the thermodynamic limit, ( ),n nX Y  converges to the fixed point ( ),s sX Y . Thus one rewrites Equation (9) 
as: 

( ),s sA A X Y= ; ( );s sB B X Y= ; ( );s sC C X Y= . 

Also, in this case, substituting sW ; sX ; sY ; sZ ; A; B and C in the Equations (11)-(15), one obtains: 

( ),A A s sM M X Y= ; ( ),B B s sM M X Y= ; ( ),A A s sQ Q X Y= ; ( ),B B s sQ Q X Y= ; ( ),s sF F X Y= . 

Usually, multiple solutions of ( ),s sX Y  may exist. The solution that minimizes the free energy is the ther-
modynamically stable one. Technically, we use peaks in the magnetic susceptibility of the system defined by:  

2

2
0h

F
h

χ
=

 ∂
∼  ∂ 

 to detect phase transition. These new curves simultaneously show a maximum at the same tem-  

perature that we take as cT  when no anomalous behaviour is observed in the thermal behaviour of free energy 
F at this moment. The first order transition is obtained when a sharp jump occurs in the thermal behaviors of the 
sublattice magnetizations followed by a discontinuity of the first derivative of F. 

3. Formulation of the Critical Temperatures 
The most common phase transitions are of second or first order type for all kind of systems. 

The second order phase transition (SOT) temperature cT  is the temperature at which both sublattice magne-
tizations become zero continuously. cT  separates the ferrimagnetic phase from the paramagnetic phase. There-
fore, by using the expressions for the magnetizations, one can obtain the exact formulation of the second-order 
phase transition temperatures by setting AM  or BM  separately equal to zero: 

( ) ( ) ( ) ( )42e e 0A AD Dq q q q
n n n nW X Y Zβ β− + − =                          (12) 

and 

( ) ( )
9 1
4 4

1 1 13e e 1 0
B BD D

q q q
n n nA B C

β β   
   
   

− − −− + − =                         (13) 

At cT , The condition ( ) ( )2 2n ng g+ = −  and ( ) ( )1 1n ng g+ = − , must be satistied, which implies n nW X=  
and n nY Z= . In the same way, for the sublattice B, one has a simple solution given by 1 1n nA B− −=  and 

1 1nC − =  which implies that cT , ( ) ( )1 13 2 3 2n ng g− −+ = −  and ( ) ( )1 11 2 1 2n ng g− −+ = −  must be satisfied. 
It’s should be mentioned that the latter condition is readily obtained from the first condition and at the transition, 
we obtain: 

( ) ( )
9

9 1 14 4
1 1

9
1 14 4
1 1

e cosh 3 e cosh

2 e e

B B

B B

D D
K Kq q

n n
n n D D

q q
n n

J A J C
W X

A C

β β
+ +− −

− −

− −
− −

+
= =

 
+  

 

                  (14) 
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9 9
1 14 4 4 4
1 1

9
1 14 4
1 1

3e cosh e cosh
2 2

2 e e

B B

B B

D DK K
q q
n n

n n D D
q q
n n

J JA C
Y Z

A C

β β+ +− −
− −

− −
− −

   +   
   = =
 

+  
 

                     (15) 

( )

9
4 9 1 14

1 1
4 1 14

3 3e cosh e cosh 1
2 2

e cosh e cosh 1
2

AA

AA

KDD K q q
n n

n n KDD K q q
n n

J JW Y
A B

JJ W Y

β β

β

++ − −

− −
++ − −

   + +   
   = =

 + + 
 

               (16) 

In order to calculate the first-order phase transition (FOT) temperature, we need an analysis of the free energy 
expression given above in terms of the recursion relations. 

We have also investigated the compensation temperature compT  which corresponds to the crossing point of 
sublattice magnetization curves i.e.: 

( ) ( ).A comp A compM T M T=                                    (17) 

The real compensation occurs when A BM M= −  and this only happens in the ferrimagnetic coupling case at 
the same value compT . In the spirit of the above definitions of the critical temperatures, one can then study in 
depth the phase diagrams of the mixed spin-2 and spin-3/2 BEG ferrimagnetic system in the ( ),D J kT J  
plane at constant values of K J  and also in the ( ),K J kT J  plane for fixed values of D J  for all values 
of q. 

4. Results and Discussions 
4.1. Phase Diagram at T = 0 
It is instructive to analytically analyze the ground-state phase diagrams from the ground-state energies of the 
model Hamiltonian. The ground-state configuration is that with the lowest ground state energy. Here, we have 
six different ground-state configurations as in ref. [19]. They are written in the following as 

{ }, , ,i A B A BO M M Q Q≡ : 1
3 92, , 4,
2 4

O  ≡ ± 
 
∓ , 2

3 91, ,1,
2 4

O  ≡ ± 
 
∓ , 3

1 12, , 4,
2 4

O  ≡ ± 
 
∓ , 4

1 11, ,1,
2 4

O  ≡ ± 
 
∓ . 

Two disordered phases are obtained 1
90,0,0,
4

D  ≡  
 

, 2
10,0,0,
4

D  ≡  
 

. For the two latter phases, 0AM =  

and one half of the lattice B has spins in 3
2
+  state whereas the other half has spins in the state 3

2
− , so  

0BM = . A similar structure is observed for the 2D  phase. The ground phase diagram shows five multicritical 
points whose coordinates are: ( )1 0.5,0A − ; ( )2 0.16, 0.3A − ; ( )3 0.06, 0.46A − − ; ( )4 0.16, 1.34A − ; ( )5 0, 2A − . 
At these points, more than one phase coexist. All transition lines of the ground-state diagrams are of first order. 

4.2. Sublattice Magnetizations 
Thermal magnetic properties of the system, namely the sublattice magnetiztions are presented. It’s worthwhile 
to first mention that the disordered phases 1D  and 2D  found in Figure 2 are thermally unstable and have not 
been observed during the simulation at non-zero temperature. Figure 3 shows typical sublattice magnetization 
curves for different values of AD q J  for 1BD q J =  (panel a) and for different values of BD q J  for 

1AD q J =  (panel b) and 3q = . In Figure 3(a), one observes that AM  and BM  decrease from their satu-
ration values at 0T =  with the increase of the temperature. Thermal fluctuations disorder magnetic moments 
orientation is the system. AM  shows three saturation values whereas BM  shows a unique saturation value. 
The sublattice magnetizations AM  and BM  show a standard characteristic convex chape. We notice the ex-
istence of an hybrid ferrimagnetic phase 1.5AM =  and 1.5BM = − , where on the sublattice A, half of the spins 
are in the state 2 whereas the second half is in the state 1; hence 1.5AM = . This hybrid phase is located at  
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Figure 2. Ground-state phase diagram of the mixed spin-2 and spin 3/2 BEG model for arbitrary 
values q of the coordination number in the plane ( ),D q J K J . The six phases are two dissor- 

dered phases ( 1D  and 2D ) and ordered phases ( )1 2 3 4, , ,O O O O  are found (see text). 

 
the boundary of phases 10  and 20 . Also, for selected values of AD q J , AM  exhibits interesting behaviors. 
Indeed, for 0.45, 1.45AD q J = − − , AM  decreases rapidly from its saturation values 2, 1 respectively when 
the temperature increase from 0T =  to the critical temperature where AM  vanishes. For 0.55AD q J = − , 

AM  exhibits a rather increase before decreasing to vanish at the critical temperature. It’s should be interesting 
to indicate for 1.45AD q J = − , AM  shows a rapid decrease before presenting a jump at the critical temper-
ature which indicate a first-order transition. As shown in Figure 3(b), one notices again the existence of an 
hybrid ferrimagnetic phase 2AM =  and 1BM = −  where on the sublattice B, half of the spins are in the state 

3 2−  and the the second half spins are in the state 1 2− , hence 1AM = − . This hybrid phase is also located at 
the boundary of the phase 20  and 30 . Also for the selected values of BD q J , BM  exhibits interesting be-
haviors. For 1.05BD q J = − , BM  decreases rapidly from its saturation value 1 2−  with the increase tem-
perature from 0T =  to the critical temperature where BM  vanishes. For 0.95BD q J = − , BM  exhibits a 
rapid increase before decreases and cancels at the critical temperature. Figure 4(a) shows typical sublattice 
magnetization curves for five different values of the biquadratic field K J  of the model when 0.5D J =  
and the coordination number 3q = . For 0.0K J = , one observes that AM  and BM  decrease from their 
saturation values 2AM =  and 3 2AM = −  at 0T =  with the increase of the temperature. Indeed, for 

1.4, 1.9K J = − − , AM  decreases rapidly from its saturation values 2 and 1 respectively when the temperature 
increases from 0T =  to the critical temperature where the AM  vanishes. It’s should be interesting to indicate 
that for 1.9K J = − , AM  shows a rapid decrease before showing a jump at the critical temperature which 
indicates a first-order transition. Figure 4(b) shows typical sublattice magnetization curves for five different 
values of the crystal field D J  of the model when 1.0K J = −  and the coordination number 3q = . For 
these values, one observes different values of saturation of AM  and a single saturation value for BM . These 
results are in perfect agreement with the phase diagram at 0T = . 

4.3. Magnetic Susceptibilities and Phase Diagrams 
In Figure 5(a), the temperature dependence of total and sublattice susceptibilities is presented for constant 
values of 1.0AD q J =  and 0.92BD q J = − . It is easy to see from this figure that the variation of the total  
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Figure 3. Thermal variation of the sublattice magnetizations MA, MB for the mixed spin BEG 
model with the coordination number 3q = , when the value of AD q J  is varied for fixed 

1.0BD q J =  (panel a). In the panel (b), the thermal variations of the sublattice 

magnetizations MA, MB for the model when BD q J  is changed for fixed 1.0AD q J = . 

In panels (c and d), sublattice magnetizations MA, MB are presented for 1.0AD q J =  and 

0.92BD q J = −  (panel c) and −1 (panel d). The solid lines represent the sublattice magne-

tizations without an external magnetic field ( )0.0h =  while dashed lines represent the sub-

lattice magnetizations under the effect of an external magnetic field ( )0.05h = . 
 
susceptibility in the low-temperature region originates from the behaviour of the sublattice susceptibility Bχ . It 
is also seen that the sublattice susceptibility Aχ  exhibits the usual temperature dependence in the vicinity of 

cT , while the sublattice susceptibility Bχ  takes negative values. 
Now, in order to explain the appearance of the broad maximum in the susceptibility of the sublattice B in the 

low-temperature region (Figure 5(a)), we consider the temperature dependence of the sublattice magnetizations 
AM  and BM  (as shown in Figure 3(c)) for the system with 1.0AD q J =  and 0.92BD q J = − , when 
0h =  (solid lines) and when 0h ≠  (dashed lines). In the figure, it is seen that there is a rapid decrease in BM  

from its saturation value ( )3 2BM = −  with the increase in T and it is clear that at any temperature in this re-
gion, there is a jump in BM  from a certain value, when 0h ≠  to a lower value, when 0h =  resulting in the 
broad maximum of Bχ . 
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Figure 4. Thermal variation of the sublattice magnetizations MA, MB for the mixed spin 
model when the value for K J  is varied at fixed 0.5D J =  and q = 3 (panel a). In the 

panel (b), the sublattice magnetizations MA, MB are flotted for model when the value D J  

is changed for fixed 1.0K J = −  and q = 3. 

 

 
Figure 5. Thermal variations of the total and sublattices magnetic susceptibilities for the 
mixed spin-2 and spin −3/2 BEG model with the coordination number q = 3, when 

1.0AD q J =  and 0.92BD q J = −  (panel a) and −1 (panel b). 
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In Figure 5(b), we show the thermal variation of initial susceptibilities (total and sublattices). For the system 
with 1.0AD q J =  and 1.0BD q J = − . It is seen from this figure that the divergence of the total suscepti-
bility at zero temperature originates from the divergence of the sublattice susceptibility Bχ . 

To explain the physical scenario for the appearance of the divergence of the susceptibility of the sublattice B 
(Figure 5(b)), we consider the temperature dependence of the sublattice magnetization AM  and BM  (as 
shown in Figure 3(d)) for the system with 1.0AD q J =  and 1.0BD q J = − , when 0h =  (solid lines) and 
when 0h ≠  (dashed lines). In this figure, there is a mixed-spin state on the sublattice B in the ground state, for 

1.0BD q J = −  and 0h = , consisting from 3 2jσ =  and 1 2jσ =  with equal probabilities. 
In Figure 6, phase diagrams are illustrated at 0K J =  and varying D J  when 3, 4,5,6q = . The solid 

and dashed lines indicate SOT and the FOT lines respectively. The black triangle indicates the tricritical point 
(TCP). As it’s seen in this figure, it’s clear that the SOT and FOT lines separate the ferrimagnetic phase F from 
the paramagnetic phase P. Some interesting phenomena are observed on the phase diagrams. First, the model 
exhibits for all values of q, a TCP where a SOT and a FOT lines are connected. Second, for D J  larger than 
its tricritical value, the SOT occurs from the ferrimagnetic phase 1O  to the paramagnetic phase P. But for lower 
values, the first order phase transition occurs from the same ferrimagnetic phase 1O  to the paramagnetic phase 
P. Third, by increasing q, most of the transition lines become of first order. These results appear in perfect 
agreement with the ground-state phase diagram and bear some resemblance with those displayed in Figure 3 of 
Ref. [19]. 

Figure 7 displays the phase diagrams of the model for four different values of the parameter D J : 0.0, −0.1, 
−0.25 and −1.2. The coordination number is still set to 3. The dotted lines indicate compensation lines. From 
this figure, several features of the model emerge. In panel (a) for example, for 0.0D J = , one observes the 

 

 
Figure 6. Phase diagrams illustrated at 0K J =  and varying D J  

when 3;4;5q =  and 6. Solid and dashed lines indicate the second-order 
transition and first-order phase transition lines respectively. The black 
triangle indicates the tricritical point (TCP). 
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Figure 7. Finite temperature phase diagrams of the model in the plane ( K J , Bk T J ) at 

fixed value of D J  for the coordination number 3q = . The diagrams show first-order 
(FOT, dashed lines) and second-order (SOT, full lines) transitions between the ferrimagnetic 
(F) and the disordered paramagnetic (P) phases; tricritical points (full triangle) and compen-
sation transitions (dotted lines). The compensation end-points are indicated by open squares. 

 
existence of a TCP and a compensation line with two end-points indicated by full squares. The ordered domain 
F is not homogeneous in the sense that it does not consist of only one ferrimagnetic phase. Indeed, one gets 
three ferrimagnetic phase 1O , 2O  and 4O  in this domain F. The other panels (b, c and d) present similar 
features with the previous case with no existence of TCP. 

In order to check the obtained compensation temperatures, we have illustrated the thermal behavior of the net 
magnetization netM  (see Figure 8). 

It is important to mention that the model shows interesting numerical behavior when 0K J ≤ . Figure 9 is 
displayed to extend Figure 6 and Figure 7 to other values of the fixed parameters D J  and K J . It 
illustrates almost the same properties of the model. Some particularities are however noticed: transition lines 
always show a TCP and compensation temperature are absent from both panels. In panel (a), one can remark 
that TCP are found for 0K J ≤  and for appropriate positive values of D J . With increasing values of 
K J , most of the transition lines become of second order. In panel (b), TCP are found for 0D J ≤  and 
appropriate positive values of K J . With increasing D J , the portion of SOT line becomes important. From 
Figure 9, it appears that a tricritical line can be drawn by connecting tricritical points of different transition lines 
in both panels 

5. Conclusion 
In summary, the mixed spin-2 and spin-3/2 BEG Ising ferrimagnetic system is studied on the Bethe lattice using 
exact recursion equations. The ground phase diagram of the model was constructed in ( D J , K J ) plane. 
There, one found four ordered phases and two disordered phases. We have investigated the thermal variations of  
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Figure 8. Thermal behavior of net magnetizations netM  for the mixed spin model for 0K J ≤  and 0D J ≤ . The 
curves show the compensation temperature at each panel. 
 

 
Figure 9. Phase diagrams for selected values of K J  written on the curves in the ( D J ; T J ) (panel a). In the panel 

(b), the diagrams are drawn for selected values of D J . Dashed lines are first-order transition lines while full lines are 
critical lines. 
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the magnetizations and susceptibility curves and found interesting behavior results. Finally, the influences of 
the crystal field and the biquadratic interactions are investigated by obtaining the phase diagrams on the ( K J , 
kT J ) and ( D J , kT J ) planes, respectively, with equal crystal field interactions for the sublattices. The 
model presents very rich critical behaviors, which include first and second order transitions and tricritical points. 
We have also found that the model exhibits compensation temperatures for appropriate values of the system pa-
rameters. 
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