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Abstract 
Localizing a jammer in an indoor environment in wireless sensor networks 
becomes a significant research problem due to the ease of blocking the com-
munication between legitimate nodes. An adversary may emit radio frequency 
to prevent the transmission between nodes. In this paper, we propose detect-
ing the position of the jammer indoor by using the received signal strength 
and Kalman filter (KF) to reduce the noise due to the multipath signal caused 
by obstacles in the indoor environment. We compare our work to the Linear 
Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We 
observed that the Kalman filter has better results when estimating the distance 
compared to other algorithms. 
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1. Introduction 

Wireless sensor networks (WSNs) are utilized in different fields including 
healthcare monitoring, industrials, military, air pollution, water quality moni-
toring, security monitoring, wearable devices, internet of things, and more [1] 
[2]. WSNs are developing as multi-hop networks where each sensor gathers and 
transfers information to the next hop sensor until it reaches the destination node 
or the sink. WSNs are designed to share the communication medium, which is 
vulnerable to several attacks, such as a jamming attack, Danial of Service (DoS), 
eavesdropping, a man in the middle attack. Jamming attacks are the most severe 
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attacks on WSNs due to ease of launch. A jamming attack may block the sensors 
from communicating with their neighbor by emitting its signal with high power 
to prevent a legitimate node from transmitting its data [3].  

Locating a jammer in WSNs is very important to support the improvement of 
existing countermeasures. In an indoor environment, applications using the 
wireless communication are rapidly increased, such as health monitoring, inter-
net of things applications, and monitoring secured place inside the building. Be-
cause the WSNs are designed as multi-hop networks, the sensor forwards its in-
formation to the next hop node until it is received by the destination. Therefore, 
routing protocol is designed to find the shortest path between the sender and the 
sink node before the transmitter starts transmitting its collected data. By detect-
ing the jammer location, the routing protocol is forced to avoid the jamming re-
gion which causes repeated messages due to delivery failure [4]. Other reasons 
for locating the jammer position are capturing, eliminating and isolating jammer 
from the network, or finding a stranger in a secured place. 

Jamming attacks in WSNs have been intensively studied and defined as a 
stranger transmitting signal with high power to inject a false signal, override the 
legitimate node’s message, or isolate nodes from the network [5]. Furthermore, 
the jammer may use many techniques by adjusting its frequency. Jammers are 
classified into two major types: frequency domain and time domain. During a 
frequency domain attack, the jammer transmits its radio signal towards the tar-
get by adjusting its frequency to harm the channel, or many channels, based on 
its jamming strategy. During time domain attack, the jammer emits its signal 
periodically, which means it has two states: Sleep state and jammed state. This 
type of jammer is more difficult to detect because when it sleeps, we cannot tell if 
it exists or not. Classification of jamming attacks is described as follows [6]: A 
constant jammer is a frequency jamming attack. In a continuous jammer attack, 
a jammer emits a continuous signal with random bits which makes the channel 
too busy for legitimate nodes to transmit their data. A random jammer transmits 
the constant random data to its target. This type of attack is a time domain be-
cause the jammer sends its jamming signal periodically and then switches to 
sleep mode. A different kind of time domain is a reactive jammer. A jammer 
keeps sensing the channel until it becomes active, then it starts transmitting its 
jamming signal. The last type of frequency jamming attack is a deceptive jam-
mer. Unlike the constant jammer, a deceptive jammer transmits regular data 
towards its target. 

Several algorithms have been proposed as anti-jamming attacks in wireless 
communication, such as the Frequency Hopping Spread Spectrum (FHSS) and 
the Direct Sequence Spread Spectrum (DSSS) [7]. Both FHSS and DSSS are 
based on a secret shared key between nodes or sensors before exchanging their 
information [8]. While the sensors were randomly deployed and dynamically 
jointed the network, the shared secret key is infeasible when the jammer is 
present and blocks the communication and isolated nodes from the network be-
fore agreed upon shared key. Furthermore, due to the restricted resources in 
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WSNs, like memory and energy, the DSSS and FHSS are not suitable. 
Indoor localization is challenging due to multipath signals caused by sur-

rounding objects. When the signal propagates between two transceivers, it may 
have reflected, diffracted, or scattered before being received by the next hop 
node. The Non-Line-of-Sight (NLOS) [9] is the signal received by the receiver 
node after being reflected by objects. Due to the change of the signal path and 
angle degree, the detecting location techniques, such as angle of arrival, time of 
arrival, difference time of arrival, results in wrong distance estimation. There-
fore, estimating the distance using the jammer received signal strength is signif-
icantly more accurate. 

Existing location detecting technology, such as a Global Position System 
(GPS), may not work correctly due to the weakness of the signal inside the 
building [10]. Some localization techniques need additional hardware such as 
sonar, infrared [11], Time of Arrival (ToA), Difference Time of Arrival (DToA), 
and Angle of Arrival (AoA) [12] [13] [14]. These are difficult due to the re-
stricted resources in the sensor node, including energy consumption, memory, 
processing, and bandwidth. Most of the jammer localization algorithms are fo-
cusing on detecting jammer location in public areas or outdoor environments 
and according to Yu et al. [15] identifying jammer position using nodes located 
within a jammer transmission range that is being jammed by the jammer. The 
jammed nodes measure the distance from the jammer using received signal 
strength acquired from the jammer. The boundary node adjusts its transmission 
power more than the jammer to be able to receive jammed node messages. Un-
fortunately, this approach consumes node power, which is unacceptable due to 
the constrained resources in WSNs. Plechrinis et al. [16] evaluated jammer loca-
tion using Packet Delivery Ratio (PDR). Nodes near to the jammer have a weak-
er value of PDR. This found by examining all PDR and finding the smallest PDR, 
which indicates a node near the jammer location. In other words, their algo-
rithm utilized the search technique to determine the closest boundary node to 
the jammer. This method obtained the nearest sensor to the jammer, not the 
jammer location. When the jammer was using high transmission power to jam 
sensors, the closest boundary node was located far away from jammer’s location. 
[17] [18] a different method involved Centroid Localization (CL) and Weighted 
Centroid Localization (WCL) algorithms detecting jammer position by averag-
ing jammed node coordinates, which were located within jammer transmission 
range. CL and WCL are very sensitive to their location and number of isolated 
nodes. In this work, we proposed detecting the position of an indoor jammer by 
estimating jammer’s received signal strength and Kalman filter. The main chal-
lenges to locating a jammer in an indoor environment are the received JRSS not 
being pure and have considerable noise produced by the surrounding environ-
ment. Moreover, due to signal path loss and the reflected signal, while propa-
gating from the transmitter to the receiver, more effort of computing the jam-
mer location was added. Therefore, the Kalman filter was utilized in this work to 
reduce noise, and the path loss model was used to estimate the distance between 
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anchor node and advisory. We compared our work to linear prediction and cen-
troid localization to analyze the effect of noise, jammed node positions and 
number for locating the jammer’s position.  

This paper is organized as follows: the network model and types of nodes in 
general model and jammed launch is discussed in section 2. In section 3, the 
path loss model, NLOS, and Sight-of-Line (SOL) are presented. The Linear Pre-
diction, Centroid Localization, and Kalman filter are discussed in sections 5, 6 
and 7 respectively. Section 8 includes the analysis and simulation results. Section 
9 concludes this paper. 

2. Network Model 

We considered the sensors deployed randomly over a small area in an indoor 
environment. All sensors in our proposal are classified as having the following 
characteristics: 

2.1. General Network Model  

Multi-hop. Each node must pass the data collected to its neighbor to the sink 
node. 

Stationary. All nodes have fixed position and remain not change after node 
deployed. 

Neighbor-Aware. Each node knows its neighbor position by exchanging the 
location information. 

Location-Award. A node can detect its location coordinate after sensors are 
deployed. 

Homogenous. The sensor has an omnidirectional antenna and transmits with 
the same power level. 

2.2. The Effect of Jamming Signal Model  

Unaffected node: All nodes that are outside the jammer’s transmission range, 
and they can receive a packet from all their neighbors.  

Jammed nodes: Any sensors within the jammer’s transmission range. A node 
cannot receive a message from its neighbor. 

Boundary node: A node can receive a packet from part of its neighbor. A 
boundary node can also measure the jammer Received Signal Strength from on-
coming messages. We estimate the jammer position using the boundary nodes, 
where they can receive the jammer’s received signal strength. Figure 1 shows the 
network model effect by the jamming signal. Nodes and jammer are distributed 
randomly in our network. This figure contains unjammed nodes, jammed nodes, 
boundary nodes, and the jammer. 

3. Log-Normal Shadowing Model  

Wireless communication is susceptible to several challenges as signals travel 
from the transmitter to the receiver. Not only can the signal suffer from noise 

https://doi.org/10.4236/wet.2018.92003


W. Aldosari, M. Zohdy   
 

 

DOI: 10.4236/wet.2018.92003 24 Wireless Engineering and Technology 
 

and interference, but also from the reflection, diffraction, and scattering [19]. 
Due to the multipath signal caused by obstacles and surrounding objects in an 
indoor place, as shown in Figure 2, we use a Log-distance path loss model to es-
timate the distance between the boundary node and the jammer. The 
Log-normal shadowing model is an extension to Friis free space Equation (1). 

( )
( )

2

24π
t r

r t
G G

P d P
d
λ

=                       (1) 

where ( )rP d  is received signal power at distance d, tP  is the transmission’s 
signal power, rG  and tG  tare the system gain, λ is the wavelength and d is the 
distance between sender and receiver. The Log-normal model can be presented 
in the following forms: 

( ) ( )0
0

10 log i
j ji

dP d P d n X
d σ= − ∗ +               (2) 

where n is the path loss exponential where there is a change from one environ-
ment to another. In an indoor place, the path loss exponential is between 2-3. 
Xσ  is zero-mean Gaussian distributed random variable. 

( )0 010 log10jP d n d= ∗                   (3) 

( ) ( )0
0

10 log i
j ji

d
P d P d n

d
= − ∗                (4) 

where id  is the estimated distance from filtered JRSS. 
 

 
Figure 1. Network model under a jamming attack. 

 

 
Figure 2. Log-Normal shadowing model.  
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4. Linear Prediction  

Linear prediction is one way to predict a future value from a series of data [20] 
[21] [22]. In this paper, we use the linear prediction method to estimate jammer 
Received Signal Strength from a considerable noise caused by a multipath signal 
and the surrounding environment as follows. 

 ( ) [ ]1
p

LP iiJRSS a JRSS n i e n
=

∗= − +∑                (5) 

( ) ( ) ( )( )
( ) ( ) ( )

1 2

3 0

( 1) 2

( 3) 1
p p p

p

a JRSS n p a JRSS n p a JRSS n p

a JRSS n p a JRSS n JRSS n
− −

−

− + − − + − −

+ − − + = +
    (6) 

where n p=  is the system order. e is the error from the estimated JRSS, also 
called a residual signal.  

e JRSS JRSS= −                        (7) 

Each boundary node is set to capture a series of JRSS at time N, so our data set 
contains N number of JRSS. By solving linear algebra for (6), we obtained the 
order coefficient a as follows. 
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   (9) 

where X denotes the LPJRSS  at time instant N, and Y is the value we want to 
predict. Figure 3 shows the JRSS filtered by linear prediction with three different 
boundary nodes, which are located in different positions. The accuracy of the es-
timated signal is based on how large the noise received by the boundary node, 
and where it is located. 

5. Centroid Localization Algorithm  

Centroid Localization (CL) is used to localize a sensor by averaging all nodes 
around the target node. The localization error using CL is based on the density 
and location of jammed nodes [23]. If the jammed nodes spread around the tar-
get as shown in Figure 1, the estimation position may be near to the original lo-
cation. However, if most of the jammed nodes located on one side, the estimated 
position will appear on that side. CL is described as follows: 

( ) 1 1, ,
n n

i ii i
j j

X Y
X Y

N N
= == ∑ ∑                   (10) 

where N is the number of jammed nodes.  

6. Kalman Filter 

The Kalman filter was developed by Rudolf Kalman in 1960. The Kalman filter is  
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Figure 3. JRSS filtered by LP in three different boundary nodes. 
 

a recursive estimation filter based on the linear dynamical system. It uses the 
past, and current estimate to predict and update current value. It has two steps 
to estimate the current state, prediction, and correction state [24]. We used the 
Kalman filter to estimate the jammer received signal strength, which has a large 
amount of noise caused by surrounding environment and multipath signals in 
an indoor place. The Kalman prediction and correction equations are as follows: 

( ) 1
| 1 1| 1

ˆ
k k k k kX H Z

−

− − −=                      (11) 

( ) ( ) 11 T
| 1k k k kP H R H

−−
− =                     (12) 

Prediction  

| 1 1| 1
ˆ ˆ

k k k k k k kX A X B u− − −= +                     (13) 

T
| 1 1| 1k k k k k k kP A P A Q− − −= ∗ +                    (14) 

Computing Kalman gain  

( ) 1T T
| 1 | 1k k k k k k k k kK P H H P H R

−

− −= +               (15) 

Updating filter  

( )| 1 | 1
ˆ ˆ

k k k k k k k kX X K Z H X− −= + −               (16) 

| 1 | 1k k k k k k kP P K H P− −= −                      (17) 

where kZ  is the jammer’s received signal strength received by a boundary node 
at time k, and ˆ

kX  is the Kalman filter output after k times during the process. 
In our case, the observed JRSS at each boundary node is ˆ

kX . kA  is the state 
transition model, kH  is the observation model, kQ  is the covariance of the 
process noise, kR  is the covariance of observation noise, kB  and ku  are the 
control input, and K is the Kalman filter gain. Because we measure the JRSS of 
the fixed position jammer, kA  become an identity matrix and B and u were set 
to zero. Figure 4 shows the JRSS captured by three different boundary nodes 
and filtered by the Kalman filter. Each anchor node was located at a different 
distance and received the JRSS with varying amounts of noise. 
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Figure 4. JRSS filtered by KF in three different boundary nodes. 

7. Position Calculation  

Computing jammer coordinates directly using captured JRSS resulted in the 
wrong position. In this section, we localize a jammer in three different methods: 
the Kalman filter, linear prediction, and centroid localization algorithm. To 
eliminate noise from the JRSS effected by surrounding environment and ob-
stacles in an indoor place, the Kalman filter, and linear prediction come in to play. 
Moreover, centroid localization performs a position estimation by averaging all 
jammed nodes, so the noisy distance is not considered in the computation. 
However, CL is sensitive to the jammed nodes positions and a number of 
jammed nodes. In the following, we estimate the jammer distance by converting 
the JRSS captured by each node to distance using the Log-Normal Shadowing 
model (4) as follows:  

( ) ( )0

10
0

ˆ 10
j j iP d P d

n
id d

−

=                     (18) 

where ˆ
id  is the estimated distance computed at each boundary node i. The Euc-

lidean distance formula (19) is used to find the distance between the anchor and 
target, as shown in Figure 5, Where ( ),i ix y  is the known boundary node posi-
tion and ( ),j jx y  is the jammer’s unknown location. To locate a target position, 
we use the Mean Square Error (MSE). The MSE is a mathematical technique to 
solve linear equations with n unknown variables corresponding to n Equations 
(21).  

( ) ( )2 2
, 1, 2,ˆ 3, ,i i j i jx x y yd i n= − + − =            (19) 
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Figure 5. Illustrates distance estimation. There are 
four boundary nodes, five jammed nodes, and the 
jammer. The positions of the anchor are known. 
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 
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where the ( ),i ix y  the boundary node location and ( ),j jx y  is the jammer lo-
cation 

8. Simulation and Results  
8.1. Simulation Environment 

In our network model, we simulate the effect of the jamming attack in an indoor 
environment to evaluate the reliability of localizing a jammer in an area of 100 m 
× 100 m using MATLAB. The network nodes were randomly distributed with a 
transmission range of 25 m and sensing a range of 15 m. The jammer location 
was evaluated in a different situation with a transmission range of 30m and ran-
domly placed. We studied and evaluated three different algorithms including the 
Kalman filter, linear prediction, and centroid localization, and analyze the per-
formance of each model to estimate the jammer location. To investigate the im-
pact of JRSS samples acquired by boundary nodes, we compared KF to LP. LP is 
a method to predict future values and to eliminate the signal fluctuation caused 
by surrounding noise and multipath signals in our case. It estimates next value 
from a combination of past p samples, where p is system order. The main aim of 
LP is to compute LP coefficients to reduce the prediction error [25] [26]. The CL 
is utilized to evaluate the effect of jammed nodes when we estimate jammer lo-
cation with different scenario compared to KF. In the experiment, we fixed the 
jammer location and changed the JRSS input of KF and LP. Moreover, to eva-
luate the robustness of CL, we placed the jammer in different locations randomly 
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and changed the density of the network nodes, jammer’s transmission range and 
the nodes sensing range. For every experiment, we ran the simulation several 
times to evaluate the location accuracy affected by surrounding noise and a mul-
tipath signal. 

8.2. Results  

The mean square error (MSE) was used to evaluate the efficiency of the Kalman 
filter to locate the jammer in an indoor environment compared to linear predic-
tion and centroid localization algorithms. During the experiment run time, we 
generated different samples of jammer received signal strength (JRSS) captured 
by the boundary nodes. The jammer and the nodes are randomly placed in the 
network. The density of the network nodes differed for each runtime to evaluate 
the efficiency of localizing the jammer. For the first experiment we analyzed, the 
network density was set to 50 nodes, the nodes and jammer were deployed ran-
domly, and the jammer’s transmission range was 35m. We studied the Kalman 
filter and linear prediction by increasing the number of input to 50, 100, and 200 
samples as shown in Figure 6 case (a), (b), and (c) respectively. In Figure 7, KF 
significantly decreased the error compared to LP. For example, the mean dis-
tance error of boundary node 13 sharply reduced over the period. In case (a), KF 
 

 
Figure 6. Mean distance error for fixed jammer position, 50 nodes, and jammer transmission range is 35 m. (a) case 1, the number 
of samples input (N) to KF and LP are 50; (b) case 2, N = 100; (c) case 3, N = 200. 
 

 
Figure 7. (x, y) Jammer coordinates error when fixed jammer location and change samples input of KF, LP, and CL to 50, 100 and 
200. 
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computed 50 JRSSs and 200 JRSSs. The distance error between boundary node 
13 and the jammer was 0.4 at 50 samples input and 0.02 at 200 JRSSs. We can see 
that KF has a better performance to reduce the distance error compared to LP. 
However, using LP and CL, the X and Y jammer coordinate error remained 
steady, as shown in Figure 7(a) and Figure 7(b). 

Finally, we analyzed the impact of the jammer localization performance of the 
algorithms. Figure 8 shows the target coordinates error affected by varying the 
node density and jammer location. We placed the jammer in three different po-
sitions and then decreased the number of the node to 20 sensors. We can see 
that, because the node density does not contribute to the KF and LP output, the 
KF performance is better compared to LP. However, CL is based on the number 
of jammed nodes while the jammer location changed from one place to another. 
Figures 9(a)-(c) shows the influence of the number and location of jammed 
nodes on CL. For example, in case (a) three jammed nodes were placed inside 
the jammer’s transmission range, and the location error is significant compared 
to case (b) and (c). In case (c), 8 jammed nodes contributed in CL algorithms, 
which gives a high accuracy of detecting the jammer location compared to LP. 
Table 1 compares different boundary nodes and the performance of these three 
algorithms: KF, LP, and CL. Table 2 shows the estimated location in three tech-
niques and the Mean Squared Error. 
 
Table 1. Comparison of JRSS and the estimated distance between KF, LP, and CL with 11 
jammed nodes and eight boundary nodes. 

Boundary 
node ID 

Original 
JRSS 

Noisy 
JRSS 

KF JRSS LP JRSS 
Original  

Dist. 
(m) 

Est. 
Dist. KF 

(m) 

Est. 
Dist.  

LP (m) 

MSE 
KF 
(m) 

MSE 
LP 
(m) 

4 −70.90 −70.69 −70.93 −70.53 35.09 35.21 33.64 0.08 1.02 

5 −70.16 −68.93 −70.21 −70.30 32.21 32.42 32.73 0.14 0.37 

16 −69.60 −68.62 −69.53 −68.96 30.20 29.99 28.07 0.15 1.50 

34 −71.14 −70.57 −71.25 −71.12 36.06 36.54 35.97 0.33 0.06 

38 −69.87 −68.63 −69.82 −69.67 31.16 30.98 30.45 0.12 0.50 

44 −70.84 −70.86 −70.90 −70.96 34.84 35.09 35.35 0.17 0.35 

45 −70.36 −69.58 −70.24 −70.46 32.99 32.52 33.37 0.33 0.26 

49 −71.45 −71.38 −71.40 −72.02 37.40 37.18 39.92 0.15 1.78 

 
Table 2. Mean (x, y) coordinates error with 11 jammed nodes and eight boundary nodes. 

Algorithm x y x̂  ŷ  
x-axis 

MSE (m) 
y-axis 

MSE (m) 

KF 

63.34 18.47 

63.61 18.64 0.19 0.11 

LP 54.72 27.18 6.09 6.15 

CL 67.19 19.62 2.72 0.81 
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Figure 8. Illustrates the performance of KL, LP, and CL when jammer location randomly deployed in three different positions, 
and the density of node is 20 nodes. 
 

 
Figure 9. Estimated jammer position in three different scenarios.  

9. Conclusion  

In this paper, we estimate the jammer position using KF, and we compared its 
performance with similar algorithms, such as LP and CL. The mean distance er-
ror is very small in KF compared to LP. The CL shows better performance than 
LP when the jammed nodes distributed around the jammer. LP remained steady 
over the changes in the samples of JRSS, the density of the networks, and the lo-
cation of the jammer. The KF performed better when the vast samples were tak-
en to KF as an input and can detect the target with high accuracy compared to 
LP and CL. 
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