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ABSTRACT 

In this paper we present the design and prototyping of an arithmetic processor based on reconfigurable technology, 
whose purpose is to determine in a parallel manner the quality of the solution in a radio network design optimization 
problem. This problem consists in the search for an optimal set of locations in which to place radio antennas in order to 
obtain the maximum possible coverage, for a given terrain and antenna characteristics. The original computational 
contribution of this work is to use programmable logic devices to avoid the high cost of computing the evolutionary 
algorithms required to tackle this optimization problem. This is achieved by means of reconfigurable processors work-
ing in parallel. On the basis of the results obtained from the prototype, it may be considered a parallel architecture 
capable of achieving a great acceleration in the calculations. 
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1. Introduction 

The Radio Network Design Problem (RND) originated in 
the context of wireless communication technologies. An 
efficient design of a radio transmitting network is a rele-
vant issue due to the continuous increase in the user 
population of the radio-communications-associated ser-
vices which demand more efficient coverage in wide 
geographic areas. The RND problem is an optimization 
problem belonging to NP-Hard class: there are a great 
number of possible solutions, prohibiting the determina-
tion of the optimal one through their sequential evalua-
tion. That is why several optimization algorithms are 
normally used instead. 

In short, the RND problem consists of minimizing the 
number of transmitting base stations (referred to from 
here on as antennas) and establishing their optimal loca-
tions, with the goal of obtaining the maximum coverage 
area and providing services to a larger number of termi-
nals. 

An antenna transmits a radio signal according to its 
type of coverage. In this work we consider propagation 
models of simplified waves such as the omni-directional 
and squared, with variable radius. In addition we have 
defined a digital model of the ground, in which the area  

is divided into sectors and locations that act as nuclear 
units of information. Thus, the area consists of a rectan-
gular network, where each coordinate (x, y) represents a 
possible antenna location. The assumption is that there is 
a fixed amount of valid locations to place antennas. 

Figure 1 presents a simple example of the problem, 
wherein we search for a set of antennas which can reach 
the maximum coverage area in a terrain of 257 × 257 
points, with 349 predefined valid locations for antennas 
with omni-directional coverage of 35-point radius. De-
pending on the choice of the antenna locations, the re-
sulting coverage can be completely different. 

If some antennas are close enough to one another, their 
coverage areas overlap, so the locations inside these ar-
eas can have different degrees of coverage. For this rea-
son, the information stored in each position of the net-
work must reflect the following data: 
 Degree of coverage. 
 Whether it is a predefined position available for the 

placement of an antenna. 
 Whether or not an antenna is placed there. 
 Antenna propagation type (square or omni-direc-

tional). 
A fitness function (F) can be used to measure the quality  
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(a)                           (b) 

Figure 1. (a) 61% coverage, (b) 74% coverage. 
 
of a set of antennas placed in any given manner in the 
network. This fitness function can be obtained from the 
coverage rate and the number of antennas [1,2], as shown 
in Equation (1): 

2Coverage

Antennas
F                 (1) 

In a real study of this problem we have to determine in 
the first place the set of available localizations for the 
antennas, excluding those where they cannot be placed 
(public areas, certain roofs, rivers, etc.). Afterwards the 
goal is to achieve the maximum level of coverage for the 
smallest number of antennas. This is a NP-Hard optimi-
zation problem for which some evolutionary algorithms 
(EA) have been successfully tested [3,4]. 

One important consideration in evolutionary comput-
ing is the speed with which the optimal solution is 
achieved, because of the high computational cost even 
when it is running on a high-performance machine. Tak-
ing into account that many optimization problems can be 
tackled by parallel methodologies [5,6], we have devel-
oped a specific-purpose processor that runs a fitness 
function in a stand-alone way, so as to implement a set of 
fitness processors working in parallel on the same chip, 
using reconfigurable hardware. By this means the com-
puter, besides monitoring and controlling the EA, can be 
used for any other task with the whole potential of its 
resources, because it is released from the EA computa-
tion effort. The combination of parallelism and hardware 
implementation allows an increase in the speed of the 
system as compared with an algorithm implemented by 
software and performed on a general purpose computer, 
as explained in Figure 2. 

The radio network design quality is here intended for 
the best deployment of antennas on a determined terrain, 
minimizing the number of base station transmitters and 
maximizing the covered area by means of evolutionary 
algorithms, where the quality of the solution is given by 
the fitness function. Nevertheless, many other works 
have considered using network simulators to measure the 
radio network design quality. Two basic examples are 

quickly commented representing this kind of studies. 
Ivanov et al. [7] present the validation of one wireless 
network model built with ns-2 done by comparing the 
network characteristics of a simulated, an emulated, and 
a real wireless network; and Laiho et al. [8] use different 
simulators (static prediction and dynamic analysis) in 
order to improve the capacity and Quality of Service of 
the radio network. 

2. Fitness Processor Prototype 

The reconfiguration of circuitry at runtime to suit the 
application at hand has created a promising paradigm of 
computing that blurs traditional frontiers between soft-
ware and hardware. This powerful computing paradigm, 
named reconfigurable computing (RC) [9,10], is based 
on the use of programmable logic devices, mainly field 
programmable gate arrays (FPGAs) [11] incorporated in 
board-level systems. FPGAs have the benefits of hard-
ware speed and software flexibility, hence being a good 
option for many real scientific and engineering applica-
tions [12]. 

The interest of a hardware solution based on FPGAs is 
to determine whether it is profitable to run an evolution-
ary algorithm accelerating some of its calculations. Since 
the biggest resource consumption comes from the arith-
metical computation of the fitness, we have designed and 
implemented an arithmetical processor to relieve the 
main processor from this task, introducing the largest 
possible degree of parallelism. This way, the processor 
here described is not designed for simulating purposes, 
but for accelerating the evaluation of the quality of a de-
termined radio deployment solution, inside a wide real 
radio network design framework. The prototype designed 
carries out a coverage evaluation for simple configura-
tions of the problem. The aim was to evaluate its per-
formance and to acquire knowledge and experience in 
the architecture. The architecture design is conditioned 
by the FPGA characteristics and the prototyping board. 
For this reason we opted for several boards (Digilent 
XUPV2P, Enterpoint Broaddown2 and PLDA PCIX-
SYSV5) with FPGAs of different technologies, as shown 
in Figure 3. The characteristics of the FPGAs on these 
boards in relation to the general purpose processors are 
listed in Table 1. 

The problem used for this fitness processor has the 
following characteristics: 
 287 × 287-point network. 
 349 allowed positions (predefined). 
 49 antennas. 

This processor allows configuration of the antenna type 
(square-shaped or omni-directional coverage) and its 
maximum propagation radius. To select any configura-
tio , it is enough to modify the value of certain registers  n 
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Figure 2. When computing an EA, the fitness of all individuals in a population must be evaluated. We can take advantage of 
FPGAs where (in contrast with CPUs) parallel computation of the fitness can be realized. 
 

 

Figure 3. Prototyping boards used in this work. 
 
Table 1. Hardware resources used in this work, arranged by reconfigurable versus general-purpose hardware with similar 
technology in order to make an effective comparison of results. 

Technology Reconfigurable computing CPU 

CMOS Year 
FPGA device 

[www.xilinx.com] 
Board Processor Machine 

130 nm 2002 
Xilinx Virtex2 Pro 

xc2vp30 
Digilent XUPV2P 

[www.digilentinc.com] 
Intel P4 
2.4 GHz 

1 GB 
RAM 

90 nm 2003 
Xilinx Spartan3 

xc3s2000 
Enterpoint Broaddown2 
[www.enterpoint.co.uk] 

Intel P4 
3 GHz 

1.5 GB 
RAM 

65 nm 2006 
Xilinx Virtex5 

xc5vlx330 
PLDA PCIXSYSV5 

[www.plda.com] 
Intel Core2 

2.2 GHz 
2 GB 
RAM 
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through board switches. In order to measure the board 
execution time and determine its efficiency, the proces-
sor carries out 1000 fitness evaluations in a sequential 
manner. Then the average time of an evaluation is ob-
tained. 

Figure 4 presents the top-level architecture of the 
prototyped processor. The processor uses an on-chip 
memory where the characteristics of the terrain are stored, 
so each network point is linked to a 2-byte memory word 
in a 82,369 address map to represent the 287 × 287 net-
work. Each memory word stores the information as 
shown in Figure 5. 

The controller is the most important unit in the proc-
essor. It was programmed in Handel-C [13] and compiled 
to VHDL. This controller processes the main operations 
of the coverage calculation, with the exception of the 
floating-point arithmetic operations, which are carried 
out by other units. In addition, the controller manages the 
initialization, evolution and ending of the process, the 
input/output communication and the accomplishment of 
the memory writes and reads. 

The mathematical operations for the omni-directional 
coverage and for the fitness function require float-
ing-point arithmetic, such as addition, multiplication, 
power and square root. For this purpose we have de-
signed two co-processors that carry out the necessary 
operations. The results from these floating-point 
co-processors are sent to the controller, which uses them 
for the final coverage processing. 

The fitness processor was implemented using the syn-
thesis tool Xilinx ISE 9.1i with the default options for 
synthesis and implementation steps. The results are 
shown in Table 2. The occupation of the area (number of 
occupied FPGA slices) gives us the basis on which to 
calculate the maximum number of fitness processors able 
to work in parallel in the same FPGA device. Also, the 
maximum reported operation frequency is used to select 
the proper frequency for the on-board oscillator. After 
generating and loading the configuration bit stream onto 
the FPGA, the processor gave the results with an elapsed 
time measured using the existing displays on the board. 
The results obtained (fitness and coverage) were stored  

 

 

Figure 4. Processor RND fitness processor diagram. 
 

 

Figure 5. A two-bytes memory word stores the needed data of a point on the map: coverage degree, availability and location. 
 

Table 2. Information related to the synthesis of the fitness processor. 

FPGA device 
Xilinx Virtex2 Pro 

xc2vp30-7ff896 
Xilinx Spartan3 2k 
xc5vlx330-1ff1760 

Xilinx Virtex5 LT330 
xc5vlx330-1ff1760 

Max. frequency allowed 43 MHz 27 MHz 56 MHz 

On-board oscillator freq. 40 MHz 25 MHz 50 MHz 

Occupied resources 35% 24% 3% 

Max. number of parallel 
fitness processors 

2 4 33 
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in the memory so they could be read in order to validate 
their values. The processor guarantees accurate measures 
because it was designed following the IEEE 754 standard 
for the floating-point operations and the VHDL P1076 
standard for the hardware description language. This 
accuracy was validated examining the fitness and cover-
age values stored in the on-chip memory. 

3. Performance Study 

We considered two additional terrain maps to analyze, 
that require different computational efforts: 
 Map “mcity”. This concerns a real map, based on the 

city of Málaga, in Spain (Figure 6), where 1000 pre-
defined localizations were determined for the placing 
of 100 antennas. The territory, of 4,25 km × 6,4 km, 
was codified into a network of 300 × 450 cells 
(135,000 points in the grid), where each one repre-
sents a terrain of approximately 15 m × 15 m. Taking 
into account the presence of the sea, mountains, pub-
lic areas and other prohibited zones, the maximum 
possible coverage is 95.52%. 

 Map “ccity”. This concerns a theoretical case where 
the computational cost is the highest: 724 × 724 grid 
points, with 2000 predefined available localizations 
for placing 300 antennas. 

It is important to compare these hardware results with 
the ones obtained from custom software running on a 
general-purpose processor, in order to analyze the effi-
ciency of the FPGA processor [14,15]. (We mention here 
that we do not know of any other FPGA- or ASIC-based 
solution for the RND problem, with which to make a 
performance comparison). Thus, we have developed 
software (optimized to reach the maximum possible 
speed) for implementing the same operations as were 
performed on the FPGA. This software was run on dif-
ferent platforms (see Table 1) in order to make effective 
comparisons with the FPGAs of similar technologies and 
ages. 

The result of the time analysis for both implementa-
tions (hardware and software) establishes the real per-
formance and the effectiveness of the hardware imple-
mentation. In Figure 7 the summary of the time analysis 
is shown, for the test map (from this point onwards, all 
the results correspond to this case as representative of the 
different maps). Analyzing the graph we can see that the 
software solution is slightly better, due mainly by one 
reason: the FPGA processor design does not enclose a 
high level of parallelism in its arithmetical operations. 

When considering the case of more than one fitness 
processor running in parallel, we calculate the maximum 
number of processors able to fit into the FPGA device, 
according to the reported occupied resources during the 
synthesis phase. In this case, in order to make a realistic  

 

Figure 6. Map of high computational cost, codified with a 
300 × 450 grid where 100 antennas must be placed on a 
predefined set of 1000 available locations. The shadowed 
areas show the maximum possible coverage. 
 
comparison, the software version executes the 1000 it-
erations of the fitness function multiplied by the number 
of parallel processors in the FPGA device. The results of 
the new time analysis are shown in Figure 8. Analyzing 
the graphs we can see that the hardware solution is more 
advantageous in all the cases, especially for the newest 
FPGA. 

4. Increasing the Performance 

An increase in processor performance can be achieved by 
increasing the clock frequency of the overall operation of 
the circuit. This requires a set of timing closure tech-
niques that include efficient design, synthesis adjust-
ments, implementation constraints, etc. Using these tech-
niques we can get a greater frequency but only by a small 
percentage. 

The most effective way to increase significantly the 
performance of the hardware system is to distribute many 
parallel fitness processors in more than one FPGA device. 
The boards containing the FPGAs could be arranged in a 
cluster (Figure 9 shows two examples), using a mas-
ter-slave based control system. Pursuing this idea, the 
performance increases in a linear manner. 

For example, if we consider only two prototyping 
boards each containing a Xilinx Virtex5 LT330 device, 
we can put to work 33 processors in each one, so the 
whole system could have up to 66 fitness processors run-
ning in parallel. The computation times for the 1,000 
fitness evaluations were 28 seconds for the fitness proc-
essor, and 21.78 seconds for the contemporary computer. 
The 66 fitness processors running in parallel spend the 
same 28 seconds, but the computer needs 21.78 seconds 
multiplied by 66, in other words, 24 minutes! We under-
stand as performance the inverted computing time [15]. 
To compare the performance between FPGAs and CPUs,   
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Figure 7. Computation times of 1000 evaluations of the fitness processor for the test map, obtained from different FPGA de-
vices and general purpose computers. 
 

 

Figure 8. Computation times of some fitness processors working in parallel inside the FPGA, where each processor performs 
1,000 fitness evaluations; the computer emulates the parallel calculus by multiplying the time for 1000 fitness evaluations by 
the specified number of reconfigurable processors. 
 
we say that the FPGA is TCPU/TFPGA times faster than 
the CPU if TFPGA < TCPU. According to this definition, 
Figure 10 shows the large time improvement achieved in 
such clusters, using only two boards with only one FPGA 
device each board. The more boards we use, the more 
time improvement we will obtain, giving us unquestion-
able gains. 

Taking into account the very low power consumption 
of the FPGA devices (less than 1 watt) in comparison to 
the general-purpose processors (around 100 watts), a 

FPGA cluster solution emerges as a very low-cost and 
very high-performance computing platform for running 
fitness processors in intensive computing scenarios. 

5. Conclusions and Future Works 

The interest of a hardware solution based on FPGAs to 
solve RND problems lies in the possibility of accelerat-
ing the calculations by means of the parallel processors 
working inside FPGA devices and the possibility of 
freeing computer resources, which otherwise would be  
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Figure 9. Two examples of clusters based on FPGA to compute parallel processors distributed in several devices. 
 

 

Figure 10. Time improvement; in other words, how much faster the FPGA cluster is compared to the computer. 
 
dedicated almost exclusively to computing the solution to 
the problem over a great period of time and with a high 
cost in power consumption. 

For this reason, the possibility of doing fitness proc-
essing by means of a specifically designed reconfigurable 
processor for evolutionary algorithms is sufficiently in-
teresting to merit in-depth exploration of this computa-
tional alternative, which can offer better performance 
results clearly surpassing those of the computer. 

One interesting future research line is to include the 
processor into an environment useful for designing real 

radio network deployments, where a practical combina-
tion of network simulators (such as NS-2 [16], to define 
cases of study) and evolutionary algorithms (to find their 
better solutions) would give the researchers the necessary 
tools for their works. 
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