
Wireless Engineering and Technology, 2011, 2, 204-211
doi:10.4236/wet.2011.23028 Published Online July 2011 (http://www.SciRP.org/journal/wet)

Copyright © 2011 SciRes. WET

Processor for Measuring Radio Network Design
Quality

Juan A. Gomez-Pulido1, Silvio Priem Mendes2, Miguel A. Vega-Rodriguez1, Paulo J. Cordeiro2,
Juan M. Sanchez-Perez1

1Department of Technologies of Computers and Communications, University of Extremadura, Polytechnic School, Cáceres, Spain;
2School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal.
Email: jangomez@unex.es

Received October 30th, 2010, Revised December 27th, 2010; Accepted February 9th, 2011.

ABSTRACT

In this paper we present the design and prototyping of an arithmetic processor based on reconfigurable technology,
whose purpose is to determine in a parallel manner the quality of the solution in a radio network design optimization
problem. This problem consists in the search for an optimal set of locations in which to place radio antennas in order to
obtain the maximum possible coverage, for a given terrain and antenna characteristics. The original computational
contribution of this work is to use programmable logic devices to avoid the high cost of computing the evolutionary
algorithms required to tackle this optimization problem. This is achieved by means of reconfigurable processors work-
ing in parallel. On the basis of the results obtained from the prototype, it may be considered a parallel architecture
capable of achieving a great acceleration in the calculations.

Keywords: Radio Networks, Reconfigurable Computing, Optimization, Parallelism

1. Introduction

The Radio Network Design Problem (RND) originated in
the context of wireless communication technologies. An
efficient design of a radio transmitting network is a rele-
vant issue due to the continuous increase in the user
population of the radio-communications-associated ser-
vices which demand more efficient coverage in wide
geographic areas. The RND problem is an optimization
problem belonging to NP-Hard class: there are a great
number of possible solutions, prohibiting the determina-
tion of the optimal one through their sequential evalua-
tion. That is why several optimization algorithms are
normally used instead.

In short, the RND problem consists of minimizing the
number of transmitting base stations (referred to from
here on as antennas) and establishing their optimal loca-
tions, with the goal of obtaining the maximum coverage
area and providing services to a larger number of termi-
nals.

An antenna transmits a radio signal according to its
type of coverage. In this work we consider propagation
models of simplified waves such as the omni-directional
and squared, with variable radius. In addition we have
defined a digital model of the ground, in which the area

is divided into sectors and locations that act as nuclear
units of information. Thus, the area consists of a rectan-
gular network, where each coordinate (x, y) represents a
possible antenna location. The assumption is that there is
a fixed amount of valid locations to place antennas.

Figure 1 presents a simple example of the problem,
wherein we search for a set of antennas which can reach
the maximum coverage area in a terrain of 257 × 257
points, with 349 predefined valid locations for antennas
with omni-directional coverage of 35-point radius. De-
pending on the choice of the antenna locations, the re-
sulting coverage can be completely different.

If some antennas are close enough to one another, their
coverage areas overlap, so the locations inside these ar-
eas can have different degrees of coverage. For this rea-
son, the information stored in each position of the net-
work must reflect the following data:
 Degree of coverage.
 Whether it is a predefined position available for the

placement of an antenna.
 Whether or not an antenna is placed there.
 Antenna propagation type (square or omni-direc-

tional).
A fitness function (F) can be used to measure the quality

Processor for Measuring Radio Network Design Quality 205

(a) (b)

Figure 1. (a) 61% coverage, (b) 74% coverage.

of a set of antennas placed in any given manner in the
network. This fitness function can be obtained from the
coverage rate and the number of antennas [1,2], as shown
in Equation (1):

2Coverage

Antennas
F (1)

In a real study of this problem we have to determine in
the first place the set of available localizations for the
antennas, excluding those where they cannot be placed
(public areas, certain roofs, rivers, etc.). Afterwards the
goal is to achieve the maximum level of coverage for the
smallest number of antennas. This is a NP-Hard optimi-
zation problem for which some evolutionary algorithms
(EA) have been successfully tested [3,4].

One important consideration in evolutionary comput-
ing is the speed with which the optimal solution is
achieved, because of the high computational cost even
when it is running on a high-performance machine. Tak-
ing into account that many optimization problems can be
tackled by parallel methodologies [5,6], we have devel-
oped a specific-purpose processor that runs a fitness
function in a stand-alone way, so as to implement a set of
fitness processors working in parallel on the same chip,
using reconfigurable hardware. By this means the com-
puter, besides monitoring and controlling the EA, can be
used for any other task with the whole potential of its
resources, because it is released from the EA computa-
tion effort. The combination of parallelism and hardware
implementation allows an increase in the speed of the
system as compared with an algorithm implemented by
software and performed on a general purpose computer,
as explained in Figure 2.

The radio network design quality is here intended for
the best deployment of antennas on a determined terrain,
minimizing the number of base station transmitters and
maximizing the covered area by means of evolutionary
algorithms, where the quality of the solution is given by
the fitness function. Nevertheless, many other works
have considered using network simulators to measure the
radio network design quality. Two basic examples are

quickly commented representing this kind of studies.
Ivanov et al. [7] present the validation of one wireless
network model built with ns-2 done by comparing the
network characteristics of a simulated, an emulated, and
a real wireless network; and Laiho et al. [8] use different
simulators (static prediction and dynamic analysis) in
order to improve the capacity and Quality of Service of
the radio network.

2. Fitness Processor Prototype

The reconfiguration of circuitry at runtime to suit the
application at hand has created a promising paradigm of
computing that blurs traditional frontiers between soft-
ware and hardware. This powerful computing paradigm,
named reconfigurable computing (RC) [9,10], is based
on the use of programmable logic devices, mainly field
programmable gate arrays (FPGAs) [11] incorporated in
board-level systems. FPGAs have the benefits of hard-
ware speed and software flexibility, hence being a good
option for many real scientific and engineering applica-
tions [12].

The interest of a hardware solution based on FPGAs is
to determine whether it is profitable to run an evolution-
ary algorithm accelerating some of its calculations. Since
the biggest resource consumption comes from the arith-
metical computation of the fitness, we have designed and
implemented an arithmetical processor to relieve the
main processor from this task, introducing the largest
possible degree of parallelism. This way, the processor
here described is not designed for simulating purposes,
but for accelerating the evaluation of the quality of a de-
termined radio deployment solution, inside a wide real
radio network design framework. The prototype designed
carries out a coverage evaluation for simple configura-
tions of the problem. The aim was to evaluate its per-
formance and to acquire knowledge and experience in
the architecture. The architecture design is conditioned
by the FPGA characteristics and the prototyping board.
For this reason we opted for several boards (Digilent
XUPV2P, Enterpoint Broaddown2 and PLDA PCIX-
SYSV5) with FPGAs of different technologies, as shown
in Figure 3. The characteristics of the FPGAs on these
boards in relation to the general purpose processors are
listed in Table 1.

The problem used for this fitness processor has the
following characteristics:
 287 × 287-point network.
 349 allowed positions (predefined).
 49 antennas.

This processor allows configuration of the antenna type
(square-shaped or omni-directional coverage) and its
maximum propagation radius. To select any configura-
tio , it is enough to modify the value of certain registers n

Copyright © 2011 SciRes. WET

Processor for Measuring Radio Network Design Quality

Copyright © 2011 SciRes. WET

206

Figure 2. When computing an EA, the fitness of all individuals in a population must be evaluated. We can take advantage of
FPGAs where (in contrast with CPUs) parallel computation of the fitness can be realized.

Figure 3. Prototyping boards used in this work.

Table 1. Hardware resources used in this work, arranged by reconfigurable versus general-purpose hardware with similar
technology in order to make an effective comparison of results.

Technology Reconfigurable computing CPU

CMOS Year
FPGA device

[www.xilinx.com]
Board Processor Machine

130 nm 2002
Xilinx Virtex2 Pro

xc2vp30
Digilent XUPV2P

[www.digilentinc.com]
Intel P4
2.4 GHz

1 GB
RAM

90 nm 2003
Xilinx Spartan3

xc3s2000
Enterpoint Broaddown2
[www.enterpoint.co.uk]

Intel P4
3 GHz

1.5 GB
RAM

65 nm 2006
Xilinx Virtex5

xc5vlx330
PLDA PCIXSYSV5

[www.plda.com]
Intel Core2

2.2 GHz
2 GB
RAM

Processor for Measuring Radio Network Design Quality 207

through board switches. In order to measure the board
execution time and determine its efficiency, the proces-
sor carries out 1000 fitness evaluations in a sequential
manner. Then the average time of an evaluation is ob-
tained.

Figure 4 presents the top-level architecture of the
prototyped processor. The processor uses an on-chip
memory where the characteristics of the terrain are stored,
so each network point is linked to a 2-byte memory word
in a 82,369 address map to represent the 287 × 287 net-
work. Each memory word stores the information as
shown in Figure 5.

The controller is the most important unit in the proc-
essor. It was programmed in Handel-C [13] and compiled
to VHDL. This controller processes the main operations
of the coverage calculation, with the exception of the
floating-point arithmetic operations, which are carried
out by other units. In addition, the controller manages the
initialization, evolution and ending of the process, the
input/output communication and the accomplishment of
the memory writes and reads.

The mathematical operations for the omni-directional
coverage and for the fitness function require float-
ing-point arithmetic, such as addition, multiplication,
power and square root. For this purpose we have de-
signed two co-processors that carry out the necessary
operations. The results from these floating-point
co-processors are sent to the controller, which uses them
for the final coverage processing.

The fitness processor was implemented using the syn-
thesis tool Xilinx ISE 9.1i with the default options for
synthesis and implementation steps. The results are
shown in Table 2. The occupation of the area (number of
occupied FPGA slices) gives us the basis on which to
calculate the maximum number of fitness processors able
to work in parallel in the same FPGA device. Also, the
maximum reported operation frequency is used to select
the proper frequency for the on-board oscillator. After
generating and loading the configuration bit stream onto
the FPGA, the processor gave the results with an elapsed
time measured using the existing displays on the board.
The results obtained (fitness and coverage) were stored

Figure 4. Processor RND fitness processor diagram.

Figure 5. A two-bytes memory word stores the needed data of a point on the map: coverage degree, availability and location.

Table 2. Information related to the synthesis of the fitness processor.

FPGA device
Xilinx Virtex2 Pro

xc2vp30-7ff896
Xilinx Spartan3 2k
xc5vlx330-1ff1760

Xilinx Virtex5 LT330
xc5vlx330-1ff1760

Max. frequency allowed 43 MHz 27 MHz 56 MHz

On-board oscillator freq. 40 MHz 25 MHz 50 MHz

Occupied resources 35% 24% 3%

Max. number of parallel
fitness processors

2 4 33

Copyright © 2011 SciRes. WET

Processor for Measuring Radio Network Design Quality 208

in the memory so they could be read in order to validate
their values. The processor guarantees accurate measures
because it was designed following the IEEE 754 standard
for the floating-point operations and the VHDL P1076
standard for the hardware description language. This
accuracy was validated examining the fitness and cover-
age values stored in the on-chip memory.

3. Performance Study

We considered two additional terrain maps to analyze,
that require different computational efforts:
 Map “mcity”. This concerns a real map, based on the

city of Málaga, in Spain (Figure 6), where 1000 pre-
defined localizations were determined for the placing
of 100 antennas. The territory, of 4,25 km × 6,4 km,
was codified into a network of 300 × 450 cells
(135,000 points in the grid), where each one repre-
sents a terrain of approximately 15 m × 15 m. Taking
into account the presence of the sea, mountains, pub-
lic areas and other prohibited zones, the maximum
possible coverage is 95.52%.

 Map “ccity”. This concerns a theoretical case where
the computational cost is the highest: 724 × 724 grid
points, with 2000 predefined available localizations
for placing 300 antennas.

It is important to compare these hardware results with
the ones obtained from custom software running on a
general-purpose processor, in order to analyze the effi-
ciency of the FPGA processor [14,15]. (We mention here
that we do not know of any other FPGA- or ASIC-based
solution for the RND problem, with which to make a
performance comparison). Thus, we have developed
software (optimized to reach the maximum possible
speed) for implementing the same operations as were
performed on the FPGA. This software was run on dif-
ferent platforms (see Table 1) in order to make effective
comparisons with the FPGAs of similar technologies and
ages.

The result of the time analysis for both implementa-
tions (hardware and software) establishes the real per-
formance and the effectiveness of the hardware imple-
mentation. In Figure 7 the summary of the time analysis
is shown, for the test map (from this point onwards, all
the results correspond to this case as representative of the
different maps). Analyzing the graph we can see that the
software solution is slightly better, due mainly by one
reason: the FPGA processor design does not enclose a
high level of parallelism in its arithmetical operations.

When considering the case of more than one fitness
processor running in parallel, we calculate the maximum
number of processors able to fit into the FPGA device,
according to the reported occupied resources during the
synthesis phase. In this case, in order to make a realistic

Figure 6. Map of high computational cost, codified with a
300 × 450 grid where 100 antennas must be placed on a
predefined set of 1000 available locations. The shadowed
areas show the maximum possible coverage.

comparison, the software version executes the 1000 it-
erations of the fitness function multiplied by the number
of parallel processors in the FPGA device. The results of
the new time analysis are shown in Figure 8. Analyzing
the graphs we can see that the hardware solution is more
advantageous in all the cases, especially for the newest
FPGA.

4. Increasing the Performance

An increase in processor performance can be achieved by
increasing the clock frequency of the overall operation of
the circuit. This requires a set of timing closure tech-
niques that include efficient design, synthesis adjust-
ments, implementation constraints, etc. Using these tech-
niques we can get a greater frequency but only by a small
percentage.

The most effective way to increase significantly the
performance of the hardware system is to distribute many
parallel fitness processors in more than one FPGA device.
The boards containing the FPGAs could be arranged in a
cluster (Figure 9 shows two examples), using a mas-
ter-slave based control system. Pursuing this idea, the
performance increases in a linear manner.

For example, if we consider only two prototyping
boards each containing a Xilinx Virtex5 LT330 device,
we can put to work 33 processors in each one, so the
whole system could have up to 66 fitness processors run-
ning in parallel. The computation times for the 1,000
fitness evaluations were 28 seconds for the fitness proc-
essor, and 21.78 seconds for the contemporary computer.
The 66 fitness processors running in parallel spend the
same 28 seconds, but the computer needs 21.78 seconds
multiplied by 66, in other words, 24 minutes! We under-
stand as performance the inverted computing time [15].
To compare the performance between FPGAs and CPUs,

Copyright © 2011 SciRes. WET

Processor for Measuring Radio Network Design Quality 209

Figure 7. Computation times of 1000 evaluations of the fitness processor for the test map, obtained from different FPGA de-
vices and general purpose computers.

Figure 8. Computation times of some fitness processors working in parallel inside the FPGA, where each processor performs
1,000 fitness evaluations; the computer emulates the parallel calculus by multiplying the time for 1000 fitness evaluations by
the specified number of reconfigurable processors.

we say that the FPGA is TCPU/TFPGA times faster than
the CPU if TFPGA < TCPU. According to this definition,
Figure 10 shows the large time improvement achieved in
such clusters, using only two boards with only one FPGA
device each board. The more boards we use, the more
time improvement we will obtain, giving us unquestion-
able gains.

Taking into account the very low power consumption
of the FPGA devices (less than 1 watt) in comparison to
the general-purpose processors (around 100 watts), a

FPGA cluster solution emerges as a very low-cost and
very high-performance computing platform for running
fitness processors in intensive computing scenarios.

5. Conclusions and Future Works

The interest of a hardware solution based on FPGAs to
solve RND problems lies in the possibility of accelerat-
ing the calculations by means of the parallel processors
working inside FPGA devices and the possibility of
freeing computer resources, which otherwise would be

Copyright © 2011 SciRes. WET

Processor for Measuring Radio Network Design Quality 210

Figure 9. Two examples of clusters based on FPGA to compute parallel processors distributed in several devices.

Figure 10. Time improvement; in other words, how much faster the FPGA cluster is compared to the computer.

dedicated almost exclusively to computing the solution to
the problem over a great period of time and with a high
cost in power consumption.

For this reason, the possibility of doing fitness proc-
essing by means of a specifically designed reconfigurable
processor for evolutionary algorithms is sufficiently in-
teresting to merit in-depth exploration of this computa-
tional alternative, which can offer better performance
results clearly surpassing those of the computer.

One interesting future research line is to include the
processor into an environment useful for designing real

radio network deployments, where a practical combina-
tion of network simulators (such as NS-2 [16], to define
cases of study) and evolutionary algorithms (to find their
better solutions) would give the researchers the necessary
tools for their works.

6. Acknowledgements

This work was partially funded by the Spanish Ministry
of Science and Innovation and ERDF (the European Re-
gional Development Fund), under the contract TIN2008-
06491-C04-04 (the MSTAR project).

Copyright © 2011 SciRes. WET

Processor for Measuring Radio Network Design Quality 211

REFERENCES
[1] P. Calegari, F. Guidec, P. Kuonen and D. Kobler, “Paral-

lel Island-Based Genetic Algorithm for Radio Network
Design,” Journal of Parallel and Distributed Computing,
Vol. 47, No. 1, 1997, pp. 86-90.
doi:10.1006/jpdc.1997.1397

[2] P. Calegari, F. Guidec and P. Kuonen, “Combinatorial
Optimization Algorithms for Radio Network Planning,”
Journal of Theoretical Computer Science, Vol. 263, No.
1-2, 2001, pp. 235-265.
doi:10.1016/S0304-3975(00)00245-0

[3] E. Alba, “Evolutionary Algorithms for Optimal Place-
ment of Antennae in Radio Network Design,” Proceed-
ings of the 18th IEEE International Parallel and Distrib-
uted Processing Symposium, 26-30 April 2004, pp. 168-
174.

[4] S. Khuri and T. Chiu, “Heuristic Algorithms for the Ter-
minal Assignment Problem,” Proceedings of ACM Sym-
posium on Applied Computing, New York, 1997, pp. 245-
251. doi:10.1145/331697.331748

[5] E. Alba, “Parallel Metaheuristics: A New Class of Algo-
rithms,” Wiley, New York, 2005.
doi:10.1002/0471739383

[6] E. Alba and F. Chicano, “On the Behaviour of Parallel
Genetic Algorithms for Optimal Placement of Antennae
in Telecommunications,” International Journal of Foun-
dations of Computer Science, Vol. 16, No. 2, 2005, pp.
86-90.

[7] S. Ivanov, A. Herms and G. Lukas, “Experimental Vali-
dation of the Ns-2 Wireless Model Using Simulation,
Emulation, and Real Network,” Proceedings of the 4th
Workshop on Mobile Ad-Hoc Networks, Bern, 26 Febru-

ary-2 March 2007, pp. 433-444.

[8] J. Laiho, A. Wacker, T. Novosad and A. Hämäläinen,
“Verification of WCDMA Radio Network Planning Pre-
diction Methods with Fully Dynamic Network Simula-
tor,” Proceedings of IEEE 54th Vehicular Technology,
Vol. 1, 2001, pp. 526-530.

[9] S. Hauck and A. DeHon, “Reconfigurable Computing, the
Theory and Practice of FPGA-Based Computation,” Mor-
gan Kaufmann, San Fransisco, 2008.

[10] N. Nedjah and L. M. Mourelle, “Co-Design for System
Acceleration: A Quantitative Approach,” Springer, Berlin,
2007.

[11] C. Maxfield, “The Design Warrior’s Guide to FPGAs:
Devices, Tools and Flows,” Elsevier, Oxford, 2004.

[12] M. Gokhale and P. Graham, “Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate
Arrays,” Springer, Berlin, 2005.

[13] K. Ramamritham and K. Arya, “System Software for
Embedded Applications,” Proceedings of the 17th IEEE
International Conference on VLSI Design, 2004, pp. 12-14.

[14] K. Underwood and K. Hemmert, “Closing the Gap: CPU
and FPGA Trends in Sustainable Floating-Point BLAS
Performance,” Proceedings of the 12th IEEE Symposium
on Field-Programmable Custom Computing Machines,
20-23 April 2004, pp. 219-228.
doi:10.1109/FCCM.2004.21

[15] D. A. Patterson and J. L. Hennessy, “Computer Organiza-
tion and Design—The Hardware/Software Interface,”
Morgan Kaufmann, San Fransisco, 2009.

[16] T. Issariyakul and E. Hossain, “Introduction to Network
Simulator NS2,” Springer, Berlin, 2008.

Copyright © 2011 SciRes. WET

http://dx.doi.org/10.1006/jpdc.1997.1397
http://dx.doi.org/10.1016/S0304-3975(00)00245-0
http://dx.doi.org/10.1145/331697.331748
http://dx.doi.org/10.1002/0471739383
http://dx.doi.org/10.1109/FCCM.2004.21

