
Wireless Engineering and Technology, 2011, 2, 196-203
doi:10.4236/wet.2011.23027 Published Online July 2011 (http://www.SciRP.org/journal/wet)

Copyright © 2011 SciRes. WET

A Versatile Industrial Timer and Real Time
Keeper

Sagar. G. Yadav, K. A. Narayanankutty

Electronics and Communication Engineering Department, Amrita School of Engineering, Coimbatore, India.
Email: sagar.g.y@gmail.com, ka_narayanankutty@cb.amrita.edu

Received February 10th, 2011; Revised March 20th, 2011; Accepted April 27th, 2011.

ABSTRACT

Industrial timer requirements are multifaceted. On-delay, off-delay, cyclic or sequential timing requirements, with usual
time range varying from seconds to days, depending on the process. Custom build timers cannot provide all of these
requirements simultaneously and hence an advanced timer rectifying this shortcoming has been designed and fabri-
cated in this work. This timer is based on the real time clock chip used in mother boards. Our design can be pro-
grammed for a specific time requirement and can later be put to work in standalone mode. A demonstration board is
fabricated and tested.

Keywords: Industrial Timer, Real Time Clock, Programmable, Standalone, DS1307, I2C, USART, ZigBee, Bluetooth

1. Introduction

In this paper we are presenting a unique gadget that en-
sures the timely operation of a device under control. The
gadget offers accurate timekeeping functionality span-
ning from seconds to days and different modes of opera-
tions. This meets the varying needs of the industries and
research laboratories. Easy to configure via the RS232
interface, the gadget doesn’t require any drivers or spe-
cialised application softwares for interfacing it with the
PC. The gadget could be powered from the USB port of
the PC while configuring, thereby eliminating the need
for an external power supply. This USB port also inter-
faces the driver circuit to it. The driver circuit is used to
drive the device under control.

Many Industrial Timers are available in the market
from leading manufacturers like the 405 Series Industrial
Timers with ON Delay/Interval Timing mode of opera-
tions [1], the 407 Series Multi mode Industrial Timers
with ON Delay/OFF Delay/Interval Timing mode of op-
erations [2], the RG-21 and GP2 series Cycle Industrial
Timers with cyclic mode of operations [3,4]. One of pri-
mary difficulty faced while deploying these kinds of in-
dustrial Timers is that they don’t offer all the different
timing requirements like the Delayed ON/ Delayed OFF
or Cyclic simultaneously in one single unit. Moreover
they need to be configured manually each time after a
cycle of operations and doesn’t offer the possibility of
configuring them remotely using wireless links. Remote

configuration of these Timers proves very beneficial es-
pecially when they are installed in harsh, not easily ac-
cessible locations in the industries. The Industrial Timer
module described in this paper overcomes all the above
mentioned difficulties and shortcomings offered by the
units available in the market at present. The gadget offers
all the different Industrial timing requirements like ON
Delay/OFF Delay/ or Cyclic simultaneously and can be
configured for 25 Cycles at a go. The gadget is soft con-
figured via RS232 Interface and could be even remotely
configured by attaching the gadget to compact ZigBee or
Bluetooth Module made to operate in the Transparent
Mode. In the transparent mode these RF Modules can
replace the Serial (RS232) Port to establish connections
between the PC/Base Station and the Timer module.

The gadget has two modes of operation namely: Con-
figuration mode and Standby mode. The two modes of
operation could be selected with the help of a Push to ON
switch available on the gadget. In the configuration mode
the device could be interfaced with the PC via the RS232
port to set the RTC time and to edit the time settings for
the device under control. Windows© HyperTerminal can
be used to communicate with the gadget in this mode. In
the standby mode the gadget will be interfaced with the
accompanying driver circuit to drive the device under
control. The gadget incorporates a Real Time Clock
module that keeps track of the system time. The module
has a battery backup provided with the aid of a 3V Li

A Versatile Industrial Timer and Real Time Keeper 197

Cell that ensures uninterrupted tracking of system time.
The gadget offers a flexible mode of operations which

can be tailored to meet different timekeeping require-
ments. It can be used to implement a delayed ON/OFF
operation of the device or can even be used to execute a
periodic sequence of device operation by enabling the
looping of time settings.

The paper is organised as follows: Section 2 gives de-
tails of the real-time clock chip, how the chip is accessed
and used. Section 3 describes details of the circuits and
firmware used. Section 4 explains the gadget operation
and the configuration details along with screenshots. We
conclude this paper with the potential applications of the
gadget in section 5.

2. DS1307 Real Time Clock

DS1307 Serial Real-time Clock is a low power, fully
binary-coded decimal (BCD) clock/calendar plus 56 bytes
of NV SRAM [5]. Address and data are transferred seri-
ally via a 2-wire, bi-directional bus (I2C). The clock/
calendar provides seconds, minutes, hours, day, date,
month, and year information. The end of the month date
is automatically adjusted for months with fewer than 31
days, including corrections for leap year. The clock op-
erates in either the 24-hour or 12-hour format with
AM/PM indicator. The DS1307 has a built-in power
sense circuit that detects power failures and automati-
cally switches to the battery supply. The Real-Time
Clock circuitry includes a 32.768 KHz quartz crystal that
clocks the module. A battery back-up is provided using a
3V Li cell CR2025.

The DS1307 operates as a slave device on the serial
bus. Access is obtained by implementing a START con-
dition and providing a device identification code fol-
lowed by a register address. Subsequent registers can be
accessed sequentially until a STOP condition is executed.
The information is transferred byte-wise and each re-
ceiver acknowledges with a ninth bit. The device that
acknowledges pulls down the SDA line during the ac-
knowledge clock pulse. This is depicted in the timing
diagram shown in Figure 1. Within the 2-wire bus speci-
fications a regular mode (100 KHz clock rate) and a fast
mode (400 KHz clock rate) are defined. The DS1307
operates in the regular mode (100 KHz) only. During
data transmission and reception over the I2C bus DS1307
operates in the following two modes:

2.1. Slave Receiver Mode (DS1307 Write Mode)

Serial data and clock are received through SDA and SCL.
After each byte is received an acknowledge bit is trans-
mitted. START and STOP conditions are recognized as
the beginning and end of a serial transfer. Address rec-
ognition is performed by hardware after reception of the

slave address and direction bit (Figure 2). The address
byte is the first byte received after the start condition is
generated by the master. The address byte contains the 7
bit DS1307 address, which is 1101000, followed by the
direction bit (R/W) which, for a write, is a 0. After re-
ceiving and decoding the address byte the device outputs
acknowledge on the SDA line. After the DS1307 ac-
knowledges the slave address + write bit, the master
transmits a register address to the DS1307. This will set
the register pointer on the DS1307. The master will then
begin transmitting each byte of data with the DS1307
acknowledging each byte received. The master will gen-
erate a stop condition to terminate the data write.

2.2. Slave Transmitter Mode (DS1307 Read
Mode)

The first byte is received and handled as in the slave re-
ceiver mode. However, in this mode, the direction bit
will indicate that the transfer direction is reversed. Serial
data is transmitted on SDA by the DS1307 while the se-
rial clock is input on SCL. START and STOP conditions
are recognized as the beginning and end of a serial trans-
fer (Figure 3). The address byte is the first byte received
after the start condition is generated by the master. The
address byte contains the 7-bit DS1307 address, which is
1101000, followed by the direction bit (R/W) which, for
a read, is a 1. After receiving and decoding the address
byte the device inputs acknowledge on the SDA line. The
DS1307 then begins to transmit data starting with the
register address pointed to by the register pointer. If the
register pointer is not written to before the initiation of a
read mode the first address that is read is the last one
stored in the register pointer. The DS1307 must receive a
“not acknowledge” to end a read.

3. Circuit and Firmware

The circuit for the gadget could be split into two parts
namely: the control circuit and the driver circuit. The
control circuit constitutes the complete circuit for the
gadget, whereas the driver circuit forms the part of the
driver module to which the gadget is interfaced during
the standby mode.

3.1. Control Circuit

The complete circuit diagram for the control circuit is
shown in Figure 4. The 8-bit microcontroller, AVR
Amega8 [6] forms the heart of the control circuit along
with the Real time clock form Dallas Semiconductor,
DS1307. The microcontroller is clocked at 8 MHz using
a quartz crystal Q2, whereas the Real time clock module
DS1307 requires a clocking of 32.768 KHz which is also
provided using a quartz crystal Q1. The entire circuit is
powered using a DC 5V derived through the PC USB

Copyright © 2011 SciRes. WET

A Versatile Industrial Timer and Real Time Keeper

Copyright © 2011 SciRes. WET

198

Figure 1. I2C address and data packet format.

Figure 1. Data write—slave receiver mode bit sequence.

Figure 3. Data read—slave transmitter mode bit sequence.

port. The gadget is connected to the PC for configuration
or to the timekeeper driver circuit through the same USB
port, when operating in the standby mode. The power
derived from the USB port, X1 pins 1 & 4 is filtered us-
ing an electrolytic capacitor C1 and is indicated using a
power LED, LED1 via a current limiting resistor R1. A
power on reset circuit is constructed for the microcon-
troller using the resistor capacitor network formed by R2
and C9. The controller could also be forced to reset using
the tactile switch S2. Push to ON switch S1 connected to
pin 13 of the microcontroller is used to set the configura-
tion mode. When the switch is ON the gadget enters into
the configuration mode.

In order to interface the gadget with the PC we make
use of the USART module available in the microcontrol-
ler [7]. We set the USART module to operate in the
asynchronous mode at a baud rate of 38400 bps. The
frame format is 8 data bit with no parity bit and a stop bit.
The RXD and TXD terminals of the USART module
from the microcontroller is connected via a level con-
verter circuit to the DB9 female port X2. Since the
RS232 signals go between +12V and –12V and are in-

verted (–12V is a logical 1), applying this kind of voltage
to the AVR is dangerous. So MAXIM’s MAX232 [8]
level converter is used between the DB9 female serial port
and the MCU. The MAX232 uses capacitor pumps to
perform the necessary level shifting and provide receive
and transmit signals.

The circuit also includes a 6 pin ISP header port, SV1 to
facilitate in-circuit serial programming of the microcon-
troller. Any ISP programmer could easily be interfaced
with the gadget through this port to program the micro-
controller. The ISP header on-board gives access to MOSI,
MISI, SCK and RESET pins of the microcontroller for
SPI programming.

The Real-Time Clock circuitry, built around DS1307,
keeps track of the system time. The Real-Time Clock
circuitry includes a 32.768 KHz quartz crystal, Q1 that
clocks the module. A battery back-up provided using a
3V Li cell CR2025, G1. Two pull up resistors R4 and R5
each of 4.7KΩ are used to ensure proper bus conditions
on the SCL and SDA lines of the I2C bus [9]. Pull up
resistor R3 is used across SQW/OUT pin for its proper
operation since it is of open drain type. The SCL and

A Versatile Industrial Timer and Real Time Keeper 199

Figure 4. Circuit diagram of the control circuit.

SDA lines from the RTC module are in turn connected to
the corresponding bus terminals of the microcontroller to
establish the I2C bus. The SQW/OUT connection from
the RTC module is connected to T1 pin of microcontrol-
ler which forms the external clock source for the internal
16-bit Timer/Counter module available in Atmega 8. A
fluorescent blue LED is connected across the OC1B
output pin of microcontroller. OC1B forms the output pin
of one of the two output-compare units of the 16-bit
Timer/Counter module [10]. The LED flashes at a rate of
2 Hz giving a visual indication of the internal time tick-
ing in the gadget.

3.2. Driver Circuit

The complete circuit diagram for the driver circuit is
shown in Figure 5. The timekeeper driver circuit could
be divided into two main sections namely: Power supply
section and the Driver section. The power supply section
makes use of a positive voltage regulator LM7805 [11]
along with smoothing capacitors C10, C11, C12, and
C13 to generate a regulated fixed output voltage of + 5V
from a raw DC voltage derived from the DC Power jack.
Any DC voltage between +7.5V to +20V could be safely
applied through the DC Power jack to power up the cir-
cuitry. Diode D1 has been used to protect the circuit from
accidental polarity reversal. A red LED, LED4 along
with current limiting resistor R6 provides power on indi-

cation. The regulated +5V generated by the power supply
circuitry is also fed through the USB port, X5 to power
up the gadget when interfaced with the driver circuit
during standby mode of operation.

The driver circuitry makes use of NPN transistors T1
and T2 as switches to drive the relay and buzzer module
respectively. Resistors R7 and R9 ensure the proper bi-
asing condition for the transistors when drive signal ap-
pears at USB port pins 2 and 3. Diode D2 is connected
across the relay module to bypass the back e.m.f gener-
ated and thus protects the remaining circuitry. We have
used a 6V PCB mountable relay cube in our prototype.
The normally open contact of the relay module is used to
connect the device under control to the live AC power.
Green LED, LED3 along with current limiting resistor
R8 provides a status indication of the relay module and
hence the device under control. The LED will light up
when the relay is activated. Push to ON switch S4 is used
to connect and disconnect the driver circuit for buzzer
module from the remaining circuitry, if unwanted.

3.3. Firmware

The firmware for the gadget is written in embedded C and
is compiled and debugged using AVR Studio 4. The entire
firmware for the microcontroller has been carefully or-
ganised into several source files each of which is defined
using its corresponding head r files. The source file along e

Copyright © 2011 SciRes. WET

A Versatile Industrial Timer and Real Time Keeper 200

Figure 5. Circuit diagram of the driver circuit.

with the header file takes care of specific applications and
includes routines that could be invoked for the same from
the main file. Apart from the application specific user
defined header files and its corresponding source files the
program also includes several other utility and standard
header files from the AVR library. For handling
EEPROM read-write operations the utility header file
eeprom.h has been included in the project from the AVR
library [12]. Similarly for generating accurate delays of
milliseconds and microseconds the utility header file
delay.h is included. A detailed description for the different
user defined header files is given in Table 1. Each of the
user defined header files accompanies a source file that
defines the routines declared in their corresponding
header files.

The relevant data and guidelines for programs are taken
from references [13-16].

4. Gadget Operation

As mentioned before the gadget has two modes of opera-
tion namely: the configuration mode and the standby
mode. In the configuration mode, which is selected by
pressing switch S1 to ON position, communication could
be established with the gadget over the USART bus with
the help of HyperTerminal software. In the configuration
mode the user can do the following operations:
 Set the RTC time, date and day.
 View the RTC time, date and day.
 Edit the time-settings database for the device under

control.
 View the time-settings database for the device under

control.
These different operations could be performed with the

help of a user friendly menu interface prepared by the

Table 1. Description of user defined header files.

User Defined Header Files
S No.

Name Description

1 database_routines.h
Defines database handling routines for
viewing & editing it.

2 i2c_routines.h
Defines routines for data transmission &
reception over the I2C bus.

3 RTC_routines.h
Defines routines for data retrieval,
storage & formatting in RTC.

4 USART.h
Defines routines for transmission,
reception & formatting of data over
USART bus.

gadget over the HyperTerminal window. Upon connect-
ing the gadget to the PC through RS232 serial port and
powering up the same via the USB port, we will be able to
see the welcome screen shown in Figure 6, in the
HyperTerminal window.

Upon pressing any key the user will get to see the main
menu interface as shown in Figure 7 from which one can
select the different options available.

Option 1 should be selected to set system time in the
RTC chip. Time should be entered in 24 hour format along
with the system date and day as shown in Figure 8. Upon
filling all the details the chip gets automatically updated.
After setting the system time the same could be viewed by
selecting option 2 from the main menu interface upon
which the details of the set system time, date and day
appears as shown in Figure 9.

Option 3 from the main menu interface should be se-
lected in order to edit the time-settings for the device
under control. The example followed illustrates the pro-
cedure.

Copyright © 2011 SciRes. WET

A Versatile Industrial Timer and Real Time Keeper 201

Figure 6. Welcome screen in HyperTerminal.

Figure 7. Main menu interface in HyperTerminal.

Figure 8. Editing RTC system time from HyperTerminal.

Figure 9. Viewing RTC system time from HyperTerminal.

Example: We need to edit the time-settings for the de-

vice under control in order to achieve a sequence of op-
eration as given in the time chart shown in Figure 10.

In order to implement this sequence of operation for
the device under control, we set the reference time,
which in this case is conveniently chosen as 00:32 hrs.

We set the initial status of the device as OFF and also
the four relative time-settings with reference to the ref-
erence time are entered. Hence we enter four datapoints
in the menu and go on entering the data point details
along with the device status for the set relative time.
Upon entering the last data point the gadget will auto-
matically save the database to its internal EEPROM.
These sequences of operations are depicted in Figure 11,

Figure 12 and Figure 13.
In order to view the saved database in the EEPROM

the user can select option 4 from the main menu interface.
The gadget then reads the database from its EEPROM
memory formats the data into user readable form and
finally displays it in the HyperTerminal Window as
shown in Figure 14.

Figure 10. Time chart.

Figure 11. Editing time-settings database by entering the
reference time.

Figure 12. Entering the first relative datapoint details.

Figure 13. Entering the last relative datapoint details.

Copyright © 2011 SciRes. WET

A Versatile Industrial Timer and Real Time Keeper 202

Figure 14. Viewing the database saved in the EEPROM
through HyperTerminal.

Once the gadget is successfully configured with the
system time and the required time-setting database for
the device under control, the device should be detached
from the PC. It should then be switched over to the
standby mode by releasing switch S1. Lastly, connect it
to the driver module via the USB port on the gadget

5. Conclusions

A timer cum time-keeper has been designed, fabricated
and tested. Snapshots of the author’s prototype are shown
in Figure 15-17. A complete single sided PCB layout for
the gadget circuitry is shown in Figure 18. This timer
module can be used for preset time alarms, to switch on
or off domestic lights or other gadgets at any time of the
day for security reasons or alarms. This can be built as a
programmable PLC module with multiple outputs, which
will facilitate its operation based on multiple inputs and
timings, which can programmed externally.

The gadget could also be effectively used to time syn-
chronise the sensor nodes in a Wireless Sensor Network
deployed for Precision agriculture where each sensor
nodes need to detect temperature, light levels and soil
moistures intermittently and communicate their data over
the wireless network. This intermittent operation of these
sensors nodes call in for a low duty cycle operation
wherein these sensor nodes would be put to sleep when
not in use and would be woken up only at specific in-
stants of time when data is required for analysis. In such
a scenario sensor nodes need to sleep and wake together
so that they can periodically communicate. Errors in the
timing mechanism will create inefficiencies that result in
increased duty cycles. The Real Time Keeper discussed
here could then be used to put these sensor nodes in sleep
or wake-up state according to the timing requirements
configured. All the Real Time Keeper modules attached
to the sensor nodes would then be configured remotely
over a ZigBee/Bluetooth Wireless Link operating in the
transparent mode. The configuration data for all the Real

Time Keeper modules will be broadcasted over the wire-
less link so that all the sensor nodes attached to the time

Figure 15. Author’s prototype of the gadget.

Figure 16. Author’s prototype of the driver module.

Figure 17. Author’s prototype when connected to PC for
onfiguration. c

Copyright © 2011 SciRes. WET

A Versatile Industrial Timer and Real Time Keeper

Copyright © 2011 SciRes. WET

203

Figure 18. Single side PCB layout of the control circuit.

keeper module would be time synced.

REFERENCES

[1] “User Manual for Series 405 Timer with Instantaneous
Relay,” Industrial Timer Company, Centerbrook.

[2] “User Manual for Series 407 Multi Mode Timer,” Indus-
trial Timer Company, Centerbrook.

[3] “User Manual for Series RG21 Cycle Timer,” Industrial
Timer Company, Centerbrook.

[4] “User Manual for Series GP2 Multifunction Timer,” In-
dustrial Timer Company, Centerbrook.

[5] “DS1307 Datasheet,” Rev. 100208, Dallas Semiconduc-
tor, Maxim Integrated Products, Sunnyvale.

[6] “AVR Atmega 8 Datasheet,” Rev. 2486S-08/07, Atmel
Corporation, San Jose.

[7] “AVR306: Using the AVR UART in C,” AVR Applica-
tion Note, Rev. B-07/08.

[8] “Maxim MAX232 Datasheet,” Rev. 11-2/03, Maxim

Integrated Products, Sunnyvale.

[9] “AVR315: Using the TWI Module as I2C Mmaster,”
AVR Application Note, Rev. B-09/04.

[10] “AVR130: Setup and use the AVR Timers,” AVR Appli-
cation Note, Rev. A-02/02.

[11] “LM7805 Datasheet,” Rev. 1.0.1, Fairchild Semiconduc-
tor Corporation, San Jose.

[12] “AVR100: Accessing the EEPROM,” AVR Application
Note, Rev. C-09/05.

[13] “AN504: Design Consideration for Dallas Semiconductor
Real-Time Clocks,” Maxim Application Note, Rev. A-
02/04.

[14] “BC548 Datasheet,” Rev. A2-August 2002, Fairchild
Semiconductor Corporation, San Jose.

[15] F. Eady, “Networking and Internetworking with Micro-
controllers,” 2nd Edition, Newnes Publications, 2004.

[16] J. J. Labrosse, “Embedded System Building Blocks,
Complete and Ready-to-Use Modules in C,” 2nd Edition,
Miller Freeman Publications, San Francisco, 2000.

