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ABSTRACT 
Interference threshold based on energy setting in cognitive radios is a non-convex optimization problem [1]. The con-
vergence of optimization techniques like Genetic algorithm (GA) takes several iterations to fix this threshold. Here, an 
attempt made to use Differential evolution (DE) method for optimization after formulating the objective functions. The 
advantages with this method were three fold over GA. They were, a. A reduced number of iterations, b. Marginal im-
provement and consistency of throughput and c. Localization of the best solution. The comparative results are pre-
sented and discussed. 
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1. Introduction 
The increasing demand for mobility and portability in 
communication equipment has made wireless communi-
cation an indispensable field of research. The focus today 
is to construct wireless networks or nodes that can dy-
namically reconfigure their transmission and reception 
parameters. Spectrum sensing and its utilization are thus 
ubiquitous. This concept is called a cognitive radio and 
the first main function of such a system is to detect the 
unused spectrum and transmit in it without interference 
to primary users. 

Newer wireless technologies crop up everyday pro-
viding better service to the users. The 3G or third genera-
tion of wireless networks are only being rolled out in 
most countries and research is already on to take com-
munication to the next level with 4G or Long Term Evo-
lution (LTE) [2]. All of these technologies focus on pro-
viding new features to the users, such as video confer-
encing, high speed internet etc. with a better quality of 
service.  

Simultaneously, newer techniques are also being de-
veloped for making better utilization of the wireless re-
sources available. One such technology is cognitive radio 
[3]. A wireless network consisting of nodes that are ca-
pable of dynamically changing their transmission and 
reception parameters is called a cognitive radio. One of 

the main resources that the cognitive radio aims at opti-
mizing is the frequency spectrum. It does this by allow-
ing the secondary users to detect and utilize portions of 
the licensed spectrum that are not being used by the pri-
mary user. The process of detecting unused frequencies 
or spectral holes is called spectrum sensing [1]. Methods 
of sensing spectral holes include energy based detection, 
matched filter based detection, cyclostationary methods 
etc. In this paper, we propose a method of energy based 
spectrum sensing using differential evolution to optimize 
the threshold used for detection.   

The organization of the paper is as follows. In section 
II, we explain in detail the sensing problem for threshold 
based detection of spectral holes. In section III, we pre-
sent an analysis of the optimization techniques that can 
be used for this process and explain why we choose dif-
ferential evolution. Section IV is dedicated to our pro-
posed method of threshold based spectrum sensing using 
differential evolution. In Section V, we present the re-
sults obtained and compare the performance of differen-
tial evolution with that of genetic algorithms. Section VI 
concludes the paper, where we restate our major obser-
vations and future work.  

2. The Sensing Problem 
The sensing problem under consideration here is same as 
the one used in [4]. The wide band spectrum is divided in 
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to K narrow sub-bands and each sub-band can be in two 
possible states H0 and H1. 
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H0 represents a spectral hole and H1 represents an oc-
cupied channel. Vk is the Gaussian noise with power 2

vσ , 
Hk is the channel impulse response in the frequency do-
main and Sk is the frequency spectrum of the signal.  

In order to find out whether a channel is occupied or 
free, we use the following energy detector. 
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where γk is the threshold for the kth sub-band and N is the 
number of measurements made for each sub-band. When 
N is large enough, the random variables of the energy 
detector Yk can be considered to follow a normal distri-
bution, that is Yk~N (µ0,k, 2

0,kσ ) for the state H0,k and 
Yk~N (µ1,k, 2

1,kσ ) for the state H1,k. The sensing perform-
ance can be quantified based on the probability of iden-
tifying a spectral hole, as in (2), and the probability of 
identifying an occupied channel as a hole, as in (3). 

( ) ( ) ( )
0, 0, 1, 0,1 1 k

k k k k fP H H P H H P= − = −      (2) 

( ) ( ) ( )
0, 1, 1, 1,1 1 k

k k k k dP H H P H H P= − = −      (3) 

In (2) and (3), Pf and Pd are the probability of false 
alarm and probability of detection of a transmission re-
spectively. Here ( )0, 0,k kP H H  represents the probabil-
ity of correctly detecting a spectral hole as a spectral hole, 
and not the Bayesian probability of occurrence of one 
event given another has occurred. This representation 
holds for similar probability terms encountered in (2), (3), 
(4) and (5). 

The consideration that the energy detector specified in 
(1) will follow a normal distribution on taking a large 
number of measurements N allows us to compute the 
values of Pf and Pd from the cdf of the normal distribu-
tion as shown below in (4) and (5). 
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The γk values should be optimized such that the chan-
nel interference is minimum and the throughput achieved 
by the secondary user is maximum. For this purpose, we 

use the throughput achievable through each of the k 
channels, and the interference cost that has to be incurred 
on transmitting through the channels. The objective func-
tions for the optimization can then be formulated, as in (6) 
and (7), using these values and the probability of identi-
fying a spectral hole and the probability of missed detec-
tion.  

( ) ( )1T
dR r Pγ γ= −                (6) 

( ) ( )1T
fI c Pγ γ = −               (7) 

where Pd (γ) and Pf (γ) are k dimensional vectors with 
each element representing the probability of detection 
and probability of false alarm correspondingly in the 
respective sub-band; r is the vector containing the 
throughputs attainable through each channel and c is the 
vector containing interference costs incurred on transmit-
ting through each of the channel. 

3. Optimization Techniques and Differential 
Evolution 

The non-convex nature of the objective function posed 
above limits us from using the conventional optimization 
methods like convex maximization. Hence, we consid-
ered optimizing using direct search algorithms such as 
genetic algorithm [5], particle swarm optimization [6] 
and differential evolution [7]. These optimization tech-
niques are useful in the sense that they do not require the 
objective or cost functions to be differentiable or linear. 
The knowledge of an objective function that has to be 
minimized is alone sufficient for these techniques. 
Moreover, they also have sufficient safeguards to prevent 
the algorithm from being stuck at a local minimum. An 
example of this is the mutation step of genetic algorithms 
[5]. The requirements of these algorithms is that they 
should have good convergence properties and should not 
involve too many or complex control variables. 

Existing methods for threshold optimization in spec-
trum sensing use genetic algorithms [4]. Differential 
evolution is a direct search technique that iteratively im-
proves the fitness of the candidate solutions. It tries to 
optimize the requirements by using its own formulae for 
mutation and crossover to create new candidate solutions. 
The fitness of these new candidates decides whether to 
replace the existing population members or not. 

The working of the differential evolution algorithm is 
simple.  

1) It has a population of candidate solutions that are 
sometimes called agents. 

2) Positions of existing agents are combined using a 
mathematical formula to move the agents around the 
search space.  

3) If there is an improvement from the old position to 
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the new position of an agent, then it is accepted as a 
member of the population, else it is discarded. 

4) This process is iteratively repeated to arrive at the 
optimal solution. 

It has been shown through extensive experimental test-
ing that the convergence properties of differential evolu-
tion are better than that of genetic algorithms [7]. Spe-
cifically, differentially evolution has been found to con-
verge faster than genetic algorithms in most cases.  

This has prompted us to utilize differential evolution 
for optimizing the threshold values involved in energy 
based spectrum sensing. 

4. Threshold Optimizsation Using 
Differential Evolution 

We apply the differential evolution optimization tech-
nique to the sensing problem under consideration here, 
with (6) and (7) as the objective functions. A set of N 
threshold vectors, each of the form  

, ,1, ,2, , ,, , , , ; 1, 2, ,i G i G i G i k Gt t t t i N = = K L . 

with random values, is taken as the initial population set. 
G denotes the generation number. This set represents the 
potential candidates for optimization and is the first gen-
eration of the differential evolution scheme discussed 
below [7]. 

The best threshold set in each generation is the one 
which gives optimal values for throughput (6) and inter-
ference (7). 

The next generation of vectors is generated as follows. 
For every vector, ti,G (target vector), the following three 
steps are performed. 

1) Mutation: Three mutually distinct vectors tr1,G, tr2,G, 
tr3,G are taken such that 1 2 3r r r i≠ ≠ ≠ . A mutant vec-
tor/donor vector is generated according to 

( ), 1 1, 2, 3,i G r G G GV t F t t+ = + −            (8) 

where F ∈  [0, 2] is a constant which controls the mag-
nitude of the differential variation. 

2) Crossover: The diversity of the vector set is in-
creased by developing a trial vector as  

, , 1 ,
, , 1

, , ,

if or

if or
i j G j i

i j G
i j G j i

v rand CR j rndI
u

x rand CR j rndI
+

+
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    (9) 

1, 2, ,i N= L ; 1,2, ,j k= L ; ,j irand  U[0, 1] 
rndI is a random integer from [1, 2, , kL ] 
rndI ensures that at least one element from vi, G + 1 is in-
corporated into ui, G + 1 

CR is the crossover constant [0, 1] and its value is 
chosen by the user. A higher value of CR causes more 
elements from the mutant vector vi, G + 1 to get incorpo-
rated in the trial vector ui, G + 1. It has been shown in [7] 

that a higher value (such as 0.9 or 1) of CR is a good 
choice and can lead to faster convergence. Hence the 
value of CR has been chosen as .95. 

3) Selection: The trial vector ui, G + 1 is compared with 
the target vector vi, G + 1 and the one that gives the best 
values for R and I is passed on to the next generation as  
ti, G + 1. 

The algorithm is continued till the optimum threshold 
vector is found.  

5. Results and Observations 
The optimization of the threshold values was done using 
both GA and DE. In order to compare the performance of 
the two methods, we use the number of function evalua-
tions required as a parameter. Further, we also plot the 
interference vs. throughput curves of the final population 
with interference as the independent variable, for both 
DE and GA.  

Simulations were done using MATLAB and the values 
of r, c and H are the same as used in [4]. 

5.1. Function Evaluations 
The number of function evaluations that an optimization 
algorithm requires to converge to the optimum value is 
an important parameter for measuring the performance. 
The lower the number of function evaluations required, 
lesser the computational load and faster the convergence.  

On optimizing the threshold using both GA and DE, 
we found that the number of function evaluations re-
quired by DE is far less than that of GA. Figure 1 shows 
the final pareto front after optimization was done using 
GA. It also shows the number of function evaluations 
required for convergence. Figure 2 shows the final  
 

 
Figure 1. Final pareto front showing the scatter plot of the 
population members and the number of function evalua-
tions using GA. 



Optimization of Threshold for Energy Based Spectrum Sensing Using Differential Evolution 

Copyright © 2011 SciRes.                                                                                 WET 

133 

 
Figure 2. Final pareto front showing the scatter plot of the 
population members and the number of function evalua-
tions using DE. 
 
pareto front after optimizing using DE, and the number 
of function evaluations required. The green dot in Figure 
1 and 2, representing the optimum point, is arrived at as 
follows. Among the final population, the minimum value 
of F1(x) and the maximum value of F2(x) are used to fix 
an origin and the green dot or the optimum point is the 
point that has the minimum distance from the origin that 
was previously fixed. 

In Figure 1 and 2,  

( )1 100F x R= −  

( )2F x I=  

DE requires less than two times the number of func-
tion evaluations as GA and this was found to be consis-
tent over a number of optimizations. This lesser number 
of function evaluations means that the computational cost 
of optimizing using DE is far less than GA. 

5.2. Interference Vs Throughput 
Another parameter for comparing the performance is the 
throughput achieved for various values of aggregate in-
terference. Figure 3 is the plot of interference vs. 
throughput for GA and DE, taking interference as the 
independent variable. 

We can see from the graph that for most values of in-
terference, the throughput obtained in the case of DE is 
greater than that of GA. This increased throughput for 
the same value of interference is favorable to the secon-
dary user.  

5.3. Localization of Best Solution 
It can be seen from Figure 1 that the members of the final  

 
Figure 3. Plot of interference vs. throughput for the final 
population with interference as the independent variable, 
for both GA and DE. 
 
population in GA are uniformly scattered and hence 
visually localizing the best member becomes difficult. 
However, in the case of DE, we can see that the best 
member can be easily localized. Figure 2 shows the scat-
ter of the final population members of DE. Moving to the 
left from the green dot drastically increases the interfer-
ence and moving to the right decreases the throughput 
significantly. Hence, no other point can possible be the 
best member.  

From the above comparisons, DE has been found to be 
more advantageous than GA in the following ways.  

1) The lesser number of function evaluations means 
that the rate of convergence is better in the case of DE 
than GA.  

2) The higher throughput achieved means that DE con-
verges to a better optimum value when compared to GA.  

3) The accuracy of convergence is also evident from 
the scatter plots in Figure 1 and 2, since the best member 
is localized in the case of DE, whereas the same cannot 
be said for GA.  

6. Conclusions 
A cognitive radio network aims to maximize spectrum 
utilization by detecting unused spectrum and letting the 
secondary users utilize it. Setting the threshold for energy 
based spectrum sensing is a non-convex optimization 
process and the optimization should be such that the 
probability of error decreases. In this paper, we have first 
explained the sensing problem involved, the requirement 
of optimization and the objective functions. We have 
then stated the disadvantage of generic algorithms in 
these circumstances, which is the large number of itera-
tions it takes to converge. We then propose a method for 
non-convex threshold optimization using differential 
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evolution and then compare the results obtained from 
differential evolution and genetic algorithms. Based on 
three factors, namely the number of function evaluations, 
the marginal increase in the throughput achieved and the 
easiness of localizing the best solution, we conclude that 
differential evolution has certain definite advantages over 
genetic algorithms in optimizing the threshold for energy 
based spectrum sensing. 
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