
Technology and Investment, 2018, 9, 179-202 
http://www.scirp.org/journal/ti 

ISSN Online: 2150-4067 
ISSN Print: 2150-4059 

 

DOI: 10.4236/ti.2018.94013  Oct. 26, 2018 179 Technology and Investment 
 

 
 
 

Designing Equity Option Strategies Using 
Memetic Algorithms 

Richard Tymerski, Garrison Greenwood 

Department of Electrical & Computer Engineering, Portland State University, Portland, OR, USA 

 
 
 

Abstract 
Equity options strategies consist of a combination of options which are si-
multaneously entered into the market which enable one to achieve a financial 
return. A range of standard well-known strategies exist from which one can 
choose. The present paper looks beyond standard strategies and uses a me-
metic algorithm to choose from a myriad of option combinations in arriving 
at strategies which optimize specific fitness functions. The fitness function is 
formulated to find strategies that maximize return while, at the same time, 
limiting equity drawdown and achieving a desired rate of trade success. Over 
a decade of historical option data of the SPY, the S & P 500 Exchange Traded 
Fund, is used to choose strategies ranging from two to six option legs. Specific 
four- and six-leg option strategies were found to achieve optimum perfor-
mance. 
 

Keywords 
Memetic Algorithms, Equity Options, Trading Strategies, Financial Options, 
Larmarckian Local Search 

 

1. Introduction 

The great versatility of financial options has resulted in them becoming very 
popular in recent years as a means to achieve gains in the financial markets. 
Examples of the versatility can be seen by considering how profit can be made 
using options. This includes: 1) a correct prediction of the underlying price di-
rection, 2) option time value decay, i.e. as an option is a time wasting asset then, 
for example, a seller of an option is able to buy back the option at a lower price 
at a later time, even though the underlying price may not have moved, thus 
achieving a profit, and 3) volatility prediction, e.g., if we again consider the case 
of selling an option when the underlying volatility is high (thus inflating the 
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value of the option) one may buy it back at a lower price when volatility de-
creases thus achieving a profit. A typical example of this scenario is when an 
underlying has dropped in price typically resulting in volatility expansion which 
inflated the value of the option. At this point an option may be sold and subse-
quently if the underlying enters a period of price consolidation the volatility will 
contract, thus the value of the option will decrease at which point it may be 
bought back for a profit. These three different profit achieving mechanisms con-
trast, for example, with that of (non-dividend paying) equities where only price 
direction determines profitability. Further appreciation of the versatility of op-
tions can be obtained with the understanding that options can be used to miti-
gate risk, that is, limit the maximum loss that is achieved.  

A single option position may be entered into the market, however, more 
generally a combination of option positions are entered. This combination is 
generally referred to as an option strategy. Well known option strategies include 
spreads, straddles and strangles for two-leg option combinations and condors 
for four-leg combinations. The profitability of certain option combinations has 
previously been examined in [1], [2] and [3]. In this paper we consider option 
strategies consisting of two to six legs. This work extends that previously re-
ported in [1]. Here we consider an enhanced implementation of a memetic al-
gorithm used to find optimum strategies based on desired fitness objectives. 
Furthermore, an improved method of specifying option strike values is dis-
cussed. 

In the next section a brief overview of options is presented. This is followed in 
Section 3 with an introduction to basic evolutionary algorithms leading to the 
concept of the memetic algorithm. Section 4 provided a discussion on the im-
plementation of the memetic algorithm used in this paper. The mechanism by 
which option strategies are described in terms of strike selection is presented in 
Section 5. In particular, we introduce the scaled, normalized strike mapping 
method. This method will be seen to have great performance advantages over 
the formerly used delta specified strike mapping method [1]. The major results 
of simulations using historical option data are given in Section 6. There we ex-
amine the performance of the best multi-leg strategies. Section 7 provides the 
conclusion to the paper where the main results are summarized. 

2. Financial Option Fundamentals 

Financial (e.g. equity) options represent contracts between buyers and sellers 
and are traded on a public options exchange such as the CBOE (Chicago Board 
of Options Exchange). The contracts involve obligations and rights concerning 
buying and selling of the underlying equity associated with the option. There are 
a number of factors which determine the price of an option. Perhaps the fore-
most of these is the price of the underlying itself. Option contracts come in two 
types: 

1) call.  

https://doi.org/10.4236/ti.2018.94013


R. Tymerski, G. Greenwood 
 

 

DOI: 10.4236/ti.2018.94013 181 Technology and Investment 
 

2) put.  
Both of these types can be bought or sold as an opening trade in an options 

transaction. Thus we can have the following four cases: 
1) a bought call which is referred to as a long call.  
2) a sold call which is referred to as a short call.  
3) a bought put which is referred to as a long put.  
4) a sold put which is referred to as a short put.  
The payoff diagram shows how the profit and loss of an option varies with 

respect to the underlying price. The payoff diagrams (also referred to as the 
profit/loss (P/L) profiles) for the four cases mentioned above are shown in Fig-
ures 1(c)-(f). To put these in some context, the P/L profile of long and short 
stock is shown in Figure 1(a) and Figure 1(b), respectively. In these figures the 
buy and sell price is arbitrarily shown as 100, so that for long stock a profit is 
made when the stock price is above 100 whereas for short stock this would 
represent a loss. For the option profiles the arbitrarily chosen value of 100 
represents the strike price of the option. This is the value at which there is a 
change of slope in the profile. An underlying price at the strike value is said to be 
ATM (at the money), whereas prices along the non-zero slope region are ITM 
(in the money) and along the zero slope region of the profile are OTM (out of 
the money). The relationship between the underlying price and the strike price 
of an option is referred to as the moneyness of the option. Apart from using the 
terms ATM, ITM and OTM to indicate the option moneyness one of the option 
Greeks known as delta can be used to more exactly quantify this measure. Delta 
ranges from 0 to 1 for calls and 0 to −1 for puts. Absolute values of option deltas 
in the range 0 to 0.5 are OTM and for an absolute delta of 0.5 are ATM and in 
the range 0.5 to 1 are ITM. 
 

 
Figure 1. Payoff diagrams (i.e. Profit/Loss (P/L) profiles) for (a) long stock, (b) short 
stock, (c) long call, (d) short call, (e) long put, (f) short put. The option profiles are true 
only at expiration (see text for details). The underlying price is presented along the hori-
zontal axis and P/L along the vertical axis. (These plots were adapted from [4]). 
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An option can be entered into the market anywhere in the moneyness range. 
Let’s consider the case of entering ATM, that is, the strike of the option chosen 
to be traded is at the current underlying price. For long calls and long puts a 
premium is paid to enter as indicated by the negative P/L value occurring at the 
ATM strike which is shown as 100 in Figure 1(c) and Figure 1(e), respectively. 
In the case of a call option, when the underlying price rises the profit increases, 
as seen by the underlying up sloping P/L for the call. In contrast, for the put, 
profit is achieved when the underlying price decreases in value, as seen by the 
P/L profile in Figure 1(e). Note that, in both cases, when the underlying goes in 
a direction counter to that where making a profit is possible, the maximum loss 
is limited to the premium paid to enter the position. For the cases of short calls 
and short puts, a premium is obtained (i.e. a credit is received) when entering a 
position. This is seen in the P/L profiles for this position by the positive P/L at 
the ATM strike, see Figure 1(d) and Figure 1(f). This credit is kept at option 
expiration if, for the call, the underlying is below the strike price and alterna-
tively, for the put, the full premium is kept if the underlying price is above the 
strike of the option. Losses will occur when the underlying price is above the 
strike for the call or is below the strike for the put, as can be seen by the P/L pro-
files.  

A number of options positions may be entered into the market simultaneously 
and represent an option strategy. Each strategy results in a characteristic P/L 
profile derived as an aggregate from its constituent P/L option profiles. The ma-
jor aims of this paper are to derive an effective memetic algorithm which results 
in finding option combinations, i.e. strategies, which optimize specific perfor-
mance metrics. This will be undertaken using historical option data for a time 
period of over a decade. 

3. Evolutionary Algorithms 

Nature has devised a variety of methods for dealing with challenging situations. 
Among these is the notion of survival of the fittest. Parents reproduce to create 
offspring. These offspring contain genetic material from both parents and 
therefore inherent some of their parents’ physical characteristics. Fitness is a 
metric indicating likely survival. Highly fit offspring exhibit behavior that pro-
motes survival. These offspring could survive until adulthood and have an op-
portunity to reproduce. Low fit offspring quickly die. At population levels, high-
ly fit species persist whereas low fit species go extinct. 

Evolutionary algorithms (EAs) first appeared more than 50 years ago. These 
algorithms mimic neo-Darwinistic evolution from Nature to search for solutions 
to difficult problems. Although there are several different EA versions, they all 
work using evolution via natural selection as the means to search a problem’s 
solution space. All EAs have the following components: 
• a genotype or individual that encodes a problem solution 

The genome contains all of the genetic material associated with an organism. 
All of the information needed for the organism to function is contained in its 
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genome. In EAs the genome is a data structure containing all of the parameters 
needed to create a solution to a given problem. In nature the term genotype re-
fers to the complete set of genes describing an organism; different gene values 
(or alleles) describe individuals with different physical attributes. Similarly, dif-
ferent solution parameters sets define different genotypes or problem solutions 
in an EA. 
• a population of individuals that evolves over time 

EAs are population-based stochastic search algorithms. As the population 
evolves, it contains new more fit candidate solutions. The initial population is 
randomly generated but over time converges to highly fit solutions. 
• a fitness function that determines if an individual survives 

The fitness function maps a solution genotype onto the real-number line. 
Highly fit solutions have higher (positive) values. Fitness values are used during 
the selection process to decide which solutions are kept in the population and 
which ones disappear. 
• one or more stochastic reproduction operators 

Individuals in the current population are chosen as parents that produce 
offspring for the next generation. In some EAs parents are chosen proportional 
to fitness (higher fitness implies higher probability of selection) whereas in other 
EAs parents are chosen randomly. Recombination operators take genetic ma-
terial (solution parameters) from each parent to form the offspring. Mutation 
operators randomly perturb existing solution parameters in the parent to pro-
duce the offspring. All reproduction operators are purely stochastic. 
• a selection operator that chooses survivors 

This operator determines which offspring survive to become the parents in 
the next generation. In some EA versions offspring must compete against their 
parents for survival. The selection operator keeps the population size constant. 
Individuals not selected are discarded. 
• a termination criteria 

The EA terminates under any one of the following conditions: 1) a fixed 
number of generations have been processed, 2) the algorithm is assumed to have 
converged—i.e., no fitness improvement in 10 - 20 generations, or 3) a suffi-
ciently good enough solution has been located. 

Algorithm 1 shows the pseudo code for a generic EA. Each time through the 
while loop is considered a generation. 
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Any search algorithm has a limited computation budget. It must therefore 
tradeoff exploration and exploitation. Exploration refers to an ability to quickly 
find subsets in genotype space that contain highly fit solutions. Exploitation is 
the ability to find the best fit solutions in these regions. Too much time spent in 
exploitation limits the time available to explore. EAs are particularly good at ex-
ploration but not so good at exploitation. This has given rise to memetic algo-
rithms [5] [6], which incorporate problem specific knowledge into the search 
process to make it more efficient. There are a variety of ways of make a search 
intelligent, but the most common way is to augment the EA with a local search 
capability. Local search provides exploitation and is interpreted as a form of 
learning. 

The most common form of local search is Lamarckian local search. Let i be an 
arbitrary parent genotype. The neighborhood of individual i, denoted by ( )i , 
consists of those genotypes that are in some sense “close” to the parent. That is, a 
neighbor ( )j i∈  has a genotype that differs only slightly from the genotype 
i. In a Lamarckian local search a neighbor j replaces the parent i if and only if 

( ) ( )f j f i≥ . 
Algorithm 2 shows how a Lamarckian local search is conducted. There are 

two types of termination criteria. In a greedy ascent the search terminates as 
soon as a higher fit neighbor is found whereas in a steepest ascent all neighbors 
are checked. An EA becomes a memetic algorithm by inserting a local search af-
ter line number 5 in Algorithm 1. 
 

 

4. Implementation 

In this work, the genome for our memetic algorithm, which encodes an options 
strategy, is an N-bit binary string. This string may be partitioned into four equally 
sized sub-strings (see Figure 2). Each substring represents one of four option 
positions: 1) long call, 2) short call, 3) long put, or 4) short put. Let us consider 
the case where N = 160. Then there are 40 strike prices within each option type. 
Each bit within a sub-string corresponds to a unique strike price. A bit set to 
logic 1 thus chooses a particular option type (i.e. call or put) and position (i.e. 
long or short) at a specific strike price. A mapping function (described in the 
next section) determines the exact strike prices. A strategy consists of a combi-
nation of options—i.e., with multiple bits in the binary string set to logic 1. 

A number of constraints were placed in determining the fitness of potential  
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Figure 2. The MA genome. 

 
solutions in order to lead to desired results. The constraints were: 

1) Non-zero slope segments of P/L profiles were constrained to that of single 
option types, that is, a slope of plus or minus unity. Most currently used, popular 
option strategies have this feature. (In future work this constraint will be re-
laxed). 

2) Potential strategies which feature offsetting options at the same strike were 
discarded. Thus, a strategy with a long put (call) as well as a short put (call) at 
the same strike was not carried forward in this early stage in the algorithm. 

3) Moneyness of selected options was constrained to avoid the use of deep in 
the money (DITM) options. DITM options have a large margin requirements as 
well as unfavorably wide bid-ask spreads. The term margin refers to the amount 
of funds necessary to put on a position. Large margin requirements limit the re-
turns of the option strategy. It was decided, somewhat arbitrarily, to limit ITM 
options to the first three ITM strikes.  

Any potential solution which violated any of the above conditions had a fit-
ness value of zero returned and thus were removed from further processing. 

Before option strategy performance metrics were evaluated by proceeding 
through the list of historical option chain data a potential solution was assessed 
for its feasibility, based on the above constraints, by application on a single op-
tion chain. As mentioned above, should this fail a zero fitness resulted. If passed, 
however, then the option configuration and the individual option delta values 
or, alternatively, the scaled, normalized strike values of the strike prices were 
recorded. These values were then used to map the strategy to other historical op-
tion chains. More will be said about strike mapping in the next section. Mapping 
the strategy into other time periods enables the trade P/L’s for the full historical 
period to be determined. At the end of this procedure a time series array of trade 
P/L values for the total historical data period is made available which enables the 
determination of the equity curve (i.e. cumulative sum of profits) and maximum 
drawdown percentage. 

Option strategy performance metrics involved the use of two different fitness 
functions. The first required determining the average P/L per trade and percen-
tage of profitable trades obtained throughout the time period of the historical 
data. The percentage of profitable trades needed to meet a desired threshold (we 
adopted an 80% threshold) so that the average P/L per trade was returned as the 
fitness value, otherwise a zero fitness value was returned. The second fitness 
function used was an extension of the first. Now the extra threshold of requiring 
the equity drawdown to be within certain limits was imposed on top of the per-
centage profitability requirement before setting the fitness value to the average 
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P/L value determined. We considered maximum drawdown limits at the various 
levels of 40%, 30%, 20% and 10%. It was instructive to see how the strategies are 
progressively modified to achieve the drawdown limit requirements. 

The MA is run for 30 generations with a population size of 200. Each individ-
ual encodes a trading strategy with K options; thus each individual has exactly K 
bits, where K is an integer, [ ]2,6K ∈ , set to logic 1 and the N-K remaining bits 
are logic 0. These K bits generally need to be distributed beyond one segment for 
feasible solutions to exist. 

A cursory glance indicates most solutions have zero fitness because they are 
infeasible i.e., they violate one or more constraints. This poses a problem when 
constructing the initial population of the MA since initial populations are ran-
domly generated. The MA must begin the search with only feasible individuals 
in the population. To accomplish this task we used a simple, brute force tech-
nique: a solution was randomly generated. It is inserted into the initial popula-
tion if and only if it was feasible. Otherwise it was discarded and another solu-
tion was randomly generated. This process was repeated until a population of 
the desired size was created. 

In MAs the search is conducted by applying stochastic reproduction operators 
to parents (existing solutions) to create offspring (new solutions) which are then 
evaluated for fitness. The problem is most solutions in the search space are in-
feasible, so conventional reproduction operators, such as recombination, are likely 
to be ineffective i.e., they will generate infeasible offspring. Indeed, our early tri-
als found this to be the case. We therefore took a slightly different approach. It is 
reasonable to assume if an individual is feasible, so will at least some of its 
neighbors in the search space also be feasible. We simply cloned the individual 
and then let a local neighborhood search, called a local refinement, generate the 
offspring. 

The local refinement used follows the Larmarckian Learning paradigm [6]. 
Specifically, a Larmarckian local search with a steepest ascent was used. A parent 
is cloned and then mutated to produce an offspring. Each mutation resets a 
randomly chosen logic 1 bit and sets a different bit in the same segment or 
sub-string to logic 1. This forces offspring to be neighbors of the parent. It also 
means neighbors always have the same option type (i.e. call or put) and position 
(i.e. long or short), but just a different strike price. 

The neighborhood size depends on the distance of the randomly chosen logic 
1 to the closest set bit above and below in the same substring or in other sub-
strings. Each substring represents the same range of strikes but for different op-
tion types and positions. Let us consider a genome that consists of N bits, then 
there are four substrings of length N/4 (where N/4 is an integer value). A ran-
domly chosen logic 1 from amongst the N possible positions of the genome 
would translate to a certain position in the individual substring. Let us denote 
this position as i where 1 4i N≤ ≤ . The neighborhood is bounded from above 
by the closest set bit in the substring or by an identical position in any of the 
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substrings. Let us denote this position as j where j i> . If there are no set bits, 
then j is set to the position value of the end of the substring, i.e. 4j N= . A 
similar discussion holds for finding the lower bound of the neighborhood. In 
this case we find the closest set bit below the randomly chosen bit in any of the 
substrings. Let us denote this position as k where k i< . If there are no set bits, 
then k is set to the position value of the start of the substring, i.e. 1k = . Thus 
the neighborhood range is seen to be [k, j], which is a subset of the total range of 
a substring, i.e. [ ]1, 4N . This neighborhood would next need to be translated to 
the appropriate position range in the genome which we will denote as [ ]( ),k j . 
A neighbor is generated by clearing the initially chosen logic 1 bit and setting to 
logic 1 a bit [ ]( )1, 1m k j∈ + − , in the case where neither k or i represent a 
start or endpoint of a string, i.e. 1k ≠  and 4j N≠ , or if 4k N= , i.e. there 
is no set bit above the randomly chosen bit, then a bit [ ]( )1,m k j∈ +  is set 
to logic 1 (in the appropriate substring), or if 1k = , i.e. there is no set bit below 
the randomly chosen bit, then a bit [ ]( )1, 1m j∈ −  is set to logic 1 (in the 
appropriate substring). The neighbor replaces its parent in the population if and 
only if it has higher fitness. In our approach, we used a steepest ascent search so 
that all solutions in the neighborhood were tried with the best replacing the 
parent. 

Let us illustrate this with an example. Consider a genome of length 160N = . 
There will be four substrings each of length 4 40N = . Thus in this case we see 
that there are 40 different strike values, which for the purpose of this example, 
range from 111 to 150. Suppose a random initialization results with the follow-
ing four bits being set to 1 in the genome: 12, 64, 75 and 127. This translates to 
bit 12 in the long call option substring being set which represents a strike of 122, 
bits 24 and 35 in the short call substring being set which represents strikes of 134 
and 145 and bit 7 in the short put option substring being set which represents a 
strike of 117. This initialization is shown in Figure 3 where the individual sub-
strings have been aligned vertically according to strike location. The P/L profile 
for this four-leg strategy is shown in Figure 4. 

Let us now consider that the randomly chosen set bit of the four is bit 64 of 
the genome, that is, the 24th strike in the short call options substring which has 
strike value of 134. The range of the neighborhood can be readily seen in Figure 
3 to be [12, 35], which has a strike range of [122, 145]. Thus, in this case a local 
search for would be performed by changing the strike of the short call option to 
any within this range (excluding the bounds). This would be done by toggling 
bits 53 to 74 of the genome. Alternatively, if the randomly chosen bit was bit 127 
of the genome, then the range of strikes within the interval [111, 122] for short 
put options would be searched. This would be done by toggling bits 121 to 131 
of the genome. 

We also used elitism to help improve the search result—i.e., the best fit indi-
vidual from the previous generation was cloned and replaced the worst fit indi-
vidual in the current generation. 
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Figure 3. Example genotype of a four-leg option strategy. The four segments 
of the genome are aligned vertically commensurate with the strike locations. In 
this example all bits are set to 0 except for bits 12, 64, 75 and 127 of the ge-
nome, which are set to 1. This corresponds to strike 12 of the long calls (strike 
value = 122), strikes 24 and 35 of the short calls (strike values = 134 and 145), 
and strike 7 of the short puts (strike value = 117), being set to 1. 

 

 
Figure 4. Aggregation of the four P/L profiles of the four 
options identified in Figure 3 genotype. 

5. Strike Mapping 

A strategy is initiated by noting the current underlying price and determining 
the appropriate option strikes in relation to this. Since clearly the underlying 
price moves around an effective relationship between the underlying price and 
the strategy option strikes needs to be found. That is, one does not have the lux-
ury of specifying the option strikes directly but rather these need to be deduced 
indirectly using the underlying price at trade initiation. 

In [1] this relationship was given by specifying option delta values. Thus in 
this case the strategy is specified by the delta values of each of its constituent op-
tions. This is a commonly used method by option traders. A couple of perceived 
advantages of using delta for this function are: 1) option delta values are depen-
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dent on the volatility of the underlying, so that, for example, when volatility is 
high the option strike of a certain delta will be further away from the underly-
ing price (i.e. the ATM strike) when compared to that in less volatile situa-
tions, and 2) delta values for all options are readily available on options trad-
ing platforms. 

With the delta mapping method, given a specified delta value, the option 
whose strike is closest to the desired delta was chosen. Thus in this way the delta 
specification maps into a desired strike. 

In this paper an alternative mapping is proposed and tested for its efficacy. 
Rather than specifying delta values, the alternative of specifying the scaled, nor-
malized strike values is used. In this method, strikes are first normalized by di-
viding them by the current underlying price. So that, for example, using the data 
given in Table 1, we see that for the current underlying price of 114.61, the nor-
malized strike value of the 120 strike options is 1.047. And also for the 110 strike 
options, the normalized strike value is 0.960. In Table 1 the normalized strike 
values for all the listed strikes are given in column 9. 

After the strikes are normalized, they are then scaled in order to expand the 
strike selection. Strikes above the current underlying price are scaled by multip-
lying the normalized strike value by the scale factor, 1.03, i.e. increasing it by 3%. 
So in this case the scaled normalized strike value of a 120 strike option in Table 
1 is 1.078. For the case of strikes below the current underlying price the norma-
lized strikes are scaled using the factor of 0.97, i.e. almost 3% below the norma-
lized strike values. So, for a strike of 110, with normalized strike value of 0.960, 
the scaled, normalized strike value is 0.931. The scaled, normalized strike values 
are listed in column 10 in Table 1. 

The scaling factors used in this paper were determined through a number of 
simulation runs by increasing/decreasing the scaling factor in 1% incre-
ments/decrements. The chosen scale factors gave the best results. 

Thus with this method, the constituent option strikes for option strategies are 
specified by a scaled, normalized option strike value, so that when given the un-
derlying price one searches for the option strike in the option chain that is clos-
est to the desired value. 

 
Table 1. This table shows the option chain end-of-day (EOD) data on October 1, 2010 for SPY options which expire on November 
19, 2010. The EOD price for SPY was 114.61. Figures 5-7 were obtained using this data. Data was obtained from IVolatility.com. 

Row 
Call 
Bid 

Call 
Ask 

Call 
Delta 

Strike 
Put 
Bid 

Put 
Ask 

Put 
Delta 

Normalized 
Strike 

Scaled 
Strike 

1 25.69 25.97 0.9709 89 0.14 0.17 −0.02538 0.777 0.753 

2 24.71 24.99 0.96767 90 0.16 0.19 −0.02868 0.785 0.762 

3 23.73 24.02 0.96376 91 0.18 0.21 −0.03211 0.794 0.770 

4 22.76 23.04 0.95969 92 0.20 0.23 −0.03568 0.803 0.779 

5 21.79 22.07 0.95492 93 0.23 0.26 −0.04056 0.811 0.787 
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Continued 

6 20.80 21.14 0.94891 94 0.26 0.29 −0.04561 0.820 0.796 

7 19.85 20.13 0.94476 95 0.29 0.32 −0.05088 0.829 0.804 

8 18.89 19.17 0.93825 96 0.33 0.36 −0.05751 0.838 0.812 

9 18.02 18.17 0.92893 97 0.37 0.41 −0.06493 0.846 0.821 

10 17.07 17.22 0.92083 98 0.42 0.46 −0.07321 0.855 0.829 

11 16.13 16.28 0.91137 99 0.48 0.51 −0.08236 0.864 0.838 

12 15.20 15.35 0.90054 100 0.56 0.57 −0.09308 0.873 0.846 

13 14.28 14.42 0.88878 101 0.62 0.65 −0.10495 0.881 0.855 

14 13.36 13.50 0.87600 102 0.70 0.74 −0.11843 0.890 0.863 

15 12.44 12.59 0.86211 103 0.79 0.83 −0.13263 0.898 0.872 

16 11.56 11.70 0.84499 104 0.90 0.93 −0.14958 0.907 0.880 

17 10.67 10.82 0.82705 105 1.03 1.06 −0.16900 0.916 0.889 

18 9.81 9.96 0.80629 106 1.16 1.19 −0.18901 0.925 0.897 

19 8.99 9.10 0.78312 107 1.31 1.35 −0.21226 0.934 0.906 

20 8.17 8.27 0.75779 108 1.51 1.53 −0.23896 0.942 0.914 

21 7.37 7.47 0.72966 109 1.69 1.73 −0.26698 0.951 0.923 

22 6.61 6.69 0.69850 110 1.92 1.96 −0.29869 0.960 0.931 

23 5.87 5.95 0.66440 111 2.18 2.22 −0.33340 0.969 0.939 

24 5.17 5.23 0.62741 112 2.49 2.51 −0.37132 0.977 0.948 

25 4.50 4.56 0.58739 113 2.81 2.84 −0.41191 0.986 0.956 

26 3.87 3.93 0.54459 114 3.17 3.21 −0.45546 0.995 0.965 

27 3.28 3.33 0.49921 115 3.58 3.63 −0.50167 1.003 1.034 

28 2.74 2.79 0.45171 116 4.03 4.07 −0.55041 1.012 1.043 

29 2.25 2.29 0.40253 117 4.54 4.59 −0.60043 1.021 1.052 

30 1.81 1.85 0.35261 118 5.10 5.15 −0.65152 1.030 1.061 

31 1.43 1.47 0.30331 119 5.71 5.80 −0.70137 1.038 1.070 

32 1.11 1.15 0.25603 120 6.37 6.49 −0.75037 1.047 1.078 

33 0.84 0.87 0.21069 121 7.10 7.22 −0.79662 1.056 1.087 

34 0.62 0.66 0.17032 122 7.86 8.00 −0.84080 1.065 1.096 

35 0.45 0.49 0.13473 123 8.67 8.94 −0.87056 1.073 1.105 

36 0.32 0.36 0.10453 124 9.53 9.80 −0.90383 1.082 1.114 

37 0.23 0.26 0.08014 125 10.42 10.70 −0.93211 1.091 1.123 

38 0.16 0.19 0.06061 126 11.34 11.63 −0.95526 1.099 1.132 

39 0.11 0.14 0.04552 127 12.28 12.57 −0.97723 1.108 1.141 

40 0.08 0.10 0.03419 128 13.25 13.53 −0.96887 1.117 1.150 

41 0.06 0.08 0.02708 129 14.22 14.51 −0.97616 1.126 1.159 
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We will soon see that this scaled, normalized strike mapping method performs 
better, under a variety of conditions, than both an unscaled, normalized strike 
mapping method as well the previously used delta strike mapping method. 

6. Results from Memetic Algorithm Searches 

In this section results are examined from searches performed by the MA. As 
mentioned previously, the MA is configured to maximize two different fitnesses: 

1) Average profit per trade under the constraint that the probability of a prof-
itable trade is greater than 80%.  

2) The same as 1), but with the added constraint that the maximum percen-
tage equity drawdown is limited to the various levels of 40%, 30%, 20% and 10%. 
These percentages reduce risk to the desired levels.  

The underlying equity used in our study has ticker symbol SPY, which is the S 
& P 500 ETF (Exchange Traded Fund). The option data was obtained from IVo-
latility.com. The obtained data was sufficient to examine performance of 138 
trades placed from January 10, 2005 to the exit of the final trade on July 15, 2016. 

The trading protocol was as follows. Trades were entered on the close on the 
first trading day of the month and exited on the close on option expiration day 
which occurs on the 3rd Friday of the following month. This allowed EOD (end 
of day) option data to be used. No adjustments were made to the trade during 
any trading period. 

Table 1 shows a representative set of option data that was used. More specifi-
cally it shows one option chain for the start of one of the trading time periods. 
The strike values were restricted so that the call and puts had (absolute value of) 
deltas ≥ 0.025. In the case for Table 1 this restricted the number of strikes to be 
41. The bid and ask prices for the various strikes and deltas for the calls are 
shown in columns 2 through 5, respectively, with the bid and ask prices along 
with the deltas for the puts in columns 6 through 8, respectively. In our analysis 
the bid and ask prices for each option was used as the price at which the option 
was sold and bought, respectively. Column 9 lists the normalized strikes, which 
in this case was obtained by dividing each of the strike values by the closing price 
of 114.61. This was subsequently scaled by the factors of 1.03 for normalized 
strikes > 1 and 0.93 for normalized strikes < 1, respectively, producing the 
scaled, normalized strikes shown in column 10. 

The memetic algorithm uses the data to discover option strategies which, over 
the time period of the historical data, maximizes the two performance metrics 
used. As will be seen below this produced a number of new and interesting op-
tion strategies. The strategies were categorized with respect to the number of op-
tion legs present. These were limited to two through six. Furthermore, the opti-
mum number of option legs was thus also determined. 

6.1. Maximizing Profit for an 80% Profitable Strategy for Various  
Levels of Drawdown Limitation Using Delta Strike Mapping 

In [1] results were presented which were obtained by exclusively using the delta 
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mapping strike selection approach. Both the cases for no drawdown limitation 
and a 10% limitation were shown. In order to more fully contrast the results 
with the new scaled, normalized strike mapping approach, the results using both 
methods will be shown for the cases where limits to the maximum drawdown 
(Max DD) are imposed from none at all to 40%, 30%, 20% and 10%. Only option 
strategies that feature four option legs will be considered here as these were 
found in [1] to be the most profitable. 

First we consider the results of the delta strike mapping approach shown in 
Table 2. In this table we see the average profit per trade, total profit for the 
whole period examined, percentage of trades that are profitable and the subse-
quent maximum equity drawdown experienced. This last metric assumes an ini-
tial cash equity of $10,000. 

 
Table 2. Option strategies obtained for maximizing profit where over 80% of trades are profitable in the historical data period. 
These results are for the strike selection method that uses a delta mapping approach. The results shown are for the cases where 
limits to the maximum drawdown (Max DD) are imposed from none at all to 40%, 30%, 20% and 10%.  

Target 
DD 
% 

Option 
Type 
(P/C) 

Long/ 
Short 
(L/S) 

Delta 
(Abs. 
value) 

Example 
(Table 1 

data) 

Average 
Profit/ 

Trade ($) 

Total 
Profit 

($) 

Percent 
Profitable 

(%) 

Max 
DD 
(%) 

 P S 0.212 107     

None C L 0.403 117 71 9766 81.2 48.4 

 C S 0.211 121     

 C S 0.135 123     

 P S 0.212 107     

40 C L 0.403 117 64 8835 81.2 39.7 

 C S 0.256 120     

 C S 0.211 121     

 P S 0.212 107     

30 P S 0.239 108 48 6567 82.6 29.4 

 P L 0.333 111     

 C S 0.135 123     

 P L 0.025 89     

20 P L 0.029 90 38 5257 81.9 14.7 

 P S 0.212 107     

 C S 0.105 124     

 P L 0.036 92     

10 P L 0.041 93 36 4967 82.6 8.6 

 P S 0.212 107     

 C S 0.105 124     

https://doi.org/10.4236/ti.2018.94013


R. Tymerski, G. Greenwood 
 

 

DOI: 10.4236/ti.2018.94013 193 Technology and Investment 
 

As per the strike mapping technique discussed here the option strategies may 
be reproduced using the specified delta values. Examples using the data shown 
in Table 1 are included in Table 2. The P/L profiles and the resulting equity 
curves for the five best performing option strategies are shown in Figure 5. 

No maximum drawdown limitation: The P/L profile and equity curve for the 
option strategy discovered which imposes no maximum drawdown limitation 
are shown in Figure 5(a) and Figure 5(b), respectively. From Table 2 we see 
that the average profit per trade was $71, which is the highest achieved with the 
delta mapping method for strike selection. However, this comes at the price of a 
maximum drawdown of 48.4% that is also the highest that is seen. Clearly taking 
greater risk results in greater reward. This appreciable drawdown is the result of 
just two trades that occurred during the global financial crisis of 2008. 

40% maximum drawdown limitation: Setting the maximum drawdown to a 
figure of 40% results in the P/L profile and equity curve shown in Figure 5(c) 
and Figure 5(d), respectively. The obtained average profit per trade was $64 and 
the achieved maximum drawdown was 39.7%. The P/L profile shows the upper 
short calls of the previous no drawdown limitation strategy have been lowered to 
appear closer to the money. This results in receiving great premium for these 
calls. Therefore, we see that the slightly lower max drawdown achieved for this 
configuration compared to the previous (i.e. 40% compared to 48.4%) is ob-
tained by premium enhancement rather than limiting losses. 

30% maximum drawdown limitation: A 30% maximum drawdown target re-
sults in achieving an average profit per trade of $48 and an achieved maximum 
drawdown of 29.4%. The associated P/L profile and equity curve for the discov-
ered option strategy are shown in Figure 5(e) and Figure 5(f), respectively. We 
see that the P/L profile has now been changed from that of the previous two 
considered by a profile that increases profit as the underlying price decreases (in 
a range). This is achieved by using a long put. 

20% maximum drawdown limitation: With greater demands on reducing the 
drawdown the P/L profile further changes so that for very large underlying losses 
an appreciable profit can be achieved. The P/L profile and equity curve resulting 
from a target of 20% max drawdown are shown in Figure 5(g) and Figure 5(h), 
respectively. The obtained average profit per trade was $38 and the achieved 
maximum drawdown was somewhat lower than the target at 14.7%. 

10% maximum drawdown limitation: The P/L profile and associated equity 
curve for a targeted 10% maximum drawdown changes little from the previous 
20% drawdown limit case. These are shown in Figure 5(i) and Figure 5(j), re-
spectively. The average profit per trade is now $36 and the achieved maximum 
drawdown reduces to 8.6%. 

6.2. Maximizing Profit for an 80% Profitable Strategy Using  
Scaled, Normalized Strike Selection 

We next consider a scaled, normalized strike as the basis by which the strikes of 
an option strategy are selected. 
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Figure 5. Profit and loss (P/L) profiles and associated equity curves for the option configurations presented in Table 2. The price 
of the underlying (SPY) is 114.61. (a) P/L profile with no maximum drawdown target; (b) Associated equity curve; (c) (P/L) pro-
file for a maximum drawdown target of 40%; (d) Associated equity curve; (e) P/L profile for a maximum drawdown target of 30%; 
(f) Associated equity curve; (g) P/L profile for a maximum drawdown target of 20%; (h) Associated equity curve; (i) P/L profile for 
a maximum drawdown target of 10%; (j) Associated equity curve. 
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In Table 3 the results obtained for optimum choice of option strategy with the 
number of options varying from 2 to 6 options are presented. In particular, the 
average profit per trade for 2 leg, 3 leg, 4 leg, 5 leg and 6 leg strategies was found 
to be $75, $69, $87, $78 and $87, respectively. Without scaling the corresponding 
results were: $66, $56, $72, $58 and $70, respectively. Thus we see that scaling 
consistently improves the results for any number of option legs. Furthermore, 
this is obtained whilst also improving the maximum drawdown numbers. Both 
sets of these results compare favorably with the delta strike mapping method, 
which has corresponding average profit per trade of $55, $52, $68, $56 and $65, 
respectively. The average profit per trade and maximum drawdown for the op-
timum strategies of varying number of legs from two to six are summarized in 
Table 3. 

We will now look more closely at the results obtained by use of the scaled, 
normalized strike mapping method for each of the five option strategies with 
number of option legs varying from two to six. These are presented in Table 4. 
The corresponding P/L profiles are given in Figure 6. 

Two-leg option’s strategy: The option strategy chosen is one commonly 
known as a strangle, i.e. short call and short put. The delta mapping method also 
chose a strangle as the optimum two-leg option’s strategy [1]. The P/L profile is 
shown in Figure 6(a). In the present case, the strikes are placed much closer to 
the money than for the delta mapping method. Furthermore, they are ITM 
strikes unlike for the delta mapping method where both strikes were OTM. ATM 
options have an absolute value of delta of 0.5 and ITM options have (an absolute 
value of) delta >0.5, and OTM options have (an absolute value of) delta <0.5. 
The delta mapping method placed options at deltas of 21 and 13.5 (this option 
parlance refers to options placed at deltas of 0.21 and 0.135, respectively). The 
scaled, normalized strategy placed a short (ITM) call at 63 delta and short (ITM) 
put at 65 delta. 

Three-leg option’s strategy: The strategy chosen was a risk reversal with 
capped upside profitability, as before [1] for the delta mapping method. This has 
been formed by adding an ATM long call to the previous two-leg strategy. The 
P/L profile for this strategy is shown in Figure 6(b). This strategy, compared to 
the other strategies in this group of five, has the least profitability and greatest 
maximum drawdown, thus removing it as a viable option trading strategy. 

Four-leg option’s strategy: The P/L profile for this strategy is shown in Figure 
6(c). A short OTM call is added to the previous three-leg strategy. This short call 
brings in extra premium which enhances the strategy’s profitability. Compared 
to the other five strategies considered here, this four-leg option’s strategy, to-
gether with the six-leg strategy discussed below, have the greatest profitability 
with an average profit per trade of $87. 

Five-leg option’s strategy: The P/L profile for this strategy is shown in Figure 
6(d). A long OTM call is added to the previous four-leg strategy. This has the ef-
fect of limiting losses at the high end of underlying prices. In fact, for the profile  
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Table 3. Comparison of three option strike mapping methods: 1) delta mapping, 2) (unscaled) normalized strike mapping, and 3) 
scaled, normalized strike mapping (the scaling factors were 1.03 and 0.97). The results show the average profit per trade ($) and 
the maximum drawdown (%) for option strategies ranging from 2 to 6 options.  

Number 
of 

Options 

Delta 
Mapping Method 

($ per Trade/DD %) 

Normalized Strike 
Mapping Method 

($ per Trade/DD %) 

Scaled, Normalized 
Strike Method 

($ per Trade/DD %) 

2 55/34.5 66/38.6 75/33.8 

3 52/60.4 56/61.5 69/55.0 

4 68/48.3 72/44.9 87/42.8 

5 56/58.4 58/51.4 78/47.1 

6 65/48.9 69/50.9 87/35.0 

 
Table 4. Option strategies obtained for maximizing profit where over 80% of trades are profitable in the historical data period. 
These results are for the strike selection method that uses the scaled, normalized strike mapping method. 

No. 
of 

Opts. 

Option 
Type 
(P/C) 

Long/ 
Short 
(L/S) 

Scaled 
Norm. 
Strike 

Example 
(Table 1 

data) 

Average 
Profit/ 

Trade ($) 

Total 
Profit 

($) 

Percent 
Profitable 

(%) 

Max 
DD 
(%) 

2 C S 0.948 112 75 10,417 84.1 33.8 

 P S 1.061 118     

 C S 0.948 112     

3 C L 1.034 115 69 9508 85.5 55.0 

 P S 1.061 118     

 C S 0.948 112     

4 C L 1.034 115 87 12,005 85.5 42.8 

 P S 1.061 118     

 C S 1.070 119     

 C S 0.948 112     

 C L 1.034 115     

5 P S 1.061 118 78 10,773 86.2 47.1 

 C S 0.105 119     

 C L 1.114 124     

 C S 0.948 112     

 C S 0.956 113     

6 P L 0.965 114 87 12,001 87.0 35.0 

 C L 1.034 115     

 P S 1.052 117     

 P S 1.061 118     
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Figure 6. Profit and loss (P/L) profiles for the set of 5 strategies presented in Table 4. The 
price of the underlying (SPY) is 114.61. (a) Two options: strangle; (b) Three options: risk 
reversal (with capped upside profitability); (c) Four options; (d) Five options; and (e) Six 
options. 

 
shown in Figure 6(d) there will be no losses no matter how high the underlying 
price goes as the P/L is capped to zero at the high end. The cost of this added call 
however curtails the profitability of this strategy with respect to the previous 
four-leg option’s strategy. 

Six-leg option’s strategy: The P/L profile for this strategy is shown in Figure 
6(e) and it represents a departure from the trend in the profiles previously seen. 
It produces the highest average profit per trade of $87, which, as previously 
mentioned, matches that of the four-leg strategy, while also achieving a low 
maximum drawdown of 35% which is close to the lowest achieved of 33.8% by 
the two-leg option’s strategy. 

Conclusion from the results presented in Table 4: The best performing strat-
egy when considering both profitability and maximum drawdown is seen to be 
the six-leg option’s strategy. This is followed by the four-leg option’s strategy. 
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The large drawdown seen for all strategies occurred during the global financial 
crisis of 2008 and is due to just two extreme losing trades. This constitutes a 
good test for these strategies. To mitigate these losses in the next subsection we 
consider the effect of adding a maximum drawdown limitation requirement as 
part of the fitness function. We will consider a number of different drawdown 
limits as we observe the effect on the strategy P/L profile. 

6.3. Maximizing Profit for an 80% Profitable Strategy for Various  
Levels of Drawdown Limitation Using Scaled, Normalized  
Strike Mapping 

In the previous sections we have seen that the scaled, normalized strike mapping 
method is able to greatly improve the performance in terms of profitability and 
maximum drawdown. To further investigate this we will now look to imposing 
maximum drawdown limits at various levels. This was done earlier using the 
delta mapping method, and so a comparison with these previous results can be 
made. 

Table 5 shows the results for the cases where limits to the maximum draw-
down (Max DD) are from none at all to the various levels of 40%, 30%, 20% and 
10%. This is investigated for the four leg option’s strategies only. Figure 7 shows 
the corresponding P/L profile for the chosen option strategy and the resulting 
equity curve (with the assumption of an initial cash equity of $10,000). 

In the discussion below reference is made to ITM options that were selected 
for the strategies that were discovered. As previously mentioned, due to margin 
requirements the ITM options were restricted to just the first three ITM strikes. 
With reference to Table 1 with the underlying price at 114.61 the ATM option 
would be at the 115 strike for both calls and puts. Consequently, the first three 
ITM call options would be at strikes 114, 113 and 112. That is, at the first three 
strikes below the ATM level. Likewise, the first there ITM put options would be 
at strikes 116, 117 and 118. That is, at the first three strikes above the ATM level. 

No maximum drawdown limitation: The P/L profile and equity curve for the 
option strategy discovered which imposes no maximum drawdown limitation 
are shown in Figure 7(a) and Figure 7(b), respectively. This case was consi-
dered earlier where we saw that the average profit per trade was $87 and the 
maximum drawdown was 42.8%. 

40% maximum drawdown limitation: Setting the maximum drawdown limit to 
a figure of 40% results in the P/L profile and equity curve shown in Figure 7(c) 
and Figure 7(d), respectively. As seen in Table 5 the resulting average profit per 
trade was $83 and the actual maximum drawdown was 38.5%. Since the targeted 
maximum drawdown level of 40% is close to that obtained by the previous no 
limit imposed strategy, i.e. 42.8%, the option configuration only changes margi-
nally with only the movement of particular strike values. 

30% maximum drawdown limitation: A 30% maximum drawdown target re-
sults in achieving an average profit per trade of $66 and an actual maximum 
drawdown of 29.6% as shown in Table 5. The associated P/L profile and equity 
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curve for the discovered option strategy are shown in Figure 7(e) and Figure 
7(f), respectively. We see that the P/L profile has now been changed from that of 
the previous two considered. The new profile enhances the profit in the region 
slightly lower than the ATM price with the inclusion of a long put just below the 
ATM price. 

20% maximum drawdown limitation: With greater demands on reducing the 
drawdown the P/L profile further changes so that for very large underlying losses 
an appreciable profit can be achieved. The P/L profile and equity curve are 
shown in Figure 7(g) and Figure 7(h), respectively. The obtained average profit 
per trade was $42 and the actual maximum drawdown was much lower than the 
target at 9.7%. Further testing showed that when the maximum drawdown level 
was restricted to a range of [17%, 20%], the resulting profit was lower than that 
achieved when the drawdown restriction was simply < 20%. The resulting strat-
egy has now morphed into a strategy known as an unbalanced iron condor. 

 
Table 5. Option strategies obtained for maximizing profit where over 80% of trades are profitable in the historical data period. 
These results are for the scaled, normalized strike selection method and are shown for the cases where limits to the maximum 
drawdown (Max DD) are from none at all to the various levels of 40%, 30%, 20% and 10%.  

Target 
DD 
% 

Option 
Type 
(P/C) 

Long/ 
Short 
(L/S) 

Scaled 
Norm. 
Strike 

Example 
(Table 1 

data) 

Average 
Profit/ 

Trade ($) 

Total 
Profit 

($) 

Percent 
Profitable 

(%) 

Max 
DD 
(%) 

 C S 0.948 112     

None C L 1.034 115 87 12,005 85.5 42.8 

 P S 1.061 118     

 C S 1.070 119     

 C S 0.948 112     

40 C L 1.034 115 83 11,457 86.2 38.5 

 C S 1.052 117     

 P S 1.061 118     

 P S 0.931 110     

30 C S 0.948 112 66 9134 87.0 29.6 

 P L 0.965 114     

 P S 1.061 118     

 P L 0.889 105     

20 C S 0.948 112 42 5728 80.4 9.7 

 P S 1.061 118     

 C L 1.114 124     

 P L 0.889 105     

10 C S 0.948 112 43 5987 80.4 7.1 

 P S 1.061 118     

 C L 1.123 125     
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Figure 7. Profit and loss (P/L) profiles and associated equity curves for the option configurations presented in Table 5. 
The price of the underlying (SPY) is 114.61. (a) P/L profile with no maximum drawdown target; (b) Associated equity 
curve; (c) P/L profile for a maximum drawdown target of 40%; (d) Associated equity curve; (e) P/L profile for a maxi-
mum drawdown target of 30%; (f) Associated equity curve; (g) P/L profile for a maximum drawdown target of 20%; (h) 
Associated equity curve; (i) P/L profile for a maximum drawdown target of 10%; (j) Associated equity curve. 

https://doi.org/10.4236/ti.2018.94013


R. Tymerski, G. Greenwood 
 

 

DOI: 10.4236/ti.2018.94013 201 Technology and Investment 
 

10% maximum drawdown limitation: The P/L profile and associated equity 
curve for a targeted 10% maximum drawdown changes little from the previous 
20% drawdown limit case. These are shown in Figure 5(i) and Figure 5(j), re-
spectively. The average profit per trade is now $43 and the actual maximum 
drawdown reduces to 7.1%. The strategy is now a balanced iron condor. Interes-
tingly, we see that the strategy found has greater profitability than the previously 
discussed strategy which had a more relaxed requirement on maximum draw-
down, yet the EA did not find this strategy using the 20% maximum drawdown 
limitation requirement. 

Conclusion from the results presented in Table 5: The strategies chosen use 
the limited number of ITM option strikes that were permitted. Recall that this 
limitation was placed in order to not exacerbate margin requirements. Future 
work may involve a close examination of the actual margin requirements for the 
chosen strategies. 

7. Conclusions 

In this paper the work initiated in [1] has been extended. A memetic algorithm 
has been used to determine the optimum option strategy for trading SPY options 
during the historical period of January 2005 to July, 2016. The extensions are 
twofold: 1) the memetic algorithm has been enhanced from that previously pre-
sented in [1] to incorporate a steepest ascent approach in the local search, and 2) 
the strikes used in a strategy are now specified using a scaled, normalized strike 
mapping. This mapping was found to produce better results in terms of both 
profitability as well as maximum drawdown. 

The results presented considered strategies ranging from two to six option 
legs such that an 80% winning trade percentage was achieved. Both a six- and 
four-leg strategy was found to be optimum. Further examination of four-leg strat-
egies was made to see the effect on strategy structure as the maximum draw-
down percentage limit was progressively decreased in 10% decrements from 40% 
to 10%. This was done using the scaled, normalized strike mapping as well the 
previously used strike mapping method using deltas. At all drawdown levels the 
scaled, normalized strike mapping approach was found to give superior results. 

In summary, the main contributions to this work are threefold:  
1) a memetic algorithm has been formulated to find effective option trading 

strategies,  
2) a number of strategies have been uncovered, the most effective of which are 

four- and six-leg strategies, and  
3) a method of selecting strikes was devised which optimizes performance in 

regards to both profit and drawdown. Thus not only has the basic form of op-
timal strategies been found, but also, an effective method to assign strikes has 
also been proposed.  

Considering the degree of influence that the method of determining strikes 
has, further work will involve incorporating a volatility component into the scaled, 
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normalized strike mapping approach as a possibility to further enhance the re-
sults. We anticipate that this enhancement will lead to higher profits as well as 
reduced drawdowns. Also the use of ITM options and their tradeoff with margin 
requirements should also be investigated. 
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