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Abstract

The socioeconomic phenomena as tax evasion in agent-based com-
munity can be studied numerically through the Zaklan model (ZM).
The ZM has been configured as an excellent tool to control the tax
evasion fluctuations in communities with agents or individuals that
can be considered tax evaders or honest. The dynamic of temporal
evolution of the ZM was studied initially via the equilibrium Ising
model (IM), non-equilibrium Majority-vote model (MVM) and re-
cently via a three-state kinetic agent-based model. Here, through
Monte Carlo simulations, we study the problem of the tax evasion
fluctuations using a discrete version of the kinetic model of opinion
dynamics (BCS) in the dynamic of the temporal evolution of the
ZM. Unlike previous models cited here in the BCS model, the in-
teractions between agents occur in pairs. Then, we found that the
BCS model is as efficient as the IM and MVM in controlling the tax
evasion fluctuations. This control is even better when we use strong
punishment values k even for low audit probabilities p,.
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1. Introduction

The analysis of the social and economic behavior of a community
of people fulfilled by Bloomquist (2006), Andreoni (1998), Lederman
(2003), Slemrod et al. [1-6] (2003 to 2007), indicates that the tax
evasion in a community is a major cause of concern for governments.
Through empirical evidence Géchter [7] (2006), Frey and Torgler [8]
(2006) have provided that the group members or neighborhood of tax
evaders are important in deciding whether or not to pay taxes.
Zaklan et al. [9,10] (2008) developed an economics model to study
the problem of tax evasion dynamics on a people community using the
equilibrium IM on a square lattice (SL) and Monte-Carlo simulations
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with the Glauber algorithms. In some complex networks like directed
Barabasi-Albert and Apollonian networks it is not possible to simulate
the ZM via IM because this has no social noise on these complex
networks, i.e., does not present a phase transition.

To solve this problem, Lima [11,12] (1992, 2008) proposed the use
of the non-equilibrium MVM to study the tax evasion in any complex
network [13] (2010). He points out that people do not live in a social
equilibrium, and any social noise can drive to a government or market
chaos. Then, it is reasonable to expect that a non-equilibrium model
(MVM) explains better events of non-equilibrium. In order to show
that the problem of tax evasion fluctuations is better described by a
non-equilibrium model than by an equilibrium model, Lima [14-17]
(2010 to 2016) studied the ZM on Apollonian, Opinion-Dependent,
Solomon, and Small-World Networks. In all these cases the tax evasion
problem was analyzed using the two-state version of MVM, where the
honest agent was rated +1 and the evaded value —1.

Crokidakis [18] (2014) has studied the problem of tax evasion via
ZM on a fully-connected population. In his work, the agents may be
in three different states, namely honest taxpayers, tax evaders and
undecided. The undecides agents are individuals in an intermediate
class among honests and evaders. Each agent can change his state fol-
lowing a kinetic exchange opinion dynamics, where the agents interact
by pairs with negative (probability p) and positive (1 — p) affinity pa-
rameters p;;, representing agreement /disagreement between pairs of
agents.

Biswas et al. [19] (2012) proposed a kinetic model of continuous
opinion dynamics (BCS). The BCS model has mutual interactions
that can be both positive and negative and a single parameter p rep-
resenting the fraction of negative interactions. Numerical simulations
of the continuous version of this model indicate the existence of a uni-
versal, continuous phase transition at p = p. with exponents of mean
field (vd = 2.00(1) , 8 = 0.50(1) and v = 1.00(1)). Mukherjee and
Chatterjee [20] studied the BCS model on square and cubic lattices
(2D and 3D). Their numerical results indicate that the critical behav-
ior of the BCS model on these lattices is the same as that of the Ising
model in the corresponding dimensions.

Here, we study the behavior of the tax evasion on an agents commu-
nity of honest citizens and tax evaders, where the agents are positioned
on sites of SL, but now using a discrete version of BCS model for the
temporal evolution of ZM.

The article is organized as follows: we present, in the next section,
the model and some of the Monte Carlo simulation details. In Section
3 the results are presented and, in the final section, some concluding
remarks are discussed.

2. ZM via Non-Equilibrium Dynamics of
BCS Model

We use the ZM via BCS model to study the tax evasion fluctuations
on a community of homogeneous agents located on a SL. In every time
period, each SL site is inhabited by an agent (individuals) with opinion
O;, who can either be an honest taxpayer O; = +1 or a cheater O; =
—1. Tt is assumed that initially, everybody is honest. Each period the
agents can rethink their behavior and have the opportunity to become
the opposite type of agent they were in the previous period. Each
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agent’s social SL may either prefer tax evasion or reject it. Individual
decision making depends on four rules:

1) Each node in the SL is assigned a discrete opinion variable O; =
+1;

2) At each time step is randomly choose a network node or site to
update;

3) Then one of your links is randomly selected, and a y;; parameter
called binding affinity is set. The affinity parameter assumes values
—1 with probability p and +1 with probability 1 — p;

4) Both nodes i and j sharing the selected link will be updated
according to the following expressions:

Oi(t + 1) e Oz(t) + ,UijOj (t) (1)

O;(t+1) = 0;(t) + pij0i(?), (2)

where O;(t) and O;(t) are the oldest states of opinion, and O;(t + 1)
and O;(t + 1) are the updated states of opinion.

The ZM presents an enforcement mechanism that consists of two
components: a probability of an efficient audit p,; and a number k
of periods. Then once the tax evasion is detected the tax evaders,
O; = —1, can become honest individuals O; = +1, in the presence of
an audit probability p,, for a number k of periods. One time unit is one
sweep through the entire system. Therefore, according to the above
rules and unlike other models such as the IM or MVM, for example,
agents’ opinions are updated by pairs that were randomly connected
by p;; affinity links. The ordering in the system is measured by the
quantity namely average opinion defined by

1 N
0<N ;0> (3)

where < . . . > denotes configurational average taken at steady
states.
The fraction of tax evaders is

tax evasion =

N — Nhonest
_ 4
), 0

where N is the total number and Npopest the honest number of agents.
The tax evasion is calculated at every time step t of system evolution.
Here N = 10* agents.

Similar to IM and MVM models in BCS model for p > p.., half of the
people are honest, O; = +1, and the other half cheat O; = —1, while
for p < p. either one opinion or the other opinion dominates. Because
of this behavior, we set a fixed noise (p) to some values slightly below
pe, where the case that agents distribute in equal proportions onto the
two alternatives is excluded. We set p = 0.95p. with p. = 0.1340 +
0.0001 on SL. Then we vary the degrees of punishment (k = 10, 50 and
100) and audit probability rate (p, = 0.5%, 10% and 90%). Therefore,
if tax evasion is detected, the enforcement mechanism p, and the time
of punishment k are triggered in order to control the tax evasion level.
The punished individuals remain honest for a certain number k of
periods, as explained before.
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Figure 1.

3. Results and Discussion

Following the ZM, we start with a population of N = 10* individuals
where initially everyone is considered honest O;(t = 0) = +1. Then
we apply the rules of the ZM as the punishment period k and the audit
probabilities p,.

In Figure 1, we show the tax evasion as a function of time via a BCS
model for two different values of p > p. = 0.1340(1) , namely p = 0.35
Figure 1(a) and Figure 1(b) and p = 0.25 ((c) and (d)). In this case,
for p > p., we will have the baseline case ( k = 0 and p, = 0), i.e.,
the kinetic exchange dynamics defined by Equation (1) and Equation
(2) leads the system to a disordered state with an equal fraction 1/2
(50%) for 1 states. Thus, from Figure 1 that if the audits are efficient
(pa = 90%) the tax evasion can be considerably reduced to a 20% for
k = 10 and to = 7.5% for kK = 50. This behavior of fluctuations of
the tax evasion is identical to that reported in ZM on regular lattices
and networks [9,10,12,13]. For the cases where p, = 5%, considered
more realistic by the literature, the punishment is more efficient when
the penalty duration is high as & = 50. In this case, the tax evasion
can be reduced for values around 30%. Notice that when the value
of p decrease the fraction of tax evaders also decreases, that is, for
high p the fraction of opinions —1 is greater than in the cases of lower
values of p. This behavior is due to the fact that there are many
negative affinity parameters u;; in the population, which allows many
transitions O; = +1 — O; = —1 for p > p..
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In Figure 2(a) and Figure 2(b), we present results for p = 0.15, this
is, another value of p > p. which is very close to the critical point
pe. See that for a high audit probability p, = 90% the tax evasion
can be dramatically reduced for both punishment periods k£ = 10
and k = 50. See also that even for p, = 5% considered here as the
realistic value in a community of tax evaders the application of severe
punishments as k = 50 can lead the evasion to low levels like 20%, see
Figure 2(b). Still, in Figure 2, we show results for p < p., Figure 2(c)
and Figure 2(d). Then for p = 0.05 the time dynamics of the BCS
model drive the system to a steady-state with a large number of honest
individuals (O; = +1). For p, = 90% (Figure 2(c)) the tax evasion
is reduced to 6% as k = 10 and to 5% as k = 50 and as p, = 5%
(Figure 2(d)) the tax evasion is now reduced to 6% regardless of the
values of the punishment periods k = 10 and 50.

In Figure 3, we exhibit the average tax evasion in the stationary
states as a function of the audit probability p,. Figure 3(a)-(c) display
the results for p = 0.05, 0.15 and 0.35, respectively, and for punishment
period values of k = 10, 50, and 100. For p = 0.05, i.e., p < p. the
average tax evasion is small enough and decreases with the growth
of po. This decreases to 4.5% for high punishment period values like
k = 100. Otherwise, the tax evasion for £ = 100 and values of p > p,
as 0.15 and 0.35 decrease for 6% and 5%, respectively. In Figure 3(d),
we show the behavior of the tax evasion for £ = 10 and for p = 0.05,
0.15, and 0.35. One can see that for p < p. the tax evasion remains
constant for all values of p,. For values of p > p. the tax evasion is
reduced to ~ 15% and = 25% for 0.15 and 0.35, respectively.
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Figure 2. The same of Figure 1, but now to p = 0.15 ((a) and (b)), and p = 0.05 ((c) and (d)).
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In the (a)-(c), we show the results for p = 0.05, 0.15 and 0.35, respectively, and values

of degrees of punishment & = 10,50, 100. In the last (d) it is shown the results for k = 10
and different fractions of negative interactions p. Each point is averaged over 100 independent
simulations for population size N = 10%.

4. Conclusions

The first numerical attempt to model the fluctuations tax evasion
problem was performed by Zaklan et al. [9]. They used Monte Carlo
Simulation and the Ising model (equilibrium model) as a tool for the
dynamic evolution of Zaklan. In some geometries such as Apollonius
and Barabasian networks the Ising model cannot be used due to the
lack of phase transition. Lima [12] overcame this obstacle by proposing
to use the majority vote model (non-equilibrium model) as a temporal
evolution of the Zaklan model. Both proposals were successful in their
particular topologies.

Here, we studied the behavior of the tax evasion via the non-
equilibrium BCS model. As we saw above the BCS model is a model
of opinion formation in a social community. The behavior of the BCS
model in relation to control the tax evasion fluctuation is very simi-
lar to those found by the Ising and majority vote models. Then, the
sociophysics BCS model is another useful tool for studying the tax
evasion problem in a community. Therefore, we found the plausible
result that tax evasion is diminished by stronger punishment k£ and
audit probability p,.
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