Affective, Normative and Continuance: Predictors of Employees’ Commitment of Large-Cap It Firms in Indian Context

Radha Yadav¹*, Ashu Khanna², Ruby Sengar³, Sudipta Dasmohapatra⁴

¹USB, Chandigarh University, Punjab, India
²IIT Roorkee, Roorkee, India
³Symbiosis Centre for Management Studies, Noida, India
⁴Duke University, Durham, USA

Email: *yadavradhika121@gmail.com

Abstract

Purpose: The purpose of the paper is to investigate the predictors of employees’ commitment and also find out the critical dimensions of quality of work life (QWL) that engender commitment among today’s employees in information technology (IT) firms. Further, the study analyses on the association of demographic variables with QWL and organizational commitment (OC).

Design/Methodology/Approach: The sample size for the study consists of 618 employees (respondents) from 21 large-caps (large-capital) IT companies in India. Cronbach alpha to test the reliability and validity; Factor Analysis as a data reduction tool. Subsequently, the mixed model and multi-regression methods are applied to test the relationship between the said variables.

Findings: The findings suggest that 13 variables of QWL play a key role in the work life of IT employees. The results show that there is a significant relationship between the qualification and number of dependents with QWL and OC both. Moreover, a substantial relationship between QWL and affective commitment of IT employees is found. The results further reveal that there exists a strong link between various dimensions of QWL with OC. Practical Implications: QWL will help in creating a healthy environment in the organization that will enhance the commitment of the employees towards their organization. Enhanced OC will stimulate individual’s attachment to the organization. Moreover, if QWL and OC are boosted, they will motivate employees to stay with the organization and enthusiastically work towards organizational objectives. Further, the escalation of OC will help in achieving growth, profit and market share at a greater pace. Originality/Value: This study focuses on the important variables for employees commitment in the terms of QWL.
1. Introduction

With the world changing rapidly, managing an organization has become an increasingly complex act for the sustainable future and growth. The study provides an insight on how organizations develop and make changes in the QWL to get committed employees. Manager’s work on those variables which are significantly related to QWL and OC and these variables are also useful for the sustainable growth [1]. The concept of QWL came into the limelight after the results of Hawthorne experiments (1924-1933) conducted by Elton Mayo and Fritz Roethlisberger [2]. Walton (1998) was the first person who introduced the concept of QWL having eight dimensions namely, fair payment, legal positivism, permanent growth and security, opportunity, social dependency, development of individual capabilities, security of environment and social integration [3]. The continuously revised policies and programs like performance appraisal, career growth, work-life balance, participative management, etc. created a positive impact on the morale of the employees [4] [5]. QWL is exhibited when the employee’s incentive in the form of monetary and non-monetary services are provided by the organization [6].

The concept of organizational commitment (OC) has been derived as a concept from industrial and organizational psychology [7]. Commitment changes from individual to individual concerning attachments, opportunities accessibility, monetary advantages and so on [8] [9]. Porter et al. (1982) gave a “side-bet” theory which explains OC as the behavior involving individuals to the process in which they lock themselves in a particular organization [10] [11]. The idea of OC is depicted as a tridimensional idea, portrayed by the affective, continuance and normative measurements [12] [13].

2. Purpose of the Study

IT sector is an emerging and continuously blooming sector. According to the NASSCOM report 2012 & Indian Times report 2017, IT sector has been continued to emerge as the prime engine of economic growth and contributing to nearly 13% of the Indian gross domestic product (GDP). IT sector gives the employment directly about 2.5 million people in India, so it is necessary to assess the quality of work life that enhance the organizational commitment i.e. affective, continuance and normative [14]. IT sector has been facing ups and downs for the last 10 years, with the employees’ facing many problems like layoff, termination, decrement in salary, etc. With the advancement of technology, organizations began putting resources into the change of the work environment, attempting to make it appropriate to the physical, mental, and social needs of its
employees, as this approach to forces its differential face in the business sector
[15]. The purpose of this study is to analyze the predictors of employees’ commit-
mmitment with the respect for Quality of Worklife of the IT sector in the Indian
context. Quality of Worklife is analyzed by investigating the dimensions that
boost their performance, and to offer suggestions to improve their work-life
balance.

3. Objectives of the Study
The aim of this study is to deliver the indicators based information that will en-

hance the performance of IT firms through exploring and assessing dimensions
of QWL and predictors’ employees’ commitment. The study has been designed
to attain the following objectives.

1) To understand the association of demographic variables of employees’ with
quality of work life and commitment.

2) To understand the association of dimensions of quality of work life and or-

ganizational commitment.

3) To understand the predictors of affective normative and continuance
commitment.

4. Literature Review
4.1. Dimensions of QWL and OC
QWL, as an aspect, has evolved and affected a multitude of segments such as
economic, technological and social era worldwide. To develop OC in employees,
QWL should grow in companies. Past studies prove that QWL plays a vital role
in generating the employee’s willingness to stay in an organization and cultivates
a positive attitude towards the job and organization. OC is a psychological
commitment of employees where employees attach themselves to the organiza-
tion with long-term loyalty [16]. The organization provides employees with job
security, promotion opportunities, and better training and development and in
return earn their loyalty, i.e., OC for long-term [17] [18]. Various dimensions of
QWL such as fringe benefits, peer and superior relations, training and de velop-
ment, grievance handling procedures, etc., improve the satisfaction level of e m-
ployees and generate commitment amongst them [19]. Studies prove that QWL
plays a significant role in enhancing job satisfaction and organizational perfor-
mancc [20] [21]. Results from the previous analysis have shown that supervision,
remuneration, and welfare schemes are positively correlated with affective, no-
minative and continuance commitment [17] [22] [23]. Previous result also
shows that QWL is positively and significantly associated with OC which shows
that OC is an outcome of better QWL [24]. Employee’s satisfaction and com-
mitment rely on the quality of work which they are receiving from the organiz a-
tion [21] [25] [26]. Fair and sufficient payment in the form of salary and allo-
ances are positively correlated with the OC [23] [27]. It is also found that the es-
sential variables for OC, which directly affects OC, are fair pay, health, safety and
work conditions [17] [24]. One of the studies has found that QWL affects job embeddedness and commitment. There is a positive relationship between QWL and job embeddedness and affection commitment [28] [29]. It is a crucial point to create a healthy work-life for the employees. Healthy work-life improves the work satisfaction, reduce turnover and enhance productivity [30] [31].

4.2. Association of QWL and OC

Researcher tried to identify various dimensions of QWL and their degree of influence towards OC. Past studies proves that there is significant relationship with the QWL and OC [17] [31] [32] [33] [34] [35]. The null hypothesis opted for these variables in the study are as follows:

\[H_{01}: \text{There is no significant relation between QWL and OC;} \]
\[H_{01a}: \text{There is no significant relation between dimensions of QWL and affective commitment;} \]
\[H_{01b}: \text{There is no significant relation between dimensions of QWL and continuance commitment;} \]
\[H_{01c}: \text{There is no significant relation between dimensions of QWL and normative commitment.} \]

4.3. Demographic Variables with QWL and OC

Past research stated that supervision, remuneration and welfare schemes are positively correlated with affective, nominative and continuance (alternative) commitment [33] [17] [23]. There is positive association between salary and allowances with commitment. Salary is associated with the qualification of the individual, it means that education and job experience are the main variables which describe the individual’s commitment [36]. A study has proved that QWL is the requirement of the employees; it is not based on gender. Better QWL of the employees is necessary for all the employees whether he is male or a female [37] [38] [39] [40] [41]. Another study is done 292 IT employees which say that there is no relation of gender with the QWL but there is positive relation of age, work experience and income with the QWL [42].

Based on the literature, it can be said that dimensions of QWL help in developing employee’s attachment towards the organization which propels the growth of an organization. After discussing literature review and noting identification of objectives following hypotheses were developed:

Association of demographic variables with QWL and OC

Demographic variable is an important factor that influences perception of individual’s towards QWL in the organization and build the commitment among employees. Past studies have proven that marital status, designation, gender and experience have a significant relationship with the QWL and OC [1] [36]. The null hypothesis opted for this variable in the study as:

\[H_{02}: \text{There is no significant relation between demographic variables of employees with QWL.} \]
5. Research Methodology

Sampling

A total of 618 samples are collected from employees working with the IT Firms in India. The total number of large-cap (large-capital) IT firms in India is 30 approximately. The authors have approached all the large-cap IT firms, but data could only be collected from 21 companies. Data are collected through systematic random sampling. The questionnaire is developed by the self-administered questionnaire development process [13]. After the collection of 618 questionnaires with 65 items, the questionnaire is analyzed by using factor analysis in which principal component analysis, commonalities and rotated component matrix is used [43].

6. Results and Analysis

6.1. Response Rate

For the survey, 1000 questionnaires are distributed amongst the respondents of which 700 filled questionnaires came back. However, from the returned questionnaires, 82 questionnaires are discarded as they are filled partially, and are not adequate for the analysis. The actual response rate is 70%. The sample consists of 618 questionnaires wholly filled by the IT sector employees.

6.2. Demographic & Dummy Variables

In the study, the authors have chosen demographic variables such as gender, marital status, age, work experience, educational qualification, remuneration, designation, jobs changed, number of dependents and the spouse's income of the employees in IT firms. All these qualitative variables play an important role in the performance of the employees. The frequency distribution of the demographics is shown in Table 1. These qualitative variables are essentially nominal scale variables with no particular numerical values. So, firstly these variables are quantified by creating dummy variables, which takes values of 0 and 1. 0 indicates the absence of an attribute and 1 indicates its presence. In the study, the following dummy variables will be used for multiple regressions. Variables are quantified as follows: gender (male: 1, female: 0); Age (below 35 years: 1, above 35 years: 0); marital status (married: 1, unmarried: 0); educational qualification (graduate: 1, postgraduate: 0); remuneration (below 5 lakhs: 1, above 5 lakhs: 0); work experience (Below 5 years: 1, above 5 years: 0); jobs changed (less than 2 jobs: 1, more than 2 jobs: 0); dependents (no dependents: 1, 1 or more dependents: 0) and spouse income (below 2.5 lakhs: 1, above 2.5 lakhs: 0).

6.3. KMO and Bartlett’s Test of Sphericity

The results of KMO and Bartlett’s test of Sphericity have been illustrated in Table 2.
Table 1. Descriptive statistics of demographic variables.

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-Category</th>
<th>No. of Respondents</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>463</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>155</td>
<td>25</td>
</tr>
<tr>
<td>Age</td>
<td>Below 35 years</td>
<td>459</td>
<td>74.2</td>
</tr>
<tr>
<td></td>
<td>35 & above</td>
<td>159</td>
<td>25.7</td>
</tr>
<tr>
<td>Marital status</td>
<td>Married</td>
<td>208</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>Unmarried</td>
<td>410</td>
<td>66.3</td>
</tr>
<tr>
<td>Educational Qualification</td>
<td>Graduate</td>
<td>318</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>Post graduate</td>
<td>300</td>
<td>48.5</td>
</tr>
<tr>
<td>Remuneration</td>
<td>Below 5 lakhs</td>
<td>361</td>
<td>58.4</td>
</tr>
<tr>
<td></td>
<td>Above 5 lakhs</td>
<td>257</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>Manager</td>
<td>34</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Executive</td>
<td>103</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>Engineer</td>
<td>183</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>Application developer</td>
<td>133</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>Trainee</td>
<td>106</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>Team Leader</td>
<td>59</td>
<td>9.5</td>
</tr>
<tr>
<td>Designation</td>
<td>Below 5 years</td>
<td>321</td>
<td>51.9</td>
</tr>
<tr>
<td></td>
<td>Above 5 years</td>
<td>297</td>
<td>48.1</td>
</tr>
<tr>
<td>Work experience</td>
<td>Less than 2 jobs</td>
<td>402</td>
<td>65.05</td>
</tr>
<tr>
<td></td>
<td>More than 2 jobs</td>
<td>216</td>
<td>34.95</td>
</tr>
<tr>
<td>Job changed</td>
<td>No dependents</td>
<td>444</td>
<td>71.85</td>
</tr>
<tr>
<td></td>
<td>Dependents</td>
<td>174</td>
<td>28.15</td>
</tr>
<tr>
<td>Dependent</td>
<td>Below 2.5 l</td>
<td>536</td>
<td>86.73</td>
</tr>
<tr>
<td></td>
<td>Above 2.5 l</td>
<td>82</td>
<td>13.26</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>618</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. KMO and Bartlett’s test of sphericity.

<table>
<thead>
<tr>
<th>KMO and Bartlett’s Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiser-Meyer-Olkin Measure of Sampling Adequacy</td>
</tr>
<tr>
<td>Chi-Square</td>
</tr>
<tr>
<td>Bartlett’s test of Sphericity</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The results demonstrate that the value of KMO is 0.798, which measures the sampling adequacy for conducting the study. Also, Bartlett’s test of Sphericity is significant (p < 0.001) here, which reveals the appropriateness of data for performing the factor analysis.

6.4. Exploratory Factor Extraction Analysis of QWL’s Variables

Exploratory factor analysis (EFA) and Confirmatory factor analysis (CFA) are
used to perform the extraction of variables. The test extracted 13 factors with 44 items. 57% of the variance is explained by the 13 factors along the condition of the Eigenvalue.

6.5. Reliability

The value of Cronbach’s alpha of total item is 0.854, which indicates a high level of internal consistency. This established adequate reliability with Cronbach alpha value greater than 0.70 [44] (Table 3).

It is found that 13 dimensions of QWL with 55 items cover all the aspects of the workplace. The details of the variables are given in Table 4, explored via factor loading and rotated component matrix during factor analysis (Figure 1).

6.6. General Linear Model

The possibility of the ordinary linear square model may not be appropriate, stems

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cronbach’s Alpha Based on Standardized Items</th>
<th>Before Factor Analysis</th>
<th>After Factor Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job security (JS)</td>
<td>0.814</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Participative management (PM)</td>
<td>0.720</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Peer relationship (PR)</td>
<td>0.755</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Superior relationship (PS)</td>
<td>0.774</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Work load (WL)</td>
<td>0.729</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Safety and harassment (SH)</td>
<td>0.623</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Rewards and recognition (RR)</td>
<td>0.618</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Career growth (CPD)</td>
<td>0.701</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Communication (C)</td>
<td>0.718</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Time pressure (TP)</td>
<td>0.729</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Pay (P)</td>
<td>0.750</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Work life balance (WLB)</td>
<td>0.760</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Fringe benefits (FB)</td>
<td>0.765</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Affective commitment (AC)</td>
<td>0.702</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Continuance commitment (CC)</td>
<td>0.688</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Normative commitment (NC)</td>
<td>0.740</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
from the fact that, lumping together different companies may camouflage the heterogeneity (individual or uniqueness) that may exist among twenty-one companies. The difference may be due to unique features of a company such as human resource practices and policies. One way to take into account the heterogeneity that may exist among each company is to have its intercept.

Equation (1):
QWL/OC = α + β1gender + β2marital status + β3age + β4qualification
+ β5work experience + β6jobs changed + β7Di1 + β8D2i
+ β9D3i + ⋯ + β27D20i + ε

where,
D{i, D2i, ⋯, D20i} = for organization (such as 1 for organization 1, 0 otherwise;
1 for organization 2, 0 otherwise; and so on)
QWL = score of quality of work life (QWL) and organizational commitment
(OC)
α = intercept
β1, β2, ⋯, β27 = estimates of coefficient
ε = error

This can be done quickly by introducing different intercept dummies for each
company. This method is known as only fixed effect model. In this case, 20
dummies will represent differentiated intercept dummy coefficient. In the study,
the authors are treating the first organization as a benchmark or reference cate-
gory although any organization can be chosen for that purpose. If we examine
organizations different intercept dummies, we find that several of them are sta-
tistically highly significant, indicating heterogeneity among 21 companies. The
model is known as a one-way fixed-effect model, which allows intercepting to
differentiate between cross-sectional data.

6.7. Relationship of Demographic Variables with OC

The following hypothesis is developed:
H01: There is no significant relationship between demographic variables of
employees and their perception towards OC.

Table 5 shows the result of multivariate regression of the demographic v a-
riables on the dependent variables. In this model, various organizations are used
as a fixed factor, OC is used as dependent variable and dummy of demographic
variables are used as a covariate.

6.8. Relationship of Demographic Variables with QWL

The following hypothesis is developed (Table 6):
H02: There is no significant relationship between demographic variables of
employees and their perception towards QWL.

6.9. Regression Analysis

Linear regression model is used to find the effect of dimensions of QWL on
overall commitment and predictors of various types of commitment. Three types
of linear regression models are used in this study which is as follows (Table 7).

Equation (2):

Model 1: OC = α + β1JS + β2PM + β3SR + β4PR + β5TP + β6WL + β7SH
+ β8RR − β9C + β10CPD + β11P + β12WLB + β13FB + ε

Equation model for Affective Commitment
Table 5. Tests of fixed effects for the demographic variables with organizational commitment.

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>OC Normalized</th>
<th>Parameter Estimates</th>
<th>95% Confidence Interval</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Parameter B</td>
<td>Std. Error</td>
<td>T</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td>57.591</td>
<td>2.803</td>
<td>20.547</td>
</tr>
<tr>
<td>Dummy gender</td>
<td></td>
<td>-0.697</td>
<td>0.928</td>
<td>-0.751</td>
</tr>
<tr>
<td>Dummy age</td>
<td></td>
<td>-1.316</td>
<td>1.022</td>
<td>-1.287</td>
</tr>
<tr>
<td>Dummy work experience</td>
<td></td>
<td>0.530</td>
<td>0.922</td>
<td>0.575</td>
</tr>
<tr>
<td>Dummy qualification</td>
<td></td>
<td>2.395</td>
<td>0.871</td>
<td>2.748</td>
</tr>
<tr>
<td>Dummy jobs changed</td>
<td></td>
<td>1.169</td>
<td>0.965</td>
<td>1.211</td>
</tr>
<tr>
<td>Dummy marital status</td>
<td></td>
<td>-1.068</td>
<td>0.968</td>
<td>-1.103</td>
</tr>
<tr>
<td>Dummy dependents</td>
<td></td>
<td>-1.346</td>
<td>0.851</td>
<td>-1.581</td>
</tr>
<tr>
<td>[org. 1]</td>
<td></td>
<td>4.397</td>
<td>3.149</td>
<td>1.396</td>
</tr>
<tr>
<td>[org. 2]</td>
<td></td>
<td>5.051</td>
<td>3.042</td>
<td>1.661</td>
</tr>
<tr>
<td>[org. 3]</td>
<td></td>
<td>6.651</td>
<td>3.046</td>
<td>2.184</td>
</tr>
<tr>
<td>[org. 4]</td>
<td></td>
<td>4.245</td>
<td>3.377</td>
<td>1.257</td>
</tr>
<tr>
<td>[org. 5]</td>
<td></td>
<td>5.755</td>
<td>3.239</td>
<td>2.777</td>
</tr>
<tr>
<td>[org. 6]</td>
<td></td>
<td>3.926</td>
<td>3.034</td>
<td>1.294</td>
</tr>
<tr>
<td>[org. 7]</td>
<td></td>
<td>-1.271</td>
<td>3.148</td>
<td>-0.404</td>
</tr>
<tr>
<td>[org. 8]</td>
<td></td>
<td>0.514</td>
<td>3.199</td>
<td>0.161</td>
</tr>
<tr>
<td>[org. 9]</td>
<td></td>
<td>1.939</td>
<td>3.171</td>
<td>0.612</td>
</tr>
<tr>
<td>[org. 10]</td>
<td></td>
<td>3.891</td>
<td>3.310</td>
<td>1.175</td>
</tr>
<tr>
<td>[org. 11]</td>
<td></td>
<td>1.152</td>
<td>3.277</td>
<td>0.351</td>
</tr>
<tr>
<td>[org. 12]</td>
<td></td>
<td>0.323</td>
<td>3.089</td>
<td>0.104</td>
</tr>
<tr>
<td>[org. 13]</td>
<td></td>
<td>1.495</td>
<td>3.088</td>
<td>0.484</td>
</tr>
<tr>
<td>[org. 14]</td>
<td></td>
<td>4.023</td>
<td>3.188</td>
<td>1.262</td>
</tr>
<tr>
<td>[org. 15]</td>
<td></td>
<td>0.112</td>
<td>3.154</td>
<td>0.036</td>
</tr>
<tr>
<td>[org. 16]</td>
<td></td>
<td>-9.246</td>
<td>3.163</td>
<td>-2.923</td>
</tr>
<tr>
<td>[org. 17]</td>
<td></td>
<td>-8.287</td>
<td>3.203</td>
<td>-2.587</td>
</tr>
<tr>
<td>[org. 18]</td>
<td></td>
<td>-0.492</td>
<td>3.065</td>
<td>-0.161</td>
</tr>
<tr>
<td>[org. 19]</td>
<td></td>
<td>1.393</td>
<td>3.103</td>
<td>0.449</td>
</tr>
<tr>
<td>[org. 20]</td>
<td></td>
<td>-0.647</td>
<td>3.230</td>
<td>-0.200</td>
</tr>
<tr>
<td>[org. 21]</td>
<td></td>
<td>0*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. This parameter is set to zero because it is redundant (Where B is the coefficient, sig. Is the probability or level of significance, t is t-statistics, Org. is organization).
Table 6. Tests of fixed effects for the demographic variables with QWL.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>T</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>56.133</td>
<td>1.857</td>
<td>30.225</td>
<td>0.000</td>
<td>52.485 - 59.780</td>
<td>0.607</td>
</tr>
<tr>
<td>Dummy gender</td>
<td>-0.258</td>
<td>0.615</td>
<td>-0.420</td>
<td>0.675</td>
<td>-1.465 - 0.949</td>
<td>0.000</td>
</tr>
<tr>
<td>Dummy age</td>
<td>-0.927</td>
<td>0.677</td>
<td>-1.368</td>
<td>0.172</td>
<td>-2.257 - 0.404</td>
<td>0.003</td>
</tr>
<tr>
<td>Dummy work experience</td>
<td>0.878</td>
<td>0.611</td>
<td>1.438</td>
<td>0.114</td>
<td>-0.321 - 2.078</td>
<td>0.003</td>
</tr>
<tr>
<td>Dummy qualification</td>
<td>1.315</td>
<td>0.577</td>
<td>2.278</td>
<td>0.023</td>
<td>0.181 - 2.449</td>
<td>0.009</td>
</tr>
<tr>
<td>Dummy jobs changed</td>
<td>0.202</td>
<td>0.565</td>
<td>0.358</td>
<td>0.721</td>
<td>-0.907 - 1.311</td>
<td>0.000</td>
</tr>
<tr>
<td>Dummy marital status</td>
<td>0.861</td>
<td>0.639</td>
<td>1.347</td>
<td>0.179</td>
<td>-0.395 - 2.117</td>
<td>0.003</td>
</tr>
<tr>
<td>Dummy dependents</td>
<td>-1.368</td>
<td>0.562</td>
<td>-2.433</td>
<td>0.050</td>
<td>-2.472 - -0.264</td>
<td>0.010</td>
</tr>
<tr>
<td>[org. 1]</td>
<td>3.690</td>
<td>2.086</td>
<td>1.769</td>
<td>0.077</td>
<td>-0.408 - 7.788</td>
<td>0.005</td>
</tr>
<tr>
<td>[org. 2]</td>
<td>4.204</td>
<td>2.015</td>
<td>2.086</td>
<td>0.037</td>
<td>0.246 - 8.162</td>
<td>0.007</td>
</tr>
<tr>
<td>[org. 3]</td>
<td>2.976</td>
<td>2.018</td>
<td>1.475</td>
<td>0.041</td>
<td>-0.988 - 6.940</td>
<td>0.004</td>
</tr>
<tr>
<td>[org. 4]</td>
<td>4.041</td>
<td>2.238</td>
<td>1.806</td>
<td>0.051</td>
<td>-0.354 - 8.436</td>
<td>0.005</td>
</tr>
<tr>
<td>[org. 5]</td>
<td>3.022</td>
<td>2.146</td>
<td>1.408</td>
<td>0.160</td>
<td>-1.193 - 7.237</td>
<td>0.003</td>
</tr>
<tr>
<td>[org. 6]</td>
<td>2.008</td>
<td>2.010</td>
<td>0.999</td>
<td>0.318</td>
<td>-1.940 - 5.957</td>
<td>0.002</td>
</tr>
<tr>
<td>[org. 7]</td>
<td>0.863</td>
<td>2.086</td>
<td>0.414</td>
<td>0.679</td>
<td>-3.234 - 4.959</td>
<td>0.000</td>
</tr>
<tr>
<td>[org. 8]</td>
<td>-1.162</td>
<td>2.120</td>
<td>-0.548</td>
<td>0.584</td>
<td>-5.325 - 3.001</td>
<td>0.001</td>
</tr>
<tr>
<td>[org. 9]</td>
<td>5.786</td>
<td>2.101</td>
<td>2.754</td>
<td>0.006</td>
<td>1.660 - 9.912</td>
<td>0.013</td>
</tr>
<tr>
<td>[org. 10]</td>
<td>5.136</td>
<td>2.193</td>
<td>2.342</td>
<td>0.020</td>
<td>0.828 - 9.444</td>
<td>0.009</td>
</tr>
<tr>
<td>[org. 11]</td>
<td>3.192</td>
<td>2.172</td>
<td>1.470</td>
<td>0.142</td>
<td>-1.072 - 7.457</td>
<td>0.004</td>
</tr>
<tr>
<td>[org. 12]</td>
<td>3.469</td>
<td>2.047</td>
<td>2.695</td>
<td>0.041</td>
<td>-0.551 - 7.489</td>
<td>0.005</td>
</tr>
<tr>
<td>[org. 13]</td>
<td>1.968</td>
<td>2.046</td>
<td>0.962</td>
<td>0.337</td>
<td>-2.051 - 5.986</td>
<td>0.002</td>
</tr>
<tr>
<td>[org. 14]</td>
<td>2.568</td>
<td>2.112</td>
<td>1.216</td>
<td>0.224</td>
<td>-1.580 - 6.717</td>
<td>0.002</td>
</tr>
<tr>
<td>[org. 15]</td>
<td>0.648</td>
<td>2.090</td>
<td>0.310</td>
<td>0.757</td>
<td>-3.456 - 4.753</td>
<td>0.000</td>
</tr>
<tr>
<td>[org. 16]</td>
<td>-3.026</td>
<td>2.096</td>
<td>-1.444</td>
<td>0.149</td>
<td>-7.142 - 1.090</td>
<td>0.004</td>
</tr>
<tr>
<td>[org. 17]</td>
<td>-0.833</td>
<td>2.122</td>
<td>-0.393</td>
<td>0.695</td>
<td>-5.001 - 3.335</td>
<td>0.000</td>
</tr>
<tr>
<td>[org. 18]</td>
<td>2.198</td>
<td>2.031</td>
<td>1.082</td>
<td>0.280</td>
<td>-1.790 - 6.186</td>
<td>0.002</td>
</tr>
<tr>
<td>[org. 19]</td>
<td>2.628</td>
<td>2.056</td>
<td>1.278</td>
<td>0.202</td>
<td>-1.410 - 6.666</td>
<td>0.003</td>
</tr>
<tr>
<td>[org. 20]</td>
<td>2.142</td>
<td>2.140</td>
<td>1.001</td>
<td>0.317</td>
<td>-2.061 - 6.345</td>
<td>0.002</td>
</tr>
<tr>
<td>[org. 21]</td>
<td>0°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. This parameter is set to zero because it is redundant (Where B is the coefficient, sig. is the probability or level of significance, t is t-statistics, Org. is organization).
Table 7. Regression of dimensions of QWL on dependent variable OC.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1</th>
</tr>
</thead>
</table>
| | Dependent Variable: OC
| Method: Linear Regression Method |
| Coefficients | t-stat | sig. | |
| (Constant) | 16.674 | 4.585 | 0.000 |
| JS | 0.003 | 0.094 | 0.925 |
| PM | 0.02 | 0.698 | 0.485 |
| SR | 0.008 | 0.257 | 0.797 |
| PR | 0.079 | 2.624 | 0.009 |
| TP | 0.113 | 4.198 | 0.000 |
| WL | 0.118 | 4.476 | 0.000 |
| SH | 0.038 | 1.259 | 0.208 |
| RR | 0.051 | 1.653 | 0.099 |
| C | -0.026 | -0.898 | 0.370 |
| CPD | 0.154 | 4.624 | 0.000 |
| P | 0.094 | 3.435 | 0.001 |
| WLB | 0.085 | 3.653 | 0.000 |
| FB | 0.001 | -0.012 | 0.991 |

R-squared: 0.300
Adjusted R-squared: 0.285
Durbin-Watson stat: 1.912
F-statistics: 19.873
Significance (F-stat): 0.000

a. Dependent variable: OC; b. Predictors: (constant), FB, SR, WLB, WL, JS, P, RR, SS, TP, C, PR, PM, CPD.

Model 1a:
\[AC = \alpha + \beta_1 JS + \beta_2 PM + \beta_3 SR + \beta_4 PR + \beta_5 TP + \beta_6 WL + \beta_7 SH + \beta_8 RR - \beta_9 C + \beta_{10} CPD + \beta_1 P + \beta_2 WLB + \beta_3 FB + \varepsilon \]

Equation model for Continuance Commitment
\[CC = \alpha + \beta_1 JS + \beta_2 PM + \beta_3 SR + \beta_4 PR + \beta_5 TP + \beta_6 WL + \beta_7 SH + \beta_8 RR - \beta_9 C + \beta_{10} CPD + \beta_1 P + \beta_2 WLB + \beta_3 FB + \varepsilon \]

Model 1b:
Equation model for Normative Commitment
\[NC = \alpha + \beta_1 JS + \beta_2 PM + \beta_3 SR + \beta_4 PR + \beta_5 TP + \beta_6 WL + \beta_7 SH + \beta_8 RR - \beta_9 C + \beta_{10} CPD + \beta_1 P + \beta_2 WLB + \beta_3 FB + \varepsilon \]

H03: There is no significant relation between dimensions of QWL and OC.
Equation (2). Model of OC
\[OC = 16.674 + 0.003 JS + 0.02 PM + 0.008 SR + 0.079 PR + 0.113 TP \]

Model 1:
\[+ 0.118 WL + 0.038 SH + 0.51 RR - 0.026 C + 0.154 CPD + 0.94 P + 0.085 WLB + 0.001 FB + \varepsilon \]

The following null hypotheses are taken for the analysis:
H0a: There is no significant relation between dimensions of QWL and affective...
Table 8. Regression of dimensions of QWL with various types of OC.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1a (Dependent Variable: AC)</th>
<th>Model 1b (Dependent Variable: CC)</th>
<th>Model 1c (Dependent Variable: NC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coeff</td>
<td>t- stat</td>
<td>sig.</td>
</tr>
<tr>
<td>Constant</td>
<td>22.295</td>
<td>4.101</td>
<td>0.000</td>
</tr>
<tr>
<td>JS</td>
<td>0.085</td>
<td>2.064</td>
<td>0.039</td>
</tr>
<tr>
<td>PM</td>
<td>0.012</td>
<td>0.282</td>
<td>0.778</td>
</tr>
<tr>
<td>SR</td>
<td>0.044</td>
<td>0.949</td>
<td>0.343</td>
</tr>
<tr>
<td>PR</td>
<td>−0.029</td>
<td>−0.646</td>
<td>0.518</td>
</tr>
<tr>
<td>TP</td>
<td>0.106</td>
<td>2.621</td>
<td>0.009</td>
</tr>
<tr>
<td>WL</td>
<td>0.046</td>
<td>1.178</td>
<td>0.239</td>
</tr>
<tr>
<td>SS</td>
<td>0.057</td>
<td>1.259</td>
<td>0.209</td>
</tr>
<tr>
<td>RR</td>
<td>0.019</td>
<td>2.581</td>
<td>0.010</td>
</tr>
<tr>
<td>C</td>
<td>−0.04</td>
<td>−0.934</td>
<td>0.351</td>
</tr>
<tr>
<td>CPD</td>
<td>0.019</td>
<td>3.816</td>
<td>0.000</td>
</tr>
<tr>
<td>P</td>
<td>−0.001</td>
<td>−0.026</td>
<td>0.98</td>
</tr>
<tr>
<td>WLB</td>
<td>0.004</td>
<td>0.122</td>
<td>0.903</td>
</tr>
<tr>
<td>FB</td>
<td>0.036</td>
<td>0.825</td>
<td>0.410</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.126</td>
<td>0.148</td>
<td>0.336</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.107</td>
<td>0.130</td>
<td>0.332</td>
</tr>
<tr>
<td>Durbin-Watson</td>
<td>2.012</td>
<td>2.104</td>
<td>1.696</td>
</tr>
<tr>
<td>F-stat.</td>
<td>6.681</td>
<td>8.086</td>
<td>23.51</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Model 1a is the model of affective commitment, Model 1b is continuance commitment and model 1c is normative commitment.

commitment.

H_{0_1}: There is no significant relation between dimensions of QWL and continuance commitment.

H_{0_2}: There is no significant relation between dimensions of QWL and normative commitment.

The effect of dimensions on affective, continuance and normative commitment are shown in Table 8 as shown above.

Equation 3.1. Model of affective commitment

$$AC = 22.295 + 0.085JS + 0.012PM + 0.044SR − 0.029PR + 0.106TP + 0.046WL + 0.057SH + 0.119RR − 0.04C + 0.19CPD − 0.001P + 0.004WLB + 0.036FB + \varepsilon$$

In the first model, there is 10% variation among the dimensions of the QWL. Time pressure, career promotions and development, rewards and recognition and job security are highly significant with the affective commitment than the other aspects of the QWL.

Equation 3.2. Model of continuance commitment
Model 1b:
$$CC = 20.442 - 0.047JS + 0.053PM - 0.01SR + 0.167PR + 0.021TP + 0.189WL + 0.016SH + 0.074RR - 0.067C + 0.075CPD + 0.065WLB + 0.032FB + \epsilon$$

In the second model, there is 13% variation among the dimensions of the QWL. Peer relationship, workload, and career promotions and development are highly significant with the continuance commitment than the other dimensions of the QWL.

Equation 3.3. Model of normative commitment
$$NC = -4.212 - 0.016JS - 0.003PM - 0.014SR + 0.148PR + 0.25TP + 0.134WL + 0.059SH - 0.014RR + 0.019C + 0.2CPD + 0.67P + 0.195WLB - 0.03FB + \epsilon$$

In the third model, there is 33% variation among the dimensions of the QWL. Peer relationship, workload, time pressure, pay, work-life balance and career promotions and development are highly significant with the normative commitment than the other dimensions of the QWL. So, the value of F given in the test rejects the null hypothesis.

7. Findings
The findings of the study reveals that variables of quality of work life such as: career progress and development, peer and superior relationship, rewards and recognitions, work life balance, peer relationship, superior relationship and job security, fringe benefits, plays a vital role in the IT firms in the current scenario after checking the validity and reliability of the variables.

On application of the general linear model, it is found that there exists a relationship between demographic variables and OC. The results show that lesser educational qualification and presence of dependents have a significant positive relationship with OC. Gender, marital status, age group, work experience, jobs changed and work experience does not have any significant association with OC.

The coefficient of gender and age group is −0.697 and −1.316. It explains that average score of OC for a male employee is lower by about −0.697 units as compared to the average score of OC of female employees. In the case of age group, the average score of the OC for below 35 years of age employees is lower by −1.316 units as compared to the employees having age more than 35 years of age employees, but not significant. Employees who have 5-year work experience raise the average score of OC by 0.530 as compared to employees whose work experience is more than 5 years, but it is also not significantly correlated.

Similarly, it is found that there exists a positive association between demographic variables and QWL. The results show that educational qualification has a significant positive relationship with QWL. Gender, marital status, age group, dependent child, dependent adult, works experience do not have any significant association with the QWL [45]. The coefficient of gender and age group are −0.258 and −0.927. It means that average score of QWL for a male employee is lower by about −0.258 units as compared to the average score of QWL of a fe-
male employee. In the case of age group, the average score of QWL for the below 35 years of age employees is lower by −0.927 units as compared to the respondents having age more than 35 years, but both the variables are not significant. Employees having work experience of fewer than 5 years have an average score of QWL which is higher by 0.878 as compared to employees having work experience more than 5 years, but are not significantly correlated.

The results show that the adjusted R^2 in the model is 0.285 which means that the linear regression explains 28.5% of the variance in the data. There are some predictors such as peer relationship, time pressure, workload, career promotion and development, pay and work-life balance which create high impact on OC. The results show that the value of $F = 19.873$ that explains there is a significant high association between the dependent and independent variables (predictors).

On performing the regression analysis between QWL and OC, it is found that there is a positive relationship between the two. The coefficient of peer relationship (0.79), time pressure (0.113), workload (0.118), career growth (0.154), pay (0.94) and work-life balance (0.85) are significant with OC. Time pressure, workload and career growth are the three predictors that play a vital role in the life of employees and develop an attachment towards the organization. Dimensions of QWL are found to be profoundly influencing the dependent variable OC and its aspects. Thus it can be seen in Table 7 that there is a relationship between predictors and dependent variables in this model. So, the value of F given in the test rejects the null hypothesis.

There is a significantly positive correlation between QWL and types of OC of employees. Time pressure, workload and career growth are essential three predictors, which play a vital role in the life of employees to create attachment towards the organization [46] [47]. The employee’s commitment and decision to stay in the organization are guided by an emotional bond with the colleagues and the organization rather than by any logical reasoning [48].

This paper gives the important dimensions of QWL which creates commitment in today’s IT employees towards the organization. In the end, it can be seen that job satisfaction, rewards and recognition and career promotion and development are highly significant with the affective commitment at the level of 5% significance. Peer relationship, workload, and career promotions and development are positively substantial with the continuance commitment at the 2% significance level. Where, peer relationship, workload, time pressure, pay, work-life balance, and career promotions and development are highly significant with the normative commitment at the level of 1% significance.

8. Practical Implication

QWL has become the most crucial factor in every sector. QWL has been developed as one of the mandatory dimensions for the publically listed companies which should be followed to improve the employee’s welfare and society at large. QWL will help in creating a healthy environment in the organization that will help in creating a healthy environment in the organization that will
enhance the commitment of the employees towards their organization. Enhanced OC will stimulate individual’s attachment to the organization. Moreover, if QWL and OC are boosted, they will motivate employees to stay with the organization and enthusiastically work towards organizational objectives. Further, the escalation of OC will help in achieving growth, profit and market share at a greater pace.

9. Conclusions

The role of demographic variables is essential in the lives of employees to establish their association with QWL and OC. The educational qualification also plays a vital role in forming their perception towards things. At a workplace, educational qualification of the employees is highly significant with QWL and OC, where higher and better-educated employees do not perceive better QWL as compared to lesser qualified employees. The reason behind this could be the fact that the highly skilled employees expect more from the organization. Responsibility and care of the family is the necessity of the individual. If an employee has more dependent members, then the commitment of an employee towards the organization will increase, and the perception towards organization will improve because the decision of switching from the current organization may disrupt the life of the dependents. The finding of the study identifies that the educational qualification and the number of dependents are significantly related to QWL and OC.

This paper has found a positive and significant relationship between the dimensions of QWL and types of OC on a sample of employees from IT sector. Time pressure, workload, and career growth are essential three predictors, which play a vital role in the life of employees to create attachment towards the organization [46]. This study gives the essential dimensions of QWL which creates commitment in today’s IT employees towards their organization [41] [49].

If an organization provides low QWL to its employees, then employees will inevitably not get attached to the organization, thus increasing the rate of burnout and eventually will move away from the organization. It has been clear from the findings that impact of QWL through factors like career progress development, peer and superior relationship, participative management, rewards and recognition, work-life balance, fringe benefits, safety, peer relationship, superior relationship and job security can attract the commitment of the employees towards the organization. The terms like burnout, attrition, etc. directly affects the cost and environment of the organization, which is detrimental to the organization regarding growth and competition.

10. Future Scope and Limitations

QWL and OC affect the performance of the organization. The study fills the literature gap of QWL, OC and organizational performance. To get accurate information about the relationship between QWL, OC and organizational perfor-
mance, other sectors of the industry should also be taken into consideration. The comparison should be done with other sectors or large-cap companies with medium capital (mid-cap) companies or small capital (small-cap) companies. The future studies should consider new variables that are not used in this study. The other variables that influence the perception of employees as well as affect QWL are technological changes, training, and development, grievances handling procedures, personality traits etc. The above said variables are yet to be researched to analyze QWL, OC and their impact on organizational performance.

There are always some shortcomings in the research work that cannot be removed. Though the researchers have taken due care in data collection, analysis, and interpretation but there are some shortcomings in the research. Firstly, both primary and secondary data sources are used in the study. Qualitative research is always time-consuming and quite expensive. Primary data collection method is the dominant method to get information directly from the employees, but it has some flaws as well. Sometimes employees do not feel comfortable with the researcher to share all the information related to them. Moreover, the views of the respondents in the study are the reflection of sample size chosen, but we cannot accurately say that it does not reflect the views of the universe. The interpretation and specification of QWL and OC that are empirically examined in the present study must be regarded as tentative.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

DOI: 10.4236/tel.2019.96113 1791 Theoretical Economics Letters