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Abstract 
This paper proposes a multivariate VAR-BEKK-GJR-GARCH volatility mod-
el to assess the dynamic interdependence among stock, bond and money 
market returns and volatility of returns. The proposed model allows for mar-
ket interaction which provides useful information for pricing securities, 
measuring value-at-risk (VaR), and asset allocation and diversification, as-
sisting financial regulators for policy implementation. The model is estimated 
by the maximum likelihood method with Student-t innovation density. The 
asymptotic chi-square tests for volatility spillovers and leverage effects are 
constructed and provide predictions of volatility and time-varying correla-
tions of returns. Application of the proposed model to the Australia’s domes-
tic stock, bond, and money markets reveals that the domestic financial mar-
kets are interdependent and volatility is predictable. In general, volatility 
spillovers from stock market to bond and to money markets due to common 
news. The empirical findings of this paper quantify the association among the 
security markets which can be utilized for improving agents’ decision-making 
strategies for risk management, portfolio selection and diversification. 
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1. Introduction 

Security traders in the financial markets make their “buy” and “sell” decisions 
based on the information available in the financial markets. The amount of risk 
associated with a series of returns, however, depends on the arrival of the 
so-called “good” and “bad” news that continuously spreads throughout the fi-
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nancial markets in every moment of time. Since “news” is not directly observable, 
returns are stochastic and volatile. An interesting feature of asset price is that 
“bad” news seems to have a more pronounced effect on volatility than does the 
“good” news. This asymmetric “news” is associated with the innovation distri-
bution of losses and gains in the financial markets, which plays a vital role in de-
termining the leverage effect on asset volatility. Black [1] finds that the leverage 
effect is caused by the fact that negative returns have greater influences on future 
volatility than do the positive returns. To understand the dynamics of simulta-
neous presence of “news” and “leverage” effects on volatility, we are required to 
develop forms of the expected returns and volatility of return processes of a fi-
nancial time series. There are three main ways of modelling financial volatility, 
namely, implied volatility, realized volatility, and conditional volatility. In this 
paper we use the conditional volatility approach.  

In developing dynamic volatility models, there are two strands of modelling 
conditional volatility—the univariate and multivariate volatility modelling respec-
tively. Engle [2] first introduced univariate autoregressive conditional heteroske-
dasticity (ARCH) model for measuring and predicting asset return volatility. This 
model is useful because it captures some stylized facts such as volatility cluster-
ing and thick-tail distribution of return series. Bollerslev [3] extended the ARCH 
model which allowed for the effect of past volatility in the expanded ARCH 
model. This extension is widely known as the generalized ARCH (or GARCH) 
model. Although useful, the basic ARCH/GARCH models are incapable to cap-
turing leverage effects. Leverage effect is the tendency for volatility to decline 
when returns rise and to rise when returns fall. Black [1] first discovered the le-
verage effect that existed in the financial data and confirmed by French, Schwert, 
and Stambaugh (1987). Various types of volatility models, within the univariate 
framework, have been developed in the literature to address both the theory and 
empirical issues of the model, namely, the news asymmetry, volatility clustering, 
thick-tail, non-normality, and risk premium in the financial returns. For exam-
ple, Nelson [4] develops an Exponential GARCH (EGARCH), Engle and Ng [5] 
provide nonparametric tests for asymmetry between news and volatility, and 
Glosten et al. [6] propose asymmetric GARCH model. The asymmetric GARCH 
of Glosten et al. [6] is generally known as threshold GARCH (TGARCH or 
GJR-GARCH) model. In the risk-return framework there was another develop-
ment of the univariate ARCH/GARCH model, in which the first moment of a 
series is allowed to include the information generated by the second moment of 
the returns series. This specification is capable to deal with investor/agent’s de-
mand for compensation for holding risky assets. This extension is widely known 
as ARCH-in-Mean (or ARCH-M) model developed by Engle et al. [7]. Further 
extension such as GARCH-M, GJR-GARCH can be found elsewhere. 

The first two moments respectively called mean and variance of return series 
have been investigated extensively in the univariate finance literature to under-
stand the trading dynamics of risk and returns in the financial asset markets, for 
example Bollerslev [8] and Bera [9], among others. These articles use various 
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modeling issues e.g. functional form and dependence. Joint estimation of the 
univariate mean-variance models reported elsewhere uses t-distribution or ge-
neralized error distributions (GED) as one might not want to perform a maxi-
mum likelihood estimation using normal distribution, because the normality 
assumption of unconditional volatility of innovation might not hold [10].  

The Second strand of volatility modelling has been emerged from modelling 
volatilities of returns within the multivariate framework. Within this framework 
the shocks to volatility from one market is allowed to affect both the risk and 
return of the other markets. The dynamic dependence of multivariate financial 
assets provides rich sources of volatility transmission that helps the investors to 
play active role in financial transactions. Specifically, the multivariate extension 
to univariate GJR-GARCH (or TGARCH) allows volatility spillovers and leve-
rage effects across markets jointly. Directional causality between assets can be 
established among the securities by statistical testing. The multivariate extension 
to univariate model was first introduced by Engle and Granger [7] in the ARCH 
context, and Bollerslev, Engle and Wooldridge [8] in the GARCH context. This 
multivariate GARCH is known as VEC model because of its structure. Further 
development of the multivariate volatility model is the Baba-Engle-Kraft-Kroner 
(BEKK) model [11] [12]. This model allows for dynamic dependence between 
the volatility series. This model is statistically sound but the interpretation of the 
model parameters is not straight forward. 

In this paper we take the challenge of fitting our proposed multivariate 
VAR-BEKK-GJR-GARCH (or, VAR-BEKK-GJR-MGARCH) volatility model 
and investigate the dynamic interdependence among assets. This model is dif-
ferent from Ling and McAleer [13] in that our model does not restrict the vola-
tility correlations and uses t (with unknown shape parameter) to comply with 
the data coherent innovation distribution. Our model is more general than the 
Engle-Kroner [12] BEKK formulation, in that our model captures the multiva-
riate leverage effect and volatility spillovers jointly. This paper is organized as 
follows. In Section 2, model and methodology is discussed. Section 3 describes 
the sources and statistical properties of the data. Real application of the pro-
posed model is reported in Section 4. Finally, Section 5 concludes the paper with 
future research directions. 

2. Econometric Methodology 

To apprehend the dynamic interdependence of asset returns and volatility spil-
lovers, we combine Engle and Kroner [12] BEKK with GJR-MGARCH for mod-
elling volatility dynamics. The dynamics of return is assumed to be generated by 
a vector autoregressive process. Our model combines vector autoregressive con-
ditional mean with dynamic BEKK-GJR-MGARCH second moment of multiva-
riate time series. This model allows for the stylized facts of financial series such 
as, asymmetry, excess kurtosis, volatility clustering and persistence. In the same 
sprit as Engle-Kroner [12], our model also guarantees that the covariance matrix 

https://doi.org/10.4236/tel.2019.91008


H. Aftab et al. 
 

 

DOI: 10.4236/tel.2019.91008 86 Theoretical Economics Letters  
 

of volatility is positive definite. This property is a requirement of a statistical 
model. The model is estimated by the maximum likelihood method using mul-
tivariate t-innovation density. The maximum likelihood estimates (MLE) of the 
model parameters are consistent and asymptotically normally distributed. Fur-
ther the dynamic correlations between volatilities can be computable and pre-
dictable under this specification. Real data of the Australia’s domestic asset 
markets are used to demonstrate the performance of the proposed model. 

2.1. The Multivariate BEKK-GJR-GARCH Volatility Model  

Let ( )1 2, , ,r t t Ntr r r r ′=   be a vector of returns of N number of assets at time in-
dex t ( 1, 2,3, ,t T=  ). The set of information available at time t is denoted by 

1t−ℑ . We assume that the dynamic multivariate security returns tr  can be ade-
quately represented by a vector autoregression of order p conditional on the in-
formation set t i−ℑ  as 

( )1 0
1

|
p

t t t l t
l

r l r ε− −
=

ℑ = Φ + Φ +∑                   (1) 

where, ( ) ( )1 0
1

|
p

t t t l t
l

E r l r µ− −
=

ℑ = Φ + Φ =∑ , say, and ( ) ( )( )ijl lΦ = Φ  is the  

N N×  coefficient matrix of the lagged variables. The 1N ×  intercept vector is 
denoted by 0Φ  and 0.5

1|t t t tH eε −ℑ = , where ( )1 2, , ,t t t Nte e e e ′=   is the inde-
pendent and identically distributed (iid) random vectors of order 1N ×  with 

0tEe =  and t t NEe e I′ = , where nI  is an Identity matrix . The symmetric ma-
trix tH  is of order N N×  represents the conditional variance-covariance ma-
trix of innovations defines as follows. 

( ) ( )( ) ( )( )1 1| |t t t t t t t t tH E E r E r r E rε ε − −
′′= ℑ = − − ℑ           (2) 

Model (1) with (2) can be written more compactly as ( )1| ~ ,t t t tr D Hµ−ℑ , 
where ( ).,.D  is some specified probability distribution. Or, equivalently as 

( )1| ~ 0,t t tD Hε −ℑ . Various parameterizations for tH  have been proposed in 
the literature, for example, Bollerslev et al. [8], Engle [14] and Tsui [15] among 
others. 

To allow for asymmetric transmission of “good” and “bad” “news” informa-
tion from one asset to another and /or from one market to another, we define a 
multivariate indicator vector along the lines with Glosten et al. [6] and Zakoian 
[16] as follows. 

( )
( )

1
1

1

1 if 0 bad news

0 if 0 good news
it

it
it

d
ε

ε
−

−
−

<= 
≥

“ ”
“ ”

               (3) 

We define the variable 2
1 1it it itdη ε− −=  to introduce the leverage effects on vo-

latility. Allowing both the news and leverage effects on volatility, we specify (2) 
as follows. 

1 1 1 1 1t t t t t tH C C A A B H Bε ε η η− − − − −′ ′ ′ ′ ′ ′= + + + Γ Γ            (4) 

Combining the leverage effects within BEKK volatility model, we have the 
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following VAR-BEKK-GJR-MGARCH (or VAR-BEKK-TMGARCH) model. 

Return: ( ) ( )1 0 1
1

| , | ~ 0,
p

t t t l t t t t
l

r l r D Hε ε− − −
=

ℑ = Φ + Φ + ℑ∑          (1’) 

Volatility: 1 1 1 1 1|t t t t t tH CC A A BH Bε ε η− − − − −′ ′ ′ ′ ′ℑ = + + + Γ Γ           (2’) 

where, ( )ijγΓ =  is an N N×  matrix of parameters associated with the indi-
vidual and cross asset leverage effects. The parameters 0Φ  and ( )lΦ  is the 
coefficient matrix of the autoregression of lag order l. The matrix C is a N N×  
lower triangular matrix such that CC′  is symmetric and positive definite con-
taining the intercept parameters of the volatility model. The matrices ( )ijA α=  
and ( )ijB β= , , 1, 2,3, ,i j N=  , are both N N×  matrices of short-run and 
long-run parameters, respectively and the innovation tε  is as defined above. 
The model (2’) provides both quality and quantity effects on volatility jointly. If 
Γ  is a zero matrix then (2’) boils down to Engle-Kroner [12] BEKK-MGARCH 
model.  

2.2. Estimation of the VAR-BEKK-GJR-MGARCH Model 

In order to estimate the parameters of the model (1’) and (2’) jointly, we assume 
that the innovation vector follows a multivariate t-distribution with unknown 
(but equal) degrees of freedom. The advantage of using the t-distribution is that 
it nests the normal distribution as a limiting case. The t-distribution with small 
number of degrees of freedom captures skewness and fat-tailed property of re-
turn series. Therefore, a data coherent assumption of t-distribution of innova-
tion is meaningful and useful for modelling volatility clustering and non-normality 
of the financial asset returns. The multivariate t-distribution with T observations 
has the following log-likelihood function. 

( ) ( ) ( )1

ln constant ln ln 1
2 2

t t t t t
t

t

r H yNT v NL H
v

µ µ− ′− −+   = − − +    
 

∑   (5) 

where ( )0
1

p

t t j
l

l rµ −
=

= Φ + Φ∑  is the mean vector of returns (see Equation (1)), 

tH  is the determinant of the VCV matrix of the innovation vector, ( )ln .  is 
the natural logarithm of the argument and, v is the unknown shape parameter 
and ln L  is the log-likelihood function of the parameters given the data. Max-
imum likelihood method is applied to estimate the parameters of the 
VAR-BEKK-GJR-MGARCH model under the assumption of multivariate 
t-distribution using FBGLS optimization routine in RATS. The maximum like-
lihood estimates (MLE) are consistent and asymptotically normally distributed. 
This property is useful for developing statistical tests on the parameters. 

2.3. Tests for Spillovers and Leverage Effects  

Refer to the multivariate volatility model of Section 2.1, the following hypotheses 
are of interest to test for return and volatility spillovers and, leverage effects 
across assets. Considering three assets portfolio, the following hypotheses can be 
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tested by applying Chi-square tests.  

2.3.1. Return Spillovers from Asset j and k to Asset i ( i j k 1,2,3≠ ≠ = )  

1) Return spillovers from bond and Tbill to stock 

0 12 13: 0H φ φ= =  against 1 12 13: 0H φ φ≠ ≠  
2) Return spillovers from stock and Tbill to bond 

0 21 23: 0H φ φ= =  against 0 21 23: 0H φ φ≠ ≠  
3) Return spillovers from stock and bond to Tbill 

0 31 32: 0H φ φ= =  against 1 31 32: 0H φ φ≠ ≠  

2.3.2. Volatility Spillovers from Asset j and k to Asset i  
( i j k Stock Bond Tbill, ,≠ ≠ = )  

1) Volatility spillovers from bond and Tbill to stock 

0 12 13 12 13: 0H α α β β= = = =  against 1 12 13 12 13: 0H α α β β≠ ≠ ≠ ≠  
2) Volatility spillovers from stock and Tbill to bond 

0 21 23 21 23: 0H α α β β= = = =  against 1 21 23 21 23: 0H α α β β≠ ≠ ≠ ≠  
3) Volatility spillovers from stock and bond to Tbill 

0 31 32 31 32: 0H α α β β= = = =  against 1 31 32 31 32: 0H α α β β≠ ≠ ≠ ≠  

2.3.3. Leverage Effects on Asset Returns Volatility  
We perform the following hypothesis tests for the presence of leverage effects of 
own shock and shocks due to the other assets on volatility by testing the leverage 
parameters ( )1,2,3; 1,2,3ij i jγ = =  representing the simultaneous occurrence 
of the asymmetric news and leverage in model (4). 

1) Leverage effect for stock volatility 

0 11 12 13: 0H γ γ γ= = =  against 1 11 12 13: 0H γ γ γ≠ ≠ ≠  
2) Leverage effect for bond volatility 

0 21 22 23: 0H γ γ γ= = =  against 1 21 22 23: 0H γ γ γ≠ ≠ ≠  
3) Leverage effect for Tbill volatility 

0 31 32 33: 0H γ γ γ= = =  against 1 31 32 33: 0H γ γ γ≠ ≠ ≠  
The above hypotheses tests of Section 2.3 were performed by employing 

Chi-square tests in RATS programing. We have reported the Chi-square test re-
sults in the empirical section 4. 

3. Data and Preliminary Results 

Historical data on stock, bond, and Tbill of Australia’s domestic market from 4 
April 2006 to 20 June 2016, for a total 883 observations are used for analysis. The 
data was retrieved from Bloomberg database. The daily returns, in percentages, 
for stock (all ordinaries), bond (5-year maturity rate), and Tbill (90 day bank 
accepted bank accepted bill are) are constructed by the following growth rate 
form. 

1

100 ln it
it

it

p
r

p −

 
= ×  

 
, 1,2, ,i N=  ; 1,2, ,t T=               (6) 

The variable itp  denote the nominal price of the i-th asset at time t and the 
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variable itr  is the percentage log returns (or the growth rate) of the i-th asset at 
time t, 1itp −  is the one-period lag of itp , and ( )ln .  is the natural logarithm of 
the argument. N is the number of asset and T is the time index. 

Data Property and Preliminary Results 

In this section we provide graphical means to explore the data properties. First we 
plot the return series and the squared return series. Then we provide the serial 
correlations and cross correlation of the variables to determine the data dependen-
cies by employing ACF and PACF graphs and Ljung-Box [17] cross-correlation 
test. We use RATS package for empirical computation of this paper. 

Figure 1 shows the time plots of daily log returns, in percentage, of (a) Stock, 
(b) Bond, and (c) Tbill. The volatility seems to be larger during June 
2008-December 2008 and August 2011-February 2012 for stock returns; October 
2008-April 2009, August 2011-December 2011, March 2012-November 2013, 
and March 2015-December 2015 for bond, and occasionally around December 
2009 and July 2011-August 2011 for Tbill. Time plot of daily log returns hig-
hlighted that Bond market is affected the most by the global financial crisis (GFC) 
while Tbill is least affected as Tbill is for short term and 5 year bond market is 
for long term. Therefore, the three Australian financial markets are affected si-
multaneously with some variation. 

Figure 2 shows some dependence in the individual asset returns with high 
peaks of volatility. This is further confirmed by the Ljung-Box test [17] reported 
in summary (Table 1). The jumps are particularly associated with global finan-
cial crisis (GFC) periods for all of the series as the jumps are around 2008-2009 
and 2011-2012 and 2015 for stock; 2008-2009, 2011-2012, 2014-2015 for bond; 
and occasionally around 2009 and 2011-2012 for Tbill. The spikes and the LB-Q 
statistics on the squared series suggests that the percentage changes of the series 
have some ARCH effects. 

Table 1 provides various statistics to judge the data properties. In particular, 
all of the return series significantly skewed and are heavy-tailed distribution. The 
later property reveals that the series exhibits volatility clustering. This shows that 
the rare tail-events have longer effects. The mean of the Stock and Tbill are in-
significant while the average bond return is significant at the 5% level. Serial 
correlation up to 20 lags for stock and Tbill are insignificant but bond returns 
are serially dependent. The squares series, however exhibits serial dependence in 
the second moment for all of the series. Both the Tsay [18] and McLeod and Li 
[19] tests supports for nonlinearity in all of the series. Existence of conditional 
volatility in all series is supported by the Engle [2] ARCH test. Further, the nor-
mality of all of the series is rejected by the Jarque-Bera [20] test. We have also 
applied Ljung-Box test [16] for cross-correlation to all of the series the series 
(not reported, can be obtained from the author), some significance negative pos-
itive cross-correlation exists among the variables at different lags. The series are 
further tested for unit root nonstationay by augmented Fuller [21], Perron, and 
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KPSS tests [22]. The test results as provided below. 
All of the tests results indicate that the series are not unit root processes. The 

test results of Table 1 and Table 2 reveal that we jointly model the observed 
facts of the first and second moments of the data generating process to investi-
gate dependence structure of the variables within the multivariate framework, 
which is discussed below. 
 

 
Figure 1. Time plot of daily log returns in percentage from 4 April 2006 to 20 December 2016 (x-axis 
representing the time dimension and y-axis representing the percentage log returns). 
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Figure 2. Time plot of the squared return series. 

 
Table 1. Basic statistics of the return series from 4 April 2006 to 20 June 2016. 

Statistics Stock Bond Tbill 

Mean (%) 
Yearly mean (%) 

−0.034 (0.337) 
−8.806 

−0.095 (0.045) 
−24.61 

0.003 (0.216) 
0.78 

Stdev (%) 
Yearly stdev (%) 

1.062 
17.09 

1.413 
22.74 

0.065 
1.05 

Min −4.249 −6.278 −0.389 

Max 5.529 4.667 0.740 

Skewness −0.203 (0.0140) −0.273 (0.0009) 1.414 (0.0000) 

Excess kurtosis 2.241 (0.0000) 1.816 (0.0000) 20.675 (0.000) 

LB (20) 
LB2 (20) 

22.591 (0.309) 
504.046 (0.0000) 

58.436 (0.000) 
469.484 (0.0000) 

21.441 (0.372) 
40.316 (0.0040) 

JB-χ2 (2) Test 190.841 (0.0000) 132.348 (0.0000) 16020 (0.0000) 

Tsay Ori-F (10,865) Test (lags 4) 4.442 (0.0000) 3.139 (0.0006) 2.619 (0.0028) 

McLeod and Li Test (lags 4) 331.257 (0.0000) 254.087 (0.0000) 21.067 (0.0206) 

ARCH (LM) Test (lags 4) 36.360 (0.0000) 16.974 (0.0000) 4.404 (0.0000) 

Note: p-value is in parentheses. 
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Table 2. Stationarity/non stationarity tests of the return series from 4 April 2006 to 20 
June 2016. 

Return series ADF test with lag = 5 PP test with lag = 5 KPSS test with lag = 5 

Stock −11.783*** −28.572*** 0.138 

Bond −10.953*** −31.442*** 0.456 

Tbill −12.277*** −30.040*** 0.257 

***Significant at 1% level. Note: The Null hypothesis for KPSS is stationary while ADF and PP tests the null 
hypothesis of non-stationarity. 

4. Estimation of the Model 

We apply AIC, BIC, and HQ criteria to select the order of the VAR of mean 
model. We select order 1 for VAR because among the three criteria both BIC 
and HQ select VAR of order 1. In the univariate case, there was overwhelming 
support to GARCH (1, 1) (Bollerslev) [3]. Considering these empirical facts, we 
thus proceed to fit VAR (1)-BEKK-GJR-MGARCH (1, 1) model. The results are 
reported in Section 4.1.  

4.1. Maximum Likelihood Estimation with t-Innovation 

The nonlinear maximum likelihood with t-innovation is used to estimate the 
parameters of the model of interest. Estimated parameters with the correspond-
ing standard error and the p-value of tests are reported in Table 3. 

The parameter ( )ijφ  ( , 1, 2,3i j = ) is the (i, j)-th element of the ( )3 3×  ma-
trix of the coefficient of the first order VAR and ( )0 1, 2,3i iφ =  is a ( )3 1×  
vector of intercept parameters of the mean model. The parameter ,i jc  where 

1,2,3i j> = , are the lower-triangular elements of intercept of the Va-
riance-Covariance (VCV) matrix; the ( )3 3×  matrix of the ARCH and GARCH 
parameters are ( )ijα  and ( )ijβ  respectively. The ( ),i jγ  is the ( )3 3×  ma-
trix of leverage parameters associated with the threshold variables ( )1ijtη − . Si-
milarly, 1ijth −  is element of the symmetric variance-covariance matrix of lagged 
volatility and 1 1ijt ijtε ε− −′  is the squared lagged innovation. The parameter v is the 
degrees of freedom parameter of the t-innovation density. The diagonal ele-
ments of ,ii iiα β  and iiγ  are all found to be positive. Many of the parameters 

( ) ( ) ( ), ,ij ij ijα β γ  and ( )ijφ  for i j≠  are significant in the full 
VAR-BEKK-GJR-MGARCH model. These results of Table 3 indicate that the 
leverage effects are significant with some variation. The results also demonstrate 
spillover effects both in the mean and the volatility models.  

The shape parameter is estimated to 6v =  (approximately). This result is 
based on the assumption that the trivariate t-distribution has common but un-
known degrees of freedom. The long-run parameters ˆ

iiβ ’s are significant at the 
0.01 level. The shot-run volatility parameters, ˆiiα ’s are significant between 0.01 
and 0.10 levels. Many of the leverage effect coefficients are significant indicating 
the existence of asymmetric news effects on volatility. The value of R2 is not re-
ported in the table because the model is highly non-linear therefore R2 is not a 
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meaningful measure of goodness of fit.  
The parameter stability of the model is tested by using the Nyblom score test. 

All of the estimated parameters, except 10φ  and 21φ , are found to be stable by 
the Nyblom test. The Nyblom joint score test statistic is found to be 8.2095 with 
a p-value of 0.28 implying that the parameters of VAR-BEKK-GJR-MGARCH 
are jointly stable. Parameter stability of a model is a requirement for efficient 
prediction of econometric models. Further, the multivariate model is tested for 
model adequacy using the Ljung-Box (LB) [17] statistics on the standardized re-
siduals and squared standardized residuals of the model. Table 4 provides the 
Ljung-Box test results. 

The LB test results fail to suggest any model inadequacy of serial dependence 
of the model errors. 

 
Table 3. Maximum likelihood estimates of parameters and Nyblom score test [23] for 
stability from 4 April 2006 to 20 June 2016. 

Parameter 
number 

Parameter Variable Coefficient Std. error p-value 
Nyblom 

score 
p-value of 

score 

1 11φ  1tStock −  −0.059** 0.0295 0.0464 0.241 0.19 

2 12φ  1tBond −  0.094*** 0.0282 0.0009 0.413 0.07 

3 13φ  1tTbill −  −1.956*** 0.6240 0.0017 0.199 0.26 

4 10φ  Constant 0.046* 0.0275 0.0920 0.047 0.89 

5 21φ  1tStock −  −0.019 0.0263 0.4722 0.035 0.96 

6 22φ  1tBond −  −0.014 0.0382 0.7152 0.188 0.28 

7 23φ  1tTbill −  1.120 0.7263 0.1230 0.486 0.04 

8 20φ  Constant −0.064** 0.0304 0.0365 0.062 0.79 

9 31φ  1tStock −  0.0002 0.0013 0.8887 0.051 0.86 

10 32φ  1tBond −  0.0019 0.0012 0.1122 0.301 0.13 

11 33φ  1tTbill −  0.0165 0.0356 0.6435 0.166 0.33 

12 30φ  Constant 0.0007 0.0014 0.6109 0.084 0.65 

13 11c  C (1,1) 0.202*** 0.0540 0.0002 0.371 0.09 

14 21c  C (2, 1) −0.018 0.0350 0.6160 0.069 0.75 

15 22c  C (2, 2) 0.008 0.0591 0.8880 0.157 0.36 

16 31c  C (3, 1) −0.0002 0.0024 0.9458 0.074 0.71 

17 32c  C (3, 2) −0.0042 0.0031 0.2369 0.242 0.19 

18 33c  C (3, 3) 0.00001 0.0365 1.0000 0.227 0.22 

19 11α  2
1 1tε −  0.1424* 0.0760 0.0611 0.438 0.06 

20 12α  1 1 2 1t tε ε− −  −0.0342 0.0470 0.4663 0.081 0.67 

21 13α  1 1 3 1t tε ε− −  −0.0017 0.0024 0.4664 0.160 0.35 

22 21α  2 1 1 1t tε ε− −  0.0132 0.0403 0.7436 0.069 0.75 
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Continued 

23 22α  2
2 1tε −  0.2789*** 0.0368 0.0000 0.283 0.15 

24 23α  2 1 3 1t tε ε− −  −0.0011 0.0011 0.3155 0.094 0.6 

25 31α  3 1 1 1t tε ε− −  0.6959 0.9528 0.4652 0.087 0.63 

26 32α  3 1 1 1t tε ε− −  0.4807 0.7197 0.5042 0.142 0.4 

27 33α  2
3 1tε −  0.1980*** 0.0358 0.0000 0.084 0.65 

28 11β  11 1th −  0.9334*** 0.0266 0.0000 0.376 0.08 

29 12β  12 1th −  −0.0165 0.0158 0.2944 0.034 0.96 

30 13β  13 1th −  0.002* 0.0009 0.0771 0.094 0.6 

31 21β  21 1th −  0.0010 0.0103 0.9199 0.047 0.89 

32 22β  22 1th −  0.951*** 0.0097 0.0000 0.359 0.09 

33 23β  23 1th −  0.0001 0.0003 0.6932 0.163 0.34 

34 31β  31 1th −  −0.286 0.2995 0.3406 0.056 0.83 

35 32β  32 1th −  −0.441* 0.2360 0.0619 0.150 0.38 

36 33β  33 1th −  0.970*** 0.0123 0.0000 0.203 0.25 

37 11γ  11 1tη −  −0.361*** 0.0559 0.0000 0.175 0.31 

38 12γ  12 1tη −  −0.151*** 0.0549 0.0059 0.149 0.38 

39 13γ  13 1tη −  0.0095*** 0.0027 0.0005 0.204 0.25 

40 21γ  21 1tη −  −0.0201 0.0593 0.7343 0.271 0.16 

41 22γ  22 1tη −  0.1743*** 0.0460 0.0002 0.351 0.1 

42 23γ  23 1tη −  −0.0016 0.0013 0.2237 0.120 0.48 

43 31γ  31 1tη −  −0.2331 1.2646 0.8538 0.136 0.42 

44 32γ  32 1tη −  1.0941 1.1152 0.3266 0.129 0.44 

45 32γ  33 1tη −  0.0194 0.0786 0.8055 0.160 0.35 

46 v Shape 5.8344*** 0.6185 0.0000 0.096 0.58 

Note: ***1%, **5%, and *10% level of significance. 
 
Table 4. Univariate and multivariate Ljung-Box test for model adequacy from 4 April 
2006 to 20 June 2016. 

Ljung-Box statistic Stock market Bond market Money market Multivariate model 

LB-Q (10) 
LB-Q2 (10) 

14.012 (0.172) 
11.527 (0.318) 

7.357 (0.691) 
8.836 (0.548) 

7.983 (0.631) 
11.228 (0.340) 

97.26806 (0.282) 
95.97079 (0.314) 

LB-Q (20) 
LB-Q2 (20) 

21.746 (0.354) 
20.514 (0.426) 

26.784 (0.141) 
24.187 (0.234) 

17.986 (0.588) 
20.407 (0.433) 

197.09522 (0.182) 
165.92558 (0.766) 

Note: p-value of the LB-test is in parentheses. 

4.2. Spillover Effects of Stock, Bond, and Tbill 

In this section we report the spillover and leverage effects of return and volatili-
ties of returns. Based on the MLE estimates of the VAR-BEKK-GJR-MGARCH 

https://doi.org/10.4236/tel.2019.91008


H. Aftab et al. 
 

 

DOI: 10.4236/tel.2019.91008 95 Theoretical Economics Letters 
 

model parameters we conduct the spillovers effect of returns, volatility and leve-
rage effects. The tests are based on Wald Chi-square statistic. 

The test results in Table 5(a) suggests that there are significant return spillovers 
running from Bond and Tbill to stock returns in Australia’s domestic assets mar-
kets. Also there are significant spillovers from Stock and Tbill to bond return. 
However, spillovers from stock and bond jointly are statistically insignificant in 
explaining the Tbill. The reason could be that the Tbill is short term security. 

The test results of Table 5(b) suggest significant volatility spillovers from 
Bond and Tbill to stock. The test result also suggests significant volatility spil-
lovers from stock and bond is statistically significant in explaining the volatilities 
in Tbill. However, the volatility does not jointly spillovers from stock and Tbill 
to bond. The reason for this could be news impact. These observations suggest 
that the Australia’s domestic asset markets are interlinked and transmit return 
and volatility spillovers across domestic asset markets. This information is useful 
in planning for future investment decisions both by individuals and financial in-
stitutions to minimize risk 

 
Table 5. (a) Return spillover test from 4 April 2006 to 20 June 2016; (b) Volatility 
spillover test from 4 April 2006 to 20 June 2016; (c) Tests for leverage effect daily data 
from 4 April 2006 to 20 June 2016. 

(a) 

Return spillover 
Chi-square 

From To 

Bond and Tbill Stock 51.379 (0.000) 

Stock and Tbill Bond 3.292 (0.000) 

Stock and bond Tbill 2.534 (0.193) 

Note: p-value is in parentheses. 

(b) 

Volatility spillover 
Chi-square 

From To 

Bond and Tbill Stock 11.708 (0.000) 

Stock and Tbill Bond 4.960 (0.291) 

Stock and Bond Tbill 7728.681 (0.000) 

Note: p-value is in parentheses. 

(c) 

Asset Effects of own shock and shocks of the other assets Test statistic with p-value 

Stock 0 11 12 13: 0H γ λ γ= = =  1 11 12 13: 0H γ λ γ≠ ≠ ≠  ( )2 61.6435 0.000χ =  

Bond 0 21 22 23: 0H γ λ γ= = =  1 21 22 23: 0H γ λ γ≠ ≠ ≠  ( )2 16.734 0.000χ =  

Tbill 0 31 32 33: 0H γ λ γ= = =  1 31 32 33: 0H γ λ γ≠ ≠ ≠  ( )2 2.651 0.449χ =  

Note: p-value of the test is in parentheses. 
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Next we test the leverage in volatility transmission across domestic asset mar-
kets. In the context of multivariate asset market trade dynamics, it is important 
for asset management to know how the “news” spread over to other assets and 
increase the risk of holding risky assets. Since the negative news have the greater 
influence on future volatility than do the gains, we therefore, test for the leverage 
effects of the asset’s own shock and shocks due to the other assets in the multiple 
financial markets. This has been empirically investigated by testing the leverage 
parameters across assets jointly by utilizing the Wald Chi-square test. The test 
results of the leverage parameters ijγ  are provided in Table 5(c). Table 5(c) 
shows that there is a significant leverage effects transmitting from stock’s own 
shock, and the shocks due to the bond and Tbill markets to the stock market. 
Further, significant asymmetric leverage effects transmitting from bond’s own 
shock, and the shocks due to the stock and Tbill markets to the bond markets 
jointly. However, no significant leverage effects transmit jointly from Tbill’s own 
shock, and the shocks are due to the stock and bond markets to the Tbill market. 
These observations are useful, for the Australia’s domestic investors, for optimal 
asset al. location strategies for future investment decision. 

4.3. Pattern of Change in Predicted Volatility and Correlations  

The estimated model satisfies most of the desirable properties, namely model 
adequacy, parameter consistency, volatility clustering and leverage effects. As 
mentioned before, a good forecast model must capture all stylized facts of the 
data. In this regard, our VAR-BEKK-GJR-MGARCH (t) model can be used for 
modelling and predicting volatility and correlation of return volatilities. The 
graph below displays time plot of the predicted time varying volatility and cor-
relations.  

Figure 3 shows both in-sample and out-of-sample predicted volatilities and 
correlations of volatilities between assets. The main diagonal of Figure 3 dis-
plays the predicted volatility and the off-diagonal graphs display the predicted 
volatilities. The predicted volatilities of bond, stock and Tbill exhibit changes the 
pattern of movement over time. The out-of-sample volatility prediction of each 
of the security is tranquil. This is the recovery of the GFC. The prediction of 
correlation of volatility between stock and bond, and Tbill and stock are both 
positive in the 100-step-ahead prediction. But a mix of both negative and posi-
tive is during in-sample prediction. However, both the in-sample and out of 
sample prediction of correlation of volatility between Tbill and bond are nega-
tive. This carries useful information about the asset markets interaction and 
trade-off, which is consistent with our previous findings. The volatility predic-
tion is monotonically decreasing in all cases after 2011. The out-of-sample pre-
diction is tranquil for Tbill but the stock and bond price volatility continues to 
fall. The overall Predicted bond return is more volatile than the predicted stock 
returns during 2011. There were some tranquil periods both in bond and Tbill 
volatility predictions during the mid-2007 and a severe peak in all of the securities’ 
volatility during 2011-2012. All those are the European financial crisis periods.  
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Figure 3. Predicted volatility and correlations of stock, bond, and Tbill. 

5. Conclusion 

In this paper we investigate the impact of news on volatility in the multiple asset 
markets using VAR-BEKK-GJR-MGARCH model. Although this model con-
tains a large number of parameters, its statistical second order moment property 
holds. This model is capable to capture both asymmetric error distributions 
(measuring news effects) and “volatility leverage”. To our knowledge, applica-
tion of the simultaneous occurrence of asymmetry and leverage effects on vola-
tility in the Australia’s domestic financial markets is the first. This paper contri-
butes to both methodology and real application within the multivariate financial 
volatility modelling context. The new modelling strategy of this paper provides 
important additional information about the sources and linkages among the 
domestic asset markets of Australia. The results of this paper show that the Aus-
tralian’s domestic asset markets are interdependent in general. Significant vola-
tility spillovers from stock market to the bond and to money markets simulta-
neously due to common news information which is supported by the Wald 
chi-square tests. Time plot of the daily log returns highlights that the domestic 
bond market is affected most by the global financial crises (GFC), while Tbill is 
least affected as Tbill is more liquid than the bond market. We also find signifi-
cant volatility leverage effects from bond and money markets to the stock market 
and from stock and money markets to the bond market. However, no significant 
volatility leverage effects are found from stock and bond markets to Tbill. The 
correlation between Tbill and bond returns volatility is negative, indicating that 
there is a trade-off between bond and Tbill. This information is useful and vital 
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for asset management and portfolio diversification strategies. Stock and bond 
volatility correlation is a mix of both positive and negative but with that some 
noticeable negative correlation is reported between these two assets during 2011 
and 2012. Volatility correlations between asset returns are important for policy 
makers’ asset allocation through diversification during trading under uncertain-
ty. In general, the model adequately fits the data by the LB and Nyblom tests. 
Significant simultaneous presence of “news” and leverage effects and volatility 
spillovers determine the sources of volatility transmission across domestic asset 
markets of Australia. The short and long run volatility parameters are found to 
be significant with some reservation. The dynamic interactions affect investors’ 
expectation of trading securities in the Australia’s domestic financial markets 
simultaneously. The approach of this paper can be extended to investigate spatial 
dependence of volatility & correlation spillovers across countries for modelling 
and predicting returns and volatilities simultaneously in the international finan-
cial markets for global financial investment policy decision purposes. 
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