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Abstract 
We propose a Multivariate Volatility Regulated Kelly strategy, which has extra 
penalization on variance compared to the Kelly criterion. The objective func-
tion is constructed and solved. We show the superiority of our method in 
relatively low correlated portfolios, relative to the fractional Kelly and full 
Kelly strategies. Our strategy reduces the short-term risk without sacrificing 
the growth rate to invest more in risk-free assets. Simulation results and Chi-
nese commodity future empirical results strongly support our method. 
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1. Introduction 

Both the Kelly criterion and fractional Kelly strategies play important roles in 
asset allocation and portfolio investment. Early contributions to the theory and 
practice include Kelly [1], Latane [2], Breiman [3], Thorp [4] and Hakansson [5]. 
The Kelly criterion is widely applied in asset allocation [6] [7] [8]. Maclean, 
Thorp and Ziemba [9] conclude that there are both good and bad properties of 
the Kelly criterion. Its main advantage, which maximizes the expected value of 
the logarithm of wealth period by period, is that it maximizes the limiting expo-
nential growth rate of wealth. The main disadvantage is that its suggested wagers 
may be very large. Hence, the Kelly criterion can be very risky in the short term.  

To overcome high risk shortcoming, Ziemba [10] and Thorp [11] proposed 
the fractional Kelly strategy: invest a proportion f  of one’s wealth in the Kelly 
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portfolio and a proportion 1 f−  in the risk-free asset. There are two key bene-
fits of the fractional Kelly strategy: first, the volatility of a fractional Kelly portfo-
lio is significantly less than that of the full Kelly portfolio. Second, fractional 
Kelly strategies are optimal with assumptions of the Merton model [12]. In fact, 
theoretically, the fractional Kelly decreases volatility with a corresponding de-
crease in the long-run growth rate. The fractional Kelly is optimal in theory and 
often outperforms the full Kelly in empirical studies. Unfortunately, fractional 
Kelly strategies are no longer optimal when the log normality assumption is re-
moved [13]. Many attempts have been made to retain the optimality of fractional 
Kelly strategies in recent years. Extensions of fractional Kelly-like risk sensitive 
benchmark and the Intertemporal Capital Asset Pricing Model (ICAPM) are 
used to guarantee optimality [14] [15]. 

In this paper, we propose a new direction for an improved Kelly strategy: a 
modified target function can outperform traditional Kelly or fractional Kelly 
strategies at both wealth growth and risk control side. Rather than maintaining 
the optimality of fractional Kelly strategies, we are more interested in seeking 
better risk estimators and giving inspiration in Kelly portfolio management. We 
call our approach the Multivariate Volatility Regulated Kelly (MVRK) strategy, 
which indeed provides a modified covariance estimator that is more adapted to 
low correlated portfolios. MVRK is inspired by time series momentum which 
assumes that asset correlation can be ignored [16] and is partly connected to the 
covariance shrinkage method [17].  

Our results show that MVRK outperforms the full Kelly and fractional Kelly 
strategies in relatively low correlated portfolios. This is the main contribution of 
the paper. We have verified our findings in three ways. First, the theoretical in-
tuition of MVRK is very clear and simple: volatility impacts on risk estimators 
are more important than correlation in low-correlated scenarios. Second, simu-
lation results prove the advantage of MVRK in low correlation settings. Third, 
real data from the Chinese commodity market further support our method. 

This paper is laid out as follows. In Section 2, we introduce the framework of 
Kelly portfolios and fractional Kelly portfolios in Merton assumptions. In Sec-
tion 3, we show the methodology of the Multivariate Volatility Regulated Kelly 
strategy and explain the intuition compared with the full Kelly and fractional 
Kelly strategies. In Section 4, we simulate MVRK strategies and Kelly strategies 
with different correlation settings. Moreover, we show that MVRK is a better 
choice in low correlated portfolios. In Section 5, we use data from the Chinese 
commodity market and give empirical results with full Kelly, fractional Kelly and 
MVRK strategies. The empirical evidence further supports our method. In Sec-
tion 6, we summarize the findings and make conclusions. 

2. The Kelly Criterion Portfolio and Fractional Kelly  
Strategies with Risk Sensitive Control  

2.1. The Kelly Criterion Portfolio 

Assume we have a set of risky assets whose stochastic term is driven by K  
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wiener processes ( )T
1  , , KW W W=  , price dynamics then Figure 

d
d dt

t

S t W
S

µ= +Π                            (1) 

where ( )T
1, ,, ,t t N tS S S=   is price vector of N  assets at time t . µ  is drift 

vector which has the same dimension of N . Π  is a N K×  matrix, capturing 
the effect of different sources of uncertainty.  

Similarly, considering a portfolio policy by investing ( )T
1, , Kf f f=   in 

each asset, our portfolio thus follows SDE 

( )T Td
1 d d dt

t

A f r t f t W
A

µ= − + +Π                    (2) 

Apply Ito formula and define N N×  covariance matrix TV = ΠΠ  

T T T1d log d d
2tA r f r f f Vf t Wµ = − + − +Π 

 
              (3) 

Let the drift term 

T T T1
2

D r f r f f Vfµ= − + −                      (4) 

The spirit of the Kelly system then involves maximizing D  with respect to 
f   

, 0
N

i j i i i
j ii

D r v f
f

µ µ
≠

∂
= − + + =

∂ ∑                     (5) 

Expand the portfolio to N assets, and the first order condition will give 

( ) ( )1*f V rµ−= −                          (6) 

where   is a N N×  identity matrix. Substituting optimal *f  back in (4), the 
optimal return growth rate is  

( ) ( ) ( )1 2
*

2
V r

D f r
µ− −

= +


                   (7) 

This is the explicit solution to the multivariate Kelly criterion portfolio. It is 
clear that the Kelly criterion maximizes the geometric growth rate. It is also clear 
that extremely high weights of wealth may be allocated to some assets with very 
high independence (low correlation) across the portfolio. Diversification is one 
of the most important things to consider for a portfolio manager when con-
structing his/her portfolios. It is reasonable to accept the It is reasonable to ac-
cept the assumption that assets with low correlation will be added into the port-
folio. The abnormal high weights on some assets contribute to high volatility in 
the short run. This is also a very crucial motivation for us to propose MVRK. 

In case that no correlation exists and K N= , Equation (6) is simplified to 

( )( ) ( )1
f Diag V rµ

−
= −                      (8) 

Its implication is that an investor should invest any risky asset based solely on 
her observation on mean return and variance. This conclusion is consistent with 
univariate case. 
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2.2. Fractional Kelly Strategies with Risk Sensitive Control 

The fractional Kelly strategy is used to reduce this short-term risk and large 
wagers compared to the full Kelly strategy. We refer to betting less than Kelly as 
“fractional Kelly”, which is simply a blend of Kelly and cash. However, this frac-
tional Kelly is indeed a scaling of the full Kelly and reduces the risk at the ex-
pense of a lower growth rate.  

We assume that asset prices are log normally distributed and that terminal 
portfolio wealth has a power utility function. When we introduce the relative 
risk aversion coefficient, the natural optimal solution from geometric Brownian 
motion is fractional Kelly policy. We apply Ito lemma with the power utility  

function 
1

1
AE

γ

γ

+ 
 + 

, and this gives the optimal solution of the fractional Kelly. 

From a fractional Kelly perspective, the risk sensitive asset model is the same 
as the fractional Kelly model [14] [15]. Intuitively, the objective function in frac-
tional Kelly is to add risk sensitive control to drift term D in the Kelly portfolio 
previously derived: 

T 
2

D f Vfγ
−                            (9) 

The explicit optimal solution to fractional Kelly will become 

( ) ( )1* 1
1

f V rµ
γ

−= −
+

                     (10) 

with the relative risk sensitive coefficient ( )1,γ ∈ − ∞ . 

Substituting (10) into T

2
D f Vfγ
− , the optimal return growth rate is  

( ) ( ) ( )
( )

1 2
*

2 1
V r

D f r
µ
γ

− −
= +

+


                  (11) 

From the derivation above, we notice that the release in power utility assump-
tions actually breaks down the optimality of the Kelly criterion strategies. The 
explicit solution is not optimal only considering maximum of the portfolio 
growth rate and final portfolio wealth. Comparing (6) and (10), fractional Kelly 
strategies adjust the weight of risky assets and geometric growth rate in the same 
size. Hence, the reduction in the risk is reflected in the corresponding reduction 
in growth rate.  

3. Multivariate Volatility Regulated Kelly  

In our recent study, we found that mean-variance risk control is not always a 
good choice. When we invest either in low correlated portfolios or in different 
asset classes with relatively low correlation, the penalty of assets’ own variance 
becomes more important than covariance.  

We use the same assumptions for the MVRK as for the Kelly criterion and 
fractional Kelly strategies: asset prices are log normal distributed and follow a 
geometric Brownian motion. In the fractional Kelly strategy, we change the 
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objective function of portfolio wealth, adding an extra risk control term. In 
MVRK, we also add one extra volatility control term. We now change the objec-
tive function in the Kelly criterion to 

( )T

2
D f Diag V fθ
−                         (12) 

( )1,θ ∈ − ∞  is the volatility regulation coefficient. Then the explicit solution is 

( )( ) ( )1*f V Diag V rθ µ
−

= + −                    (13) 

Substituting (13) into (12), the growth rate of return now is: 

 ( ) ( )( ) ( )1 2
*

2
V Diag V r

D f r
θ µ

−
+ −

= +


            (14) 

Here ( )Diag V  is the diagonal line, which is idiosyncratic risk inherent in indi-
vidual asset. Put another way, ( )Diag V  is volatility measure regardless of oth-
ers’ effect. The existence of the solution is explicit: ( )V Diag Vθ+  should not 
be degenerate. Note that V  is not invertible if K N< . This scenario can be 
true when we choose a redundant set. We call this “Multivariate Volatility Regu-
lated Kelly” (MVRK). The implication of MVRK is clear: portfolio investment 
policy is restricted by an extra volatility regulation term and there is more aver-
sion with regard to assets volatility and more weight put on the volatility regula-
tion coefficient θ .  

On the one hand, MVRK does not scale the portfolio weight, and will not af-
fect the risky assets return, which is apparently the problem of the fractional 
Kelly strategy. On the other hand, MVRK can avoid extremely high weights al-
located to assets and dramatically reduce the short-term risk, which is presented 
as the main disadvantage of the Kelly strategy.  

4. Simulation  
4.1. Simulation Assumptions and Settings 

In this section, we will show the simulation results of the MVRK and Kelly crite-
rion strategies. We assume that the risk free rate is zero-the fractional Kelly is 
equivalent to the full Kelly under this setting. Hence, we only need to compare 
MVRK with the full Kelly strategy1. The relationship between the portfolio cor-
relation and strategy performance is the main target. Portfolio size, trading 
length and the variation of the volatility regulation coefficient are also consi-
dered. We state several assumptions first. 

Assumption 1: Correlated asset prices follow a geometric Brownian motion. 
We allow assets to have correlations in the simulation. This is an important 

topic in quantitative finance, as it can be applied to simulating assets held in a 
portfolio that are dependent on one another to determine the underlying risk of 

 

 

1When the risk free rate is positive, just scaling the same size of MVRK as for the fractional Kelly, we 
have a fractional MVRK. Comparing fractional MVRK and fractional Kelly strategies is always 
equivalent to comparing MVRK and full Kelly. As long as we show that MVRK can outperform full 
Kelly, we show that fractional MVRK can outperform fractional Kelly.  
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the portfolio. A geometric Brownian motion model is used to keep consistent 
with the full Kelly, fractional Kelly and MVRK assumptions. 

Assumption 2: Portfolio returns have zero mean but fluctuate slightly. 
We set the portfolio average annual return to be equal to zero and allow some 

assets to have positive returns and others to have negative returns. In specific 
markets, asset annual returns are different, i.e. S & P 500 has a 10% annual re-
turn since its inception, while some futures markets can even have a negative 
annual return. In this paper, the major discussing point is risk estimators, so we 
suppose that we always invest in a zero mean portfolio.  

Assumption 3: Asset returns have a fixed volatility level. 
In practice, asset annual volatility can range from very low (less than 10% in 

bonds) to medium (ranging from 10% to 30% in equities) and to very high 
(more than 30% in commodities). We show simulation results for the MVRK 
and Kelly strategies with fixed 15% annual volatility. We fix the return and vola-
tility level to eliminate any disturbance to correlation effects variation on strate-
gies. Then we give some settings for the simulation. 

Simulation Setting 1: Control correlation level ,i jρ  from low 0.1 to 0.7, with 
0.1 step length. 

Suppose we have a correlation matrix, denoted C. 

1,1 1,

2,1 2,

,1 ,2

1
1

1

n

n

n n

C

ρ ρ
ρ ρ

ρ ρ

 
 
 =  
  
 





   



 

Simulation Setting 2: Control the portfolio dimension as 20, 30 and 40. 
Simulation Setting 3: Control trading length as 1250 trading days, 2500 

trading days and 7500 trading days. 
Simulation Setting 4: Simulation times = 1000. 

Simulation Setting 5: Set the fraction allocated in Diag(V) as 
1

p θ
θ

=
+

, and 

the fraction allocated in V as 
1

1
q

θ
=

+
. We control the value of p from 0 to 1  

with 0.01 step length, adjusting the volatility regulation coefficient from 0 to ∞. 
In the case where 0p = , MVRK is equivalent to the full Kelly strategy which 

means there is no extra restriction on the idiosyncratic variance on each asset. 
In the case where 1p = , MVRK actually collapses to a time series momentum 

(TSMOM) strategy. In our empirical study, it is also valid to assert that time se-
ries momentum portfolios maximize the median fortune and geometric growth 
with the assumption of independence across assets.  

If the cross-sectional correlation is not negligible, however, the TSMOM 
portfolio fails. In the futures market, it might be safer to accept heterogeneity of 
commodities, which are easily violated in the stock market. As an indication of 
further research, we may change the Kelly criterion to “Correlation Regulated 
Kelly” in highly correlated portfolios. In this scenario, we just range the volatility 
regulation coefficient θ  in ( )1,0− . 
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4.2. Simulation Results 

In our experiments, we examine the relative performance of the full Kelly and 
MVRK strategies. The nine simulations vary asset numbers with 20, 30 and 40, 
and observation numbers with 1250, 2500 and 7500 successively. We compare 
the Sharpe ratio and Value at Risk in the two methods and show the probability 
that the MVRK strategies have higher Sharpe ratio and higher Value at Risk. It is 
not necessary to give the absolute values of Sharpe ratio and Value at Risk. For 
one thing, the simulation assumptions naturally give uncontrollable random ef-
fects on the portfolio, and hence on the strategy performance. For another, the 
primary purpose of the simulation is to compare the full Kelly and MVRK in 
different correlation settings.  

First, we display the results with 0.5p = , while in this setting, the volatility 
regulation coefficient 1θ = , which is an intermediate intensity coefficient. Un-
der this scenario, it is very clear to overlook the relationship between correlation 
and strategy performance.  

Table 1 clearly reports the correlation effects on the Kelly strategy and MVRK 
strategy. The monotonous decrease in the winning probability of the MVRK 
strategies can be observed in both the Sharpe ratio and VaR, with an increasing 
correlation level from 0.1 to 0.7. In different portfolio dimension and observa-
tion numbers, the monotone pattern always holds. When observation numbers 
increase from 1250 to 7500, the monotonous decrease in the winning probability 
function is more convex. Therefore, the correlation effects on the MVRK and 
full Kelly strategies become more significant when the observation number is 
larger. We fail to find significant effects of portfolio dimensions. MVRK strate-
gies keep leading positions (winning probability exceeds 50%) in all simulations 
where the correlation is less than 0.4. Hence, MVRK is superior in low correlated 
portfolios while Kelly is better in high correlated portfolios. 

Actually, the monotonous decreasing pattern can be observed in different 
MVRK strategies. In another words, with different volatility regulation coeffi-
cient θ, we can still show that MVRK strategies perform better in low correlated 
portfolios. 

Figure 1 and Figure 2 plot the 3D-curves of the correlation effects on the 

Sharpe ratio and VaR winning probability that vary the fraction 
1

p θ
θ

=
+

 al- 

located in Diag(V) from 0.01 to 1 with a step of 0.01. The monotonous decreas-
ing pattern happens in most cases except for negligibly small p (less than 0.1). 
The results are generally consistent with the p = 0.5 results in Table 1, and hence 
consistent with the conclusion in Table 1.  

A very interesting finding, which is different from 20 and 30 dimension situa-
tions, is that in the 40-dimension portfolio, the MVRK strategies present very 
low winning probabilities with high p values even when the correlation is as 
small as 0.1. Looking back to the case 1p = , an MVRK strategy is equivalent to 
a TSMOM strategy and no correlation is considered at all. The sharply decreas-
ing performance of the high-p-MVRK strategies even in low correlation implies  
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Figure 1. Fixed dimension and observation numbers, Sharpe ratio winning probability 
varying transformed volatility regulation coefficient p from 0.01 to 1. The lines along the 
x-axis are winning probability curves in fixed p. The lines along the y-axis are winning 
probability curves at a fixed correlation level. 
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Figure 2. Fixed dimension and observation numbers, VaR winning probability varying 
transformed volatility regulation coefficient p from 0.01 to 1. The lines along the x-axis 
are wining probability curves in fixed p. The lines along the y-axis are wining probability 
curves at a fixed correlation level. 
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Table 1. Simulation results of MVRK and Kelly strategies. Correlation level of the portfo-
lio varies from 0.1 to 0.7. The table summarizes Sharperatio and VaR winning probability 
of MVRK strategies. 0.5p = . 

Dimension: 20 Obervation: 1250 Obersvation: 2500 Obersvation: 7500 

Correlation/MVRK Win Prob Sharpe ratio VaR Sharpe ratio VaR Sharpe ratio VaR 

0.1 0.74 0.73 0.83 0.82 0.97 0.96 

0.2 0.61 0.62 0.68 0.68 0.86 0.86 

0.3 0.54 0.54 0.58 0.60 0.70 0.72 

0.4 0.50 0.51 0.47 0.50 0.52 0.56 

0.5 0.38 0.40 0.35 0.39 0.30 0.36 

0.6 0.27 0.30 0.20 0.24 0.10 0.14 

0.7 0.15 0.19 0.07 0.10 0.001 0.01 

Dimension: 30 Obervation: 1250 Obersvation: 2500 Obersvation: 7500 

Correlation/MVRK Win Prob Sharpe ratio VaR Sharpe ratio VaR Sharpe ratio VaR 

0.1 0.70 0.69 0.77 0.78 0.89 0.88 

0.2 0.58 0.59 0.64 0.64 0.77 0.76 

0.3 0.54 0.51 0.55 0.56 0.62 0.62 

0.4 0.48 0.47 0.47 0.48 0.46 0.49 

0.5 0.40 0.40 0.35 0.37 0.29 0.31 

0.6 0.30 0.30 0.19 0.24 0.09 0.12 

0.7 0.13 0.17 0.04 0.08 0.002 0.01 

Dimension : 40 Obervation: 1250 Obersvation: 2500 Obersvation: 7500 

Correlation/MVRK Win Prob Sharpe ratio VaR Sharpe ratio VaR Sharpe ratio VaR 

0.1 0.69 0.68 0.75 0.75 0.90 0.90 

0.2 0.60 0.60 0.64 0.64 0.80 0.79 

0.3 0.57 0.58 0.61 0.60 0.74 0.74 

0.4 0.52 0.54 0.60 0.60 0.64 0.64 

0.5 0.50 0.53 0.49 0.50 0.51 0.53 

0.6 0.39 0.41 0.36 0.40 0.31 0.37 

0.7 0.29 0.31 0.17 0.22 0.04 0.09 

 
that it may be safer not to use pure TSMOM strategies in a portfolio including 
large numbers of assets. In contrast, when we have very small p values, but with 
a high correlation, the MVRK strategies still can give higher winning probability 
in both Sharpe ratio and VaR. This phenomenon contrasts with our intuition: 
MVRK performs better in low correlated portfolios, while Kelly performs better 
in high correlated portfolios. However, it brings about a better risk estimator 
composed of a proper combination between variance and covariance estimators. 
The simulation results also reiterate the importance of the shrinkage method 
proposed by [17]. 
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5. Empirical Evidence from China Commodity Market 
5.1. Data Set 

We use closing prices for 37 liquid China commodity futures since Chinese 
commodity market now has the largest trading volume [18]. The data spans the 
period from January 1, 2000 to July 11, 2016. The total sample size ranges from a 
low of 4 contracts at the beginning to a peak of 37 contracts from 2014.  

The average pairwise correlation of return in our sample is about 26.5%. We 
use interest rate published by the People’s Bank of China as fixed risk free rates2. 
The summary statistics are provided in Table 2. 
 
Table 2. Summary statistics on Chinese commodity futures contracts. The annualized 
mean returns and volatility (standard deviation) of the futures contracts are reported in 
our sample from January 2000 to July 2016. 

Commodity 
Futures Code 

Annualized 
Return 

Annualized 
Volatility 

Commodity 
Futures Code 

Annualized 
Return 

Annualized 
Volatility 

   JD 2.36% 23.84% 

A 3.63% 17.99% JM −18.17% 20.68% 

AG −8.16% 21.80% L −3.98% 23.19% 

AL −2.21% 13.41% M 2.70% 20.45% 

AU 3.41% 18.71% MA −11.53% 19.89% 

B 3.99% 19.28% NI −21.35% 24.19% 

BB −10.52% 32.69% OI −4.27% 18.94% 

BU −32.73% 24.72% P −6.68% 22.33% 

C 2.21% 13.32% PP −12.60% 22.90% 

CF −0.06% 16.85% RB −5.74% 17.51% 

CS −26.63% 21.44% RM 1.67% 21.47% 

CU 1.18% 21.09% RU −1.84% 25.02% 

FB −22.75% 52.28% SR 2.06% 18.98% 

FG −7.05% 19.75% TA −7.34% 22.17% 

FU 1.63% 28.35% V −2.03% 15.35% 

HC −11.39% 19.59% WH 3.20% 13.73% 

I −32.31% 26.49% Y 1.82% 19.04% 

IF −1.22% 27.78% ZC −10.14% 15.93% 

J −17.68% 19.98% ZN −6.49% 22.92% 

 

 

2We compute the daily excess return of the most liquid futures contract (typically the nearest or next 
nearest-to-delivery contract), and then compound the daily returns to a continuous return index 
from which we can compute returns at any horizon. Then we calculate the annualized return and 
volatility based on the continuous return index. The risk free rate published by the People’s Bank of 
China (PBC or PBOC) is available at 
http://www.global-rates.com/interest-rates/central-banks/central-bank-china/pbc-interest-rate.aspx 

http://www.global-rates.com/interest-rates/central-banks/central-bank-china/pbc-interest-rate.aspx
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5.2. Strategy Construction 

From (6), (10) and (13), investors can make portfolio decisions based on full 
Kelly, fractional Kelly and MVRK strategies respectively. We use past returns 
and calculate realized variance-covariance. Investors themselves can decide 
lookback periods. In our empirical study, we compare full Kelly strategies vs. 
MVRK strategies and fractional Kelly strategies vs. fractional MVRK strategies. 
Relative risk sensitive coefficient γ  and volatility regulation coefficient θ  vary 
from zero to positive infinity. We keep simulation setting 5 for MVRK, but 
change the step length to 0.1. Similarly, in fractional Kelly strategies, we set the  

fraction allocated to risky assets as 
1

m γ
γ

=
+

, and the fraction allocated to risk- 

free assets as 1
1

n
γ

=
+

. We build long-short strategies by introducing an addi-

tional weight constraint: 

1 2 3 1nf f f f+ + + + =                  (15) 

We compare the annual return, Sharpe ratio, maximum drawdown, 5% value 
at risk and conditional 5% value at risk for these four strategies. 

From Table 3, as the value of p increases from 0.1 to 1.0, the volatility regula-
tion coefficient increases from very small to very big. Even the modest MVRK 
strategy with 0.1p =  has a greater Sharpe ratio (1.44 > 1.01) and a smaller 
maximum drawdown (8.50% < 8.65%) compared to the full Kelly strategy. 
When 0.7p = , the MVRK strategy has the highest Sharpe ratio of 1.85 and a 
double annual return compared to the full Kelly strategy, with only 20% more 
maximum drawdown and value at risk. Moreover, if we scale the annual return 
to the same level, the MVRK strategies also show a better VaR and cVaR. In all 
other scenarios, MVRK strategies keep dominating superiority to the full Kelly 
strategy. Therefore, MVRK strategies always beat the full Kelly strategy in Chi-
nese commodity markets.  

The fractional Kelly strategies have a monotonously decreasing annual return 
and maximum drawdown when m is increasing, indicating that more weight is 
transferred from risky to risk free assets and that the portfolio becomes less risky 
at the expense of less wealth growth. Scaling the annual return to the same level 
for the fractional MVRK and fractional Kelly strategies, the statistics always 
show a higher return and a lower risk for the MVRK strategies. Even when 
p m≠ , the MVRK strategies always have a superior risk adjusted return 

compared to the fractional Kelly strategies. Hence, the MVRK strategies al-
ways beat the fractional strategies in Chinese commodity markets. An exam-
ple with 0.5p m= = , the same risk adjusted strategy performance is given in 
Figure 3. 

In our sample of Chinese commodity markets, the average pairwise correla-
tion level is 22.7%, implying a relatively low correlated market. The empirical 
results significantly show that MVRK outperforms full Kelly and fractional Kelly 
in relatively low correlated portfolios. 
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Table 3. Statistic summary of MVRK, Full Kelly, Fractional MVRK and Fractional Kelly 
strategies performance. The transaction cost is set as five in ten thousand per unit.  

 
1

p θ
θ

=
+

 is the fraction allocated Diag(V) and 
1

m γ
γ

=
+

 is the fraction allocated in 

the full Kelly strategy. 

Transaction cost: 0.05% MVRK 
Full  

Kelly 
Fractional 

MVRK 
Fractional 

Kelly 
p = m 

Annual return 13.86% 10.34% 12.90% 9.73% 0.1 

Sharpe ratio 1.44 1.01 1.43 1.01  

Maximum Drawdown 8.50% 8.65% 7.04% 7.43%  

5% VaR −0.51% −0.44% −0.45% −0.40%  

cVaR −0.82% −0.73% −0.73% −0.65%  

Annual return 15.61% 10.34% 13.34% 9.13% 0.2 

Sharpe ratio 1.60 1.01 1.60 1.01  

Maximum Drawdown 8.35% 8.65% 5.83% 6.21%  

5% VaR −0.53% −0.44% −0.42% −0.35%  

cVaR −0.87% −0.73% −0.69% −0.58%  

Annual return 16.79% 10.34% 13.04% 8.52% 0.3 

Sharpe ratio 1.69 1.01 1.69 1.01  

Maximum Drawdown 8.10% 8.65% 5.13% 5.00%  

5% VaR −0.56% −0.44% −0.39% −0.30%  

cVaR −0.91% −0.73% −0.63% −0.50%  

Annual return 17.75% 10.34% 12.36% 7.92% 0.4 

Sharpe ratio 1.76 1.01 1.75 1.00  

Maximum Drawdown 8.43% 8.65% 4.35% 3.87%  

5% VaR −0.60% −0.44% −0.35% −0.26%  

cVaR −0.95% −0.73% −0.56% −0.43%  

Annual return 18.57% 10.34% 11.43% 7.31% 0.5 

Sharpe ratio 1.80 1.01 1.79 1.00  

Maximum Drawdown 8.89% 8.65% 3.60% 3.15%  

5% VaR −0.62% −0.44% −0.30% −0.21%  

cVaR −0.98% −0.73% −0.48% −0.36%  

Annual return 19.35% 10.34% 10.31% 6.71% 0.6 

Sharpe ratio 1.84 1.01 1.82 0.99  

Maximum Drawdown 9.48% 8.65% 2.84% 2.42%  

5% VaR −0.63% −0.44% −0.24% −0.17%  

cVaR −1.01% −0.73% −0.40% −0.28%  

Annual return 20.01% 10.34% 9.00% 6.10% 0.7 

Sharpe ratio 1.85 1.01 1.83 0.98  

Maximum Drawdown 10.26% 8.65% 2.04% 1.71%  
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Continued 

5% VaR −0.67% −0.44% −0.19% −0.12%  

cVaR −1.05% −0.73% −0.30% −0.21%  

Annual return 20.64% 10.34% 7.56% 5.50% 0.8 

Sharpe ratio 1.85 1.01 1.82 0.97  

Maximum Drawdown 11.36% 8.65% 1.29% 1.03%  

5% VaR −0.69% −0.44% −0.12% −0.08%  

cVaR −1.09% −0.73% −0.21% −0.13%  

Annual return 21.24% 10.34% 5.98% 4.89% 0.9 

Sharpe ratio 1.82 1.01 1.75 0.91  

Maximum Drawdown 12.74% 8.65% 0.59% 0.44%  

5% VaR −0.74% −0.44% −0.06% −0.03%  

cVaR −1.15% −0.73% −0.10% −0.06%  

Annual return 21.67% 10.34% 4.35% 4.35% 1.0 

Sharpe ratio 1.75 1.01    

Maximum Drawdown 14.57% 8.65%    

5% VaR −0.80% −0.44%    

cVaR −1.24% −0.73%    

 

 
Figure 3. Plots of cumulative net return to the MVRK, Full Kelly and Fractional Kelly 
strategies. An equal volatility target is applied in three strategies. 

6. Conclusion 

This paper proposes a modified Kelly strategy called Multivariate Volatility Re-
gulated Kelly that outperforms the full Kelly and fractional Kelly strategies in 
low correlation scenarios. We claim that combining covariance and variance es-
timators will result in better Kelly strategies in low correlated portfolios. The 
simulation results show the superiority of MVRK in low correlation settings. 
The Chinese commodity market further provides empirical evidence of MVRK, 
and we believe that the global futures market can obtain a similar result. Cova- 
riance estimator is time varying and not always stationary. The future work will 
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focus on stationary and non-stationary covariance, and analyse the market fea-
tures when there are change points happening in covariance. 
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