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Abstract 
The Zaklan model has become an excellent mechanism to control the tax evasion fluctuations (TEF) 
in a people- or agent-based community. Initially, the equilibrium Ising model (IM) had been used 
as a dynamic of temporal evolution of the Zaklan model near the critical point of the IM. On some 
complex network the IM presents no critical points or well-defined phase transitions. Then, through 
Monte Carlo simulations we study the recurring problem of the TEF control using the version of 
non-equilibrium Zaklan model as a control mechanism for TEF via agent-based non-equilibrium 
majority-vote model (MVM). Here we study the TEF on directed Barabási-Albert (BAD) and Apol-
lonian (ANs) networks where the IM is not applied. We show that the Zaklan model can be also 
studied using non-equilibrium dynamics through of the non-equilibrium MVM on complex topolo-
gies cited above, giving the behavior of the TEF regardless of dynamic or topology used here. 
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1. Introduction 
The social and economic behavior of a community of people has been successfully studied using the Ising model 
close to its critical points [1]-[5], see also [6]-[9]. 

According [10] [12]-[14], the tax evasion in a community of people remains a major cause of concern for 
governments. Second [15], the higher levels of tax evasion generally occur in less developed countries that 
present a lower amount of trust that people have in governmental institutions. Gächter [16], Frey and Torgler [17] 
have provided empirical evidences that indicate that tax payers tend to condition their decision regarding wheth-
er to pay taxes or not on the tax evasion decision of the members of their group or neighborhood as also provide 
experimental evidence on the relevance of conditional cooperation for tax morale. Within the context Zaklan et 
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al. [7] [8] developed an economics model to study the problem of tax evasion dynamics on a people community. 
However, this model deals with illegal tax evasion only. They used the equilibrium Ising model on a square lat-
tice (SL) and Monte-Carlo simulations with the Glauber algorithms to study the proposed model. 

In Germany, the loss in taxes and social security by unreported “informal” work has been claimed to corres-
pond to nearly two percent of the Gross Domestic Product. 

Zaklan et al. [8] also have studied the implications of conditional cooperation in a multi-agent-based frame-
work. They considered a large number of agents (people) who interact locally with each other and base their de-
cision whether to evade taxes or not on the behavior of their neighbors. They used the Ising model on a SL to 
study the behavior of tax evasion and furthermore add a policy maker’s tax enforcement mechanism. In their 
model the enforcement mechanism consists of two components: a probability (p) of an audit each person is sub-
ject to in every period, and a length (k) of time detected tax evaders remain honest. 

In this work, we study the behavior of the tax evasion on an agent community of honest citizens and tax evaders, 
where the agents are positioned on sites of complex networks, but now using a version of non-equilibrium of the 
Zaklan model proposed by Lima [18] [19]. Here, each agent does have an opinion in the presence of a constant 
social noise (q) as in the traditional Majority-Vote model (MVM) [20]. 

The non-equilibrium model proposed by Lima [18] [19] is based on the knowledge that we do not live in a 
social equilibrium and any rumor or gossip can lead to a government or market chaos. Then, a non-equilibrium 
model (MVM) explains better events of non-equilibrium and makes this model more realistic to explain social 
and economic behavior of a community of people. We ask if also this more realistic model reproduces the main 
results of the earlier versions and the answer is yes. Other motivation to use Lima model is that this presents a 
well-defined phase transition on directed Barabási-Albert and Apollonian networks. In these complex networks 
the equilibrium IM does not present a phase transition making it impossible to use the equilibrium Zaklan model 
via IM because this has no “social temperature” on these complex networks. 

R. Wintrobe and K. Gërxhani [15] argued that less developed countries may have high tax evasion because of 
less trust in government. Zaklan et al. [7] [8] proposed a model to study this problem , called here the Zaklan 
model, using Monte Carlo simulations and a equilibrium IM dynamics on square lattices. Their results are in 
good agreement with analytical and experimental results obtained by [15]. On some topologies like ANs and 
DBA the IM does not present a phase transittion making this model inappropriate to study TEF. However, the 
MVM does not present this limitation on these topologies. The source of this distinction is due to the different 
behavior of noise in each of these models [27]. In the IM, the probability of switching a highly connected spin 
against the local majority is smaller than a less connected one; since the energy variation is larger for a more 
connected spin. In the MVM, the probability of a spin switching against the local majority is always given by q, 
independent on the number of neighbors of this spin. The motivation of this work is to study tax evasion on 
complex networks via a nonequilibrium dynamics model (MVM) with the objective to make this model as rea-
listic as possible. 

2. Complex Networks 
Here we briefly describe the complex networks used in this study as previously mentioned. 

2.1. Undirected and Directed Apollonian Network 
The Apollonian network is composed of ( )3 3 1 2nN = + −  nodes, where n is the generation number and N the 
node number [21] [22]. On these ANs structures we can introduce a disorder, in such a way that we redirect a 
fraction rp  of the links. This redirecting results in a directed network, preserving the outgoing node of the re-
directed link but changing the incoming node. When 0rp =  we have the standard AP networks, while for 

1rp =  we have something similar to random networks [26]. In this procedure of the redirecting links, the 
number of outgoing links of each node is preserved even when 1rp =  and the networks still have hubs that are 
the most influent nodes. These networks display a scale-free degree distribution and a hierarchical structure. In 
the undirected case there exists the reciprocity of redirected links, i.e., if node A selects node B as incoming 
neighbor then A is also an incoming neighbor of B. 

2.2. Undirected Barabási-Albert Network  
The undirected Barabási-Albert network [24] [25] is grown such that the probability of a new node to be con-
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nected to one of the already existing nodes is proportional to the number of the previous connections to this al-
ready existing node: the rich get richer. In this way, each new node selects exactly m old nodes as neighbors. If a 
new node selects randomly m old nodes as neighbors, then the m old nodes are added to a long array of node in-
dices called the Kertész list, and the new node is also added m times to that list. At the start of the network 
growth, this Kertész list is empty. The above random selections are made by selecting m random nodes from the 
Kertész list. The neighbor relations were such that if A has B as a neighbor, B has A as a neighbor. 

2.3. Directed Barabási-Albert Network  
In directed Barabási-Albert networks, the network itself is produced in the undirected Barabási-Albert networks 
way [23]. When interacting agents are put onto this network, each node is influenced by the fixed number m of 
neighbors with it had selected when joining the network. It is not influenced by other nodes that selected it as 
neighbor after it joined the network, i.e., the neighbor relations were such that if A has B as a neighbor, B in 
general does not have A as a neighbor in the later interactions of agents on this DBA network.  

3. Zaklan Model via Non-Equilibrium Dynamics of MVM 
The traditional Zaklan model [7] consists of a number of homogeneous agents located on a regular or irregular 
structure. In every time period each network site is inhabited by an individual, spin iσ , who can either be an 
honest tax payer 1iσ = +  or a cheater 1iσ = − . It is assumed that initially everybody is honest. Each period in-
dividuals can rethink their behaviour and have the opportunity om become the opposite type of agent they were 
in the previous period. The network neighborhood of every individual is composed of z people, agents to net-
work nodes. Each agent’s social network may either prefer tax evasion or reject it. Individual decision making 
depends on two factors: First, the type of network every agent is connected with, exerts influence on what type 
of citizen she becomes in the respective period. On the other hand, people’s decisions are partly autonomous, i.e. 
they are not only influenced by the constitution of their vicinity. The autonomous part of individual decision 
making is responsible for the emergence of the tax evasion problem, because some initially honest tax payers 
decide to evade taxes and then exert influence on others to do so as well. Applied to tax evasion we can interpret 
the model as follows: Tax evaders have the greatest influence to turn honest citizens into tax evaders if they 
constitute a majority in the respective neighborhood. If the majority evades, one is likely also to evade. On the 
other hand, if most people in the vicinity are honest, the respective individual is likely to become a tax payer if 
she was a tax evader before. The model also presents an enforcement mechanism that consists of two compo-
nents: a probability of an efficient audit p; and if tax evasion is detected and punished, the individual remains 
honest for a number k of periods. One time unit is one sweep through the entire system. The temporal evolution 
this model can be performed by using an equilibrium or non-equilibrium dynamics. In the MVM on network, the 
system dynamics traditionally is as follows. We assign a spin variable σ  with values 1±  to each node of the 
network. At each step we try to spin flip a node. The flip is accepted with probability  

( )1 1 1 2 ,
2i i j

j
w q Sσ σ

  
= − − ⋅  

   
∑                              (1) 

where ( )S x  is the sign 1±  of x if 0x ≠ , ( ) 0S x =  if 0x = . To calculate iw  our sum runs over the z 
nearest neighbors j of spin i on the network. Equation (1) means that with probability ( )1 q−  the spin will 
adopt the same state as the majority of its neighbors. The noise parameter 0 1q≤ ≤  plays a role similar to the 
temperature in equilibrium systems: the smaller q, the greater the probability of parallel aligning with the local 
majority. 

In this model an agent has an opinion and can assume the value 1±  depending on the opinion of the majority 
of its neighbors. 

We further use a probability of an efficient audit p. Therefore, if tax evasion is detected by this audit, the 
agent must remain honest for a number k of time steps. Again, one time step is one sweep through the entire 
network.  

4. Controlling the Tax Evasion Dynamics 
In order to verify if there is a phase transition in MVM models on ANs Lima et al. [27] measured the relaxation 
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time τ  as a funtion of the noise parameter q, independent of our tax question. They started the system with all 
spins up and a number N of spins equal to 7,174,456 ( 16n = ). They determined the time τ  after which the 
magnetisation iiσ∑  has flipped its sign for the first time, and then took the median value of nine samples. As 
one can see in Figure 1, the relaxation time goes to infinity at some positive q value near 0.176 ( 0rp = ), indi-
cating a second order phase transition. In contrast, the Ising model on ANs [21] [22] and directed BA networks 
has no phase transition and agrees with the modified Arrhenius law for relaxation time [23]. 

 

 
Figure 1. Reciprocal logarithm of the relaxation times τ  on (a) apollonian networks versus q for 0rp =  (MVM) and (b) 

directed BA network (IM). The curves are parabolas correponding to an asymptotic Arrhenius law ( )( )exp const m Tτ ∝  
(Figure courtesy of D. Stauffer). 
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The fraction of tax evaders is  

[ ]honesttax evasion ,
N N

N
−

=                                 (2) 

where N is the total number and honestN  the honest number of agents. The tax evasion is calculated at every 
time step t of system evolution. 

For MVM it is known that for cq q> , half of the people are honest and the other half cheat, while for cq q<  
either one opinion or the other opinion dominates. Because of this behavior we set a fixed noise (q) to some 
values slightly below cq , where the case that agents distribute in equal proportions onto the two alternatives is 
excluded. We set 0.95 cq q=  with 0.176cq =  (ANs) and 0.431cq =  (DBA) such that we see flips of the 
whole system in the baseline cases 0k p= = . Then we vary the degrees of punishment ( 1k = , 10 and 50) and 
audit probability rate ( 0.5%p = , 10% and 90%). Therefore, if tax evasion is detected, the enforcement me-
chanism p and the time of punishment k are triggered in order to control the tax evasion level. The punished in-
dividuals remain honest for a certain number k of periods, as explained before in Section 3.  

5. Results and Discussion 
Here, we follow the same steps we did in a previous work [18]. Therefore, we first will present the baseline case 

0k =  and 0.0%p = , i.e., no use of enforcement, at 0.95 cq q=  and with ( )367 7N n= =  sites for ANs and 
DBA. All simulations are performed over 20,000 time steps, as shown in Figure 2. For very low noise the part 
of autonomous decisions almost completely disappears. The individuals then base their decision solely on what 
most of their neighbours do. A rising noise has the opposite effect. Individuals then decide more autonomously. 
Therefore, Figure 2 was expanded to two examples (Figure 2(b) and Figure 2(d)), in order to show how much 
the results change if one uses various random numbers, average on 20 different seeds. Error bars cannot describe 
this randomness properly. (For the later figures the error bars are visible from the fluctuations in time which 
show a band of fractions.) Although everybody is honest initially, it is impossible to predict roughly which level 
of tax compliance will be reached at some time step in the future. 

Figure 3 and Figure 4 illustrate different simulation settings for ANs and DBA, for each considered combi-
nation of degree of punishment ( 1k = , 10 and 50) and audit probability ( 0.5%p = , 10% and 90%), where the 
tax evasion is plotted over 20,000 time steps. Both a rise in audit probability (greater p) and a higher penalty 
(greater k) work to flatten the time series of tax evasion and to shift the band of possible non-compliance values 
towards more compliance. However, the simulations show that even extreme enforcement measures ( 90%p =  
and 50k = ) cannot fully solve the problem of tax evasion. 

 

 
Figure 2. Baseline case: 0k p= =  in (a) and (c), and the average over twenty different seeds in (b) and (d). We use 

0.95 cq q=  on both ANs and DBA perform all simulations over 20,000 time steps, also in the later figures. 
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Figure 3. Tax evasion for ANs and degrees of punishment 0k = , 1, 10 and 50 and audit 
probability 0.5%p = , 10% and 90%.  

 

 
Figure 4. The same as Figure 3, but now for DBA.  

 
In Figure 5 and Figure 6 we plot tax evasion for ANs and DBA, but now with ( )3283 9N n= = , again for 

different enforcement k and audit probability p. Now the fluctuations are much smaller since the network is 
nearly nine times larger. For case Figure 5(a) and Figure 5(b) we plot the baseline case 0k =  and 0p = , i.e., 
no use of enforcement for ANs and DBA and parameters as in Figure 3 and Figure 4. The probable error for 
part 5(c) fluctuates near 0.0031 (ANs) and is much smaller than the symbols (circle), but the one in 6(c)  
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Figure 5. Tax evasion ANs and degrees of punishment 0k = , 1, 10 and 50 and audit probability 0.0%,0.5%,4.5%p = , 
and 90% for 3283N =  sites (nodes) of ANs and using 50,000 time steps. Here, for 10k =  and 4.5%p =  (c), we present 
the average over twenty different seeds.  

 

 
Figure 6. The same of Figure 5, but now to DBA.  

 
fluctuates near 0.082 (DBA). Case 5(b) with 1, 0.5%k p= =  shows already a strong reduction of tax evasion 
on ANs, the same does not occur for DBA 6(b). In case 5(c) and 6(c) we show the tax evasion level decreases, 
on ANs and DBA, for a more realistic set of possible values for the degree of punishment 10k =  and audit 
probability 4.5%p =  [7] [15]. 

In case 5(d) and 6(d) we also show that the tax evasion level decreases much more for an extreme set of pu-
nishment 50k =  and audit probability 90%p =  [7] for both networks. Therefore, our model also works for 
large networks. 

To understand statistical errors, in Figure 5 and Figure 6 we plot tax evasion for ANs and DBA with 3283N =  
now for the case 10k =  and 4.5%p = . We found from 20 samples in part (c) that the tax evasion remains at 
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around 20% (ANs) and 30% (DBA), but with fluctuations in time larger than from sample to sample: The prob-
able errors are much smaller than the fluctuations seen in part (c).  

6. Conclusion 
In this work we show that the Zaklan model of tax evasiom is very robust because we use the non-equilibrium 
dynamics of the MVM to simulate the Zaklan model, with results similar to equilibrium dynamics of the IM [7] 
[8], and also on various topologies [18]. Therefore, as the model of Zaklan incorporates concepts from both so-
ciophysics and econophysics, we argue here that the best framework for simulating this kind of a model is the 
one of complex networks like ANs and DBA networks, where citizens always make a prior consultation with 
their nearest neighbors before making any final decisions. Also here we found the plausible result that tax eva-
sion is diminished by higher audit probability p and stronger punishment k on both ANs and DBA networks.  
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