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Abstract 
In this paper, a new model is proposed to empirically test the Capital Asset Pricing Theory. This 
model is based on the EGARCH-type volatilities in Nelson (1991) and the non-Normal errors of 
SSAEPD in Zhu and Zinde-Walsh (2009). Is the CAPM theory in Sharpe (1964), Lintner (1965) and 
Mossin (1966) still alive? Returns of Fama-French 25 stock portfolios (1926-2011) are analyzed. 
The Maximum Likelihood Estimation Method is used. Likelihood Ratio test (LR) and Kolmogo-
rov-Smirnov test (KS) are used to do model diagnostics. Akaike Information Criterion (AIC) is used 
for model comparison. Simulation results show the MatLab program is valid. Empirical results 
show with non-Normal errors and the EGARCH-type volatilities, the CAPM theory is not alive. This 
new model can capture the skewness, fat-tailness, asymmetric effects and volatility persistence in 
the data. This new model has better in-sample fit than others. Portfolios with smaller size have 
larger Beta value. 

 
Keywords 
Capital Asset Pricing Model (CAPM), Standardized Standard Asymmetric Exponential Power  
Distribution (SSAEPD), EGARCH 

 
 

1. Introduction 
Capital Asset Pricing Model (CAPM) is first established by Sharpe (1964), Lintner (1965) and Mossin (1966) 
[1], based on the investment portfolio theory of Markowitz (1959). The model measures the portfolio’s 
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sensitivity to market risk, often represented by the quantity Beta (usually called coefficient β ), which is widely 
used in the financial industry. Since it offers a simpler approach to asset pricing and portfolio selection, it has 
been one of the most important benchmarks in modern finance theories. The theory of CAPM is usually 
expressed as following equation  

( ) ( ) .i f i M fE r r E r rβ  − = −                                 (1) 

That means, excess return of portfolio i  has a linear relationship with market excess return [2]1. Since then, 
many theoretical and empirical researches about this model have been done. 

However, some limitations of the CAPM theory are pointed out by some researchers such as Lucas (1978) [3], 
Breeden (1979) [4] and Black (1976) [5]. One group of researchers try to revise and extend the CAPM from 
different theoretical aspects. For instance, Lucas (1978), Breeden (1979) and Shiller (1981) propose con- 
sumption CAPM (CCAPM). Wealth CAPM (WCAPM) is proposed by Black (1976), Lee (1986) and Gweon 
(1986). Another group of researches is to empirically test the CAPM theory with different methods or data. For 
instance, Fama and French (1993) [6] extend CAPM to a 3-factor model. For more applications or extensions 
about the CAPM theory, one can refer to Table 1. 

To empirically test the CAPM theory, it is traditional to assume Normal error terms. However, Normal distri- 
bution can not capture the skewness, fat-tailness and asymmetric kurtosis of financial data. Thus, a plenty of 
researches have been done in order to extend the Normal. For instance, Subbotin (1923) [7] and Azzalini (1986) 
[8] designed the Exponential Power Distribution (EPD) and Skewed Exponential Power Distribution (SEPD), 
respectively. Zhu and Zinde-Walsh (2009) suggested the Asymmetric Exponential Power Distribution (AEPD), 
which can nest many distributions, such as Normal, Laplace, and so on. They demonstrate that the new models 
with non-Normal error distributions have many nice statistic properties. For researches that generalize Normal 
distribution, one can refer to Table 2. 

Based on the SSAEPD in Zhu and Zinde-Walsh (2009) [9] and the EGARCH-type volatilities in Nelson (1991) 
[10], in this paper, a new model is suggested and used to empirically test the CAPM theory. Different from the 
CAPM-GARCH models in Shen (2009) and Chen et al. (2012) [11], in our new model, the error term is 
distributed as Standardized Standard AEPD (SSAEPD), which is more general than Normal Distribution. This 
new model may capture the skewness, fat tailness, leverage effects and volatility persistence better. The hy- 
potheses will be tested as follows: 

1) With non-Normal error terms such as SSAEPD in Zhu and Zinde-Walsh (2009), and EGARCH-type 
volatilities in Nelson (1991), is the CAPM theory of Sharpe (1964), Lintner (1965) and Mossin (1966) still alive? 

2) Can this new model beat the CAPM-SSAEPD model of Zhuo (2013) [12]? 
3) Can we find any new patterns for Fama-French 25 portfolios?  
To answer these questions, simulation is done first. Then, the empirical data of Fama-French 25 stock port- 

folios are analyzed. Sample period is from January 1926 to December 2011. Method of Maximum Likelihood 
Estimation (MLE) is used to estimate parameters. Likelihood Ratio test (LR) is used for testing the significance 
of parameters. The Kolmogorov-Smirnov test (KS) is used to check the residuals. Akaike Information Criterion 
(AIC) is used for model comparison. 

Simulation results show our MatLab program is valid. Empirical results show with non-Normal error terms 
and EGARCH-type volatilities, the CAPM theory of Sharpe (1964), Lintner (1965) and Mossin (1966) can not 
explain the US stock market. The estimates of this new model can capture fat-tailness, asymmetric effects, and 
volatility persistence in the data. The model with EGARCH-type volatilities and SSAEPD error terms has better 
in-sample fit than others by Akaike Information Criterion (AIC). A portfolio with a smaller Size may have a 
larger Beta value, which means that they can be more sensitive to the excess return over market. 

 

 

1This equation is from page 301 of Bodie, Kane and Marcus (2006). For more reference about CAPM theory, please refer to Investments 
written by Bodie, Kane and Marcus (2006). To check the CAPM theory, researchers usually use following CAPM-Normal model to test the 
significance of parameters: 0iβ  and 1iβ . 

( ) ( )2
0 1 , Normal 0, , 1, , .it ft i i mt ft it itr r r r u u t Tβ β σ− = + − + = 

                           (2) 

If CAPM theory is alive, then the coefficient of 1iβ  should be statistically significant and the coefficient of 0iβ  is not statistically 

significant. itr  is the rate of return for stock portfolio i . ftr  is the rate of return for the risk-free asset. mtr  is the rate of return for the 

market. 0 1,i iβ β  are the coefficient parameters in the regression model. T  is the sample Size. The error term itu  is distributed as Normal. 
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Table 1. Researches about CAPM.                                                                          

Author (Year) Research Purpose Model Method Data   

    Country Variables Frequency & Period 

Sharpe (1964)  CAPM -    

Merton (1973)  ICAPM -    

Black (1976)  Wealth CAPM -    

Lucas (1978)  CCAPM -    

Bredeen (1979)  ICAPM -    

Fama et al. (1993)  FF     

Chen (2003) Consumption beta CAPM, CCAPM OLS Taiwan Price indices, dividend  
payments, M1991:7-2000:3 

 Market beta    Risk-free rate, CPI  

Fletcher (2004) Predictability 3-4 m. CAPM GMM UK Excess returns, SMB, HML, 
FTA, LAB M1975:1-2001:12 

David T. (2005) International asset 
pricing D-I-CAPM,VAR GMM G7 Equity returns,  

exchange rate, M1978:7-1998:4 

     US inflation, MSCI,  
dividend yield  

     G7 average forward premiums  

Lee (2007) Supply effect DCAPM SUR US Price, earnings and  
dividend per share Q1981:1-2001:4 

Grauer (2009) Wide range of betas CAPM, FF GLS Standard Excess returns, risk  
premiums, SMB, HML M1963:7-2005:12 

Darrat et al. (2011) Model comparison CCAPM, GMM 17 MSCI Consumption, CPI, population Q1970:2-2007:4 
  Surplus CAPM  Countries Returns on MSCI index, GDP  

Chen et al. (2000) Estimate of beta CAPM, ANOVA OLS China Stock price, SSE index,  
3-m deposit rate DWM1994:1:4-1998:12:31 

Ma (2001) Robustness exam CAPM OLS China Shenzhen component index W1997:9:30-2000:10:29 
     3-y bond rate, size, PE  

Sun et al. (2002) Herd behavior CAPM GLS China SSE index, returns on stock D1992:1:2-2000:12:29 

Zhao (2011) Robustness exam CAPM Dual reg. China SSE index, 3-month  
deposit rate, stock price W2006:1:1-2008:12:31 

Jin (2011) Model comparison CAPM-AEPD MLE China, US Hushen 300 index,  
3-m deposit rate D2006:1:4-2010:12:31 

     DJI, 10-y Treasure bill rate D2006:1:3-2010:12:31 

Dai et al. (2011) Predictability 2-3-4 m. CAPM OLS, WNN China SHIBOR rate,  
stock price, SSE index D2007:1:4-2011:2:1 

Li et al. (2012) Robustness exam CAPM-AEPD MLE China CAC40 index, stock price D2006-2010 
Zhuo (2013)  CAPM-SSAEPD MLE US SP500 D2002-2011 

Yang (2014)  CAPM-SSAEPD MLE US Fama and French  
(1993) 25 portfolios D1926-2011 

Note: This table is a revision from Jin (2011). 
 

The organization of this paper is as follows. The model and methodology are discussed in Section 2. 
Simulation analysis is in Section 3. Data and empirical results are reported in Section 4. Section 5 is the 
conclusions and future extensions.  

2. Model and Methodology 
2.1. CAPM-SSAEPD-EGARCH 
Based on the SSAEPD in Zhu and Zinde-Walsh (2009) and the EGARCH-type volatilities in Nelson (1991), in 
this paper, a new CAPM model is suggested (i.e., CAPM-SSAEPD-EGARCH). The CAPM-SSAEPD- 
EGARCH (m,s) model has following forms: 
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Table 2. Applications and extensions of the normal distribution.                                                  

Authors Distributions and their applications 

De Moivre (1738) Normal distribution 

Gauss (1809) Normal applied in astronomy 

Subbotin (1923) EPD 

Aitchison J. and Brown J.A.C. (1957) Lognormal distribution 

Leone F.C., Nottinghan R.B., Nelson L.S. (1961) Folded normal distribution 

William H. Rogers and John Tukey (1972) Slash distribution 

Azzalini (1985, 1986) Skew-normal distribution 

Azzalini (1986) SEPD 

Zolotarev V.M. (1986) Stable distribution 

Fernandez et al. (1995)2 Modified SEPD 

Mudholkar and Hutson (2000) Epsilon-skew-normal family (ESN) 

Swamee P.K. (2002) Near lognormal distribution 

Ayebo and Kozubowski (2004) SEPD in finance 

DiCiccio and Monti (2004) Properties of MLE of the SEPD 

Zhu and Zinde-Walsh (2009) AEPD 

Notes: EPD = Exponential Power Distribution; SEPD = Skewed Exponential Power Distribution; AEPD = Asymmetric Exponential Power Distri- 
bution. This table is a revision from Jin (2011). 
 

( )1 2 , 1, 2, , ,t ft mt ft tR R R R u t Tβ β− = + − + =                          (3) 

( )1 2, SSAEPD , , ,t t t tu z z p pσ α=                              (4) 

( ) ( ) ( )2 2
0

1 1
ln ln ,

m s

t i t i t j
i j

a a g zσ σ − −
= =

= + +∑ ∑                            (5) 

( )
( ) ( )
( ) ( )

, if 0,

, else.

j j t j j t j t j

t j

j j t j j t j

c d z d E z z
g z

c d z d E z

− − −

−

− −

 + − ≥= 
− −

                      (6) 

where { } { } { }( )1 2 1 2 0 1 1
, , , , , , ,

s sm
i j ji j j

p p a c dθ β β α
= = =

=  are parameters to be estimated. tR  is the rate of return for  

stock portfolio. ftR  is the rate of return for the risk-free asset. mtR  is the rate of return for the market. 1 2,β β   
are the coefficient parameters in the regression model. T  is the sample Size. The error term tz  is distributed 
as the Standardized Standard Asymmetric Exponential Power Distribution (SSAEPD) proposed in Zhu and  
Zinde-Walsh (2009). { },tz  { }t j t jz E z− −−  and ( ){ }t jg z −  are zero-mean I.I.D. sequences with continuous  

distributions. tσ  is the conditional standard deviation. 
If 1 2 0β β= = , 1 20.5, 2p pα = = = , the model will be the EGARCH model of Nelson(1991). If  

{ } { } { }0 1 1 1
1, 0 , 0 , 0

s sm
i j ji j j

a a c d
= = =

= = = = , the model reduces to CAPM-SSAEPD3 of Zhuo(2013). If  

{ } { } { }0 1 1 1
1, 0 , 0 , 0 ,

s sm
i j ji j j

a a c d
= = =

= = = =  1 20.5, 2,p pα = = =  the model reduces to the CAPM-Normal,  

which is usually used to test the CAPM theory. Different from the CAPM-SSAEPD-GARCH model of Lin 
(2013), EGARCH-type volatilities of Nelson (1991) is used to consider the leverage effects. If 1,=m  1=s , 
then the model will be the CAPM-SSAEPD-EGARCH (1,1) with following math formula.  

 

 

2Also see Theodossiou (2000) and Komunjer (2007). 
3See Appendix 1. 
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( )1 2 , 1, 2, , ,t ft mt ft tR R R R u t Tβ β− = + − + =                          (7) 

( )1 2, SSAEPD , , ,t t t tu z z p pσ α=                              (8) 

( ) ( ) ( )2 2
0 1 1 1ln ln ,t t ta a g zσ σ − −= + +                              (9) 

( )
( ) ( )
( ) ( )

1 1 1 1 1 1
1

1 1 1 1 1

, if 0,

, else.
t t t

t
t t

c d z d E z z
g z

c d z d E z
− − −

−

− −

 + − ≥= 
− −

                      (10) 

In this special case, the GARCH parameter 1a  measures the persistence in conditional volatility. If 1a  is 
relatively large, then the volatility will take a long time to disappear following a crisis or a shock in the market. 
The 1c  parameter measures the asymmetry or the leverage effect. If 1 0c = , then the model is symmetric. If 

1 0c < , then the positive shocks generate less volatility than the negative ones. If 1 0c > , it suggests that positive 
shocks are more volatile than the negative ones. 1d  parameter is refered as the ARCH parameter, which 
represents the symmetric effect of the model. 

2.2. Standardized Standard AEPD (SSAEPD) 
The probability density function (PDF) of the SSAEPD4, proposed by Zhu and Zinde-Walsh (2009), is 

( )

( )

( ) ( )

1

2

1* *
1

2* *
2

1exp , if ,
2

1 1exp , if ,
1 2 1

p
t

t

pt

t
t

w z wK p z
p

f z
w z wK p z

p

δαδ
δα α

β
δαδ

δα α

  +  − ≤ −       =   
 +−   − > −    − −     

                 (11) 

where 

,t
t

x
z

ω
δ
−

=                                         (12) 

( )
( ) ( ) ( )

1*

1 2

,
1

K p
K p K p

α
α

α α
=

+ −
                               (13) 

( )
( )1

1 ,
2 1 1pK p

p p
=

Γ +
                                 (14) 

( ) 1
0

e d ,x yx y y
∞ − −Γ = ∫                                     (15) 

( ) ( )
( )

( )
( )

2 2 2 1 12
2 2

2 1

2 21 1 ,
1 1

p p p p
w

B p p
α α

 Γ Γ
= − − 

Γ Γ  
                          (16) 

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

22 2
3 22 2 1 1 2 2 1 12 3 2

2 3 3 2 2
2 1 2 1

3 3 2 21 1 1 ,
1 1 1 1

p p p p p p p p
B p p p p

δ α α α α
    Γ Γ Γ Γ = − + − − −    

Γ Γ Γ Γ        
      (17) 

( ) ( ) ( )1 21 .B K p K pα α= + −                               (18) 

And Rµ ∈ , 0σ > , 1 0p > , 2 0p > , ( )0,1α ∈ . 1p  and 2p  are the parameters which control the left 

 

 

4If X  is distributed as AEPD, denote it as ( )1 2AEPD , , , , .X p pµ σ α  If X  is distributed as standard AEPD, denote it as 

( )1 2SAEPD 0, 1, , ,X p pµ σ α= =  or ( )1 2SAEPD , , .X p pα  If Z  is distributed as standardized standard AEPD, denote it as 

( )1 2SSAEPD 1, 1, , ,Z p pµ σ α= =  or ( )1 2SSAEPD , ,Z p pα . The mean of Z  is zero and the variance of Z  is 1. That is, 

( ) ( )0, 1.E Z Var Z= =  
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tails and right tails, respectively. Parameter α  controls the skewness of SSAEPD. When 1 20.5, 2p pα = = = , 
SSAEPD will be reduced to standard Normal, i.e., Normal (0,1). The mean of tz  is zero and its variance is 1. 

2.3. Maximum Likelihood Estimation 
In this paper, we estimate this new model with Maximum Likelihood Estimation (MLE). For simplicity, we 
define following notations t t ftY R R= −  and t mt ftX R R= − . The likelihood function is 

( )

( )

( ) ( )

1

2

1* *
1

1
1

2* *
2

1 1exp , if ,
2

, ,
1 1 1exp , if .
1 2 1

p
t

t
tT

pT
t

t
t

t

w z wK p z
p

f Y Y
w z wK p z

p

δαδ
σ δα α

δαδ
σ δα α

=

  +  − ≤ −       =   
 +−   − > −    − −     

∏
         (19) 

where  

( )0 1
1 ,t t t

t

z Y Xβ β
σ

= − −                                (20) 

( ) ( ) ( )2 2
0

1 1
ln ln ,

m s

t i t i t j
i j

a a g zσ σ − −
= =

= + +∑ ∑                         (21) 

( )
( ) ( )
( ) ( )

, if 0,

, else.

j j t j j t j t j

t j

j j t j j t j

c d z d E z z
g z

c d z d E z

− − −

−

− −

 + − ≥= 
− −

                    (22) 

3. Simulation Analysis 
In this section, we simulate the data and derive the simulation results for the CAPM-SSAEPD-EGARCH (1,1).  

( )1 2 , 1, 2, , ,t ft mt ft tR R R R u t Tβ β− = + − + =                        (23) 

( )1 2, SSAEPD , , ,t t t tu z z p pσ α=                             (24) 

( ) ( ) ( )2 2
0 1 1 1ln ln ,t t ta a g zσ σ − −= + +                             (25) 

( )
( ) ( )
( ) ( )

1 1 1 1 1 1
1

1 1 1 1 1

, if 0,

, else.
t t t

t
t t

c d z d E z z
g z

c d z d E z
− − −

−

− −

 + − ≥= 
− −

                     (26) 

The true parameters chosen are 1 0.3,β =  2 0.5,β =  0 0.005,a = 1 0.5,a =  1 0.1c = , 1 0.1d = , 0.5,α =   

1 2 2.p p= =  The data generation process (DGP) has following steps. 
1) Given 1 20.5, 2p pα = = = , we can generate SSAEPD random number5 series { } 1

T
t t

z
=

. 

2) Set initial value 2
0 1σ = , 0 0z = , and given 0 1 10.005, 0.5, 0.1,a a c= = =  1 0.1d = , we can get 2

1σ  and  
1u .  

( )
( ) ( )
( ) ( )

1 1 0 1 0 0
0

1 1 0 1 0

, if 0,

, else,

c d z d E z z
g z

c d z d E z

 + − ≥= 
− −

 

( ) ( ) ( )2 2
1 0 1 0 0ln ln ,a a g zσ σ= + +  

1 1 1.u z σ=                                            (27) 

3) Get { }2

2

T

t t
σ

=
 and { } 2

T
t t

u
=

 by following formulas 

 

 

5For the method to generate SSAEPD random variable, one can refer to Li, Tian and Zhen (2011). 
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( )
( ) ( )
( ) ( )

1 1 1

1 1 1

, if 0,

, else.

t j t j t j

t j

t j t j

c d z d E z z
g z

c d z d E z

− − −

−

− −

 + − ≥= 
− −

 

( ) ( ) ( )2 2
0 1 1 1ln ln ,t t ta a g zσ σ − −= + +  

.t t tu z σ=                                      (28) 

4) Generate random number series { }tX  from Uniform (0,1). Given parameter 1 20.3, 0.5β β= = , we can  

get { } 1

T
t t

Y
=

.  

1 2 .t t tY X uβ β= + +                                 (29) 

After we have the simulated data { } 1
, T

t t t
X Y

=
, we can use the simulated data to estimate the parameters in the  

new model. The simulation results are reported in Table 3. The estimates from MatLab program are  
1 0.3155,β =  2 0.4883,β =  0 0.3034,a =  1 0.4873,a =  1 0.4061,c =  1 0.6387d = , 0.5002,α =   

1 2.0009p = , 2 2.0021,p =  which are very close to the true values. For robustness exam, we also change the 
true parameters and re-run the simulation. We find out all the simulation results show the estimates are very 
close to the true parameters. Hence, we conclude the MatLab program is valid and can be applied to analyze 
empirical data. 
 
Table 3. Simulation Results.                                                                                

 1β  2β  α  1p  2p  0a  1a  1c  1d  

T 0.3 0.5 0.5 2 2 0.3 0.5 0.4 0.6 
E 0.3155 0.4883 0.5002 2.0009 2.0021 0.3034 0.4873 0.4061 0.6387 
R 5.17% 2.34% 0.04% 0.05% 0.11% 1.13% 2.54% 1.53% 6.45% 
T 0.3 0.5 0.5 2 2 0.4 0.6 0.3 0.4 
E 0.2737 0.5347 0.5000 2.0000 2.0000 0.416 0.5861 0.304 0.3974 
R 8.77% 6.94% 0.00% 0.00% 0.00% 4.00% 2.32% 1.33% 0.65% 
T 0.3 0.5 0.5 2 2 0.4 0.5 0.5 0.7 
E 0.2877 0.5113 0.4999 1.9996 2.0000 0.3964 0.5063 0.5126 0.6871 
R 4.10% 2.26% 0.02% 0.02% 0.00% 0.90% 1.26% 2.52% 1.84% 
T 0.3 0.5 0.5 2 2 0.4 0.4 0.3 0.7 
E 0.3061 0.4932 0.5000 2.0000 2.0000 0.4167 0.3743 0.2951 0.741 
R 2.03% 1.36% 0.00% 0.00% 0.00% 4.18% 6.43% 1.63% 5.86% 
T 0.3 0.5 0.5 2 1.5 0.3 0.4 0.3 0.7 
E 0.2807 0.5557 0.5000 2.0004 1.5004 0.3199 0.4132 0.2751 0.6373 
R 6.43% 11.14% 0.00% 0.02% 0.03% 6.63% 3.30% 8.30% 8.96% 
T 0.3 0.5 0.5 1.5 2 0.3 0.4 0.3 0.6 
E 0.3048 0.4751 0.5 1.5008 2.0018 0.3307 0.3759 0.2766 0.6256 
R 1.60% 4.98% 0.00% 0.05% 0.09% 10.23% 6.03% 7.80% 4.27% 
T 0.3 0.5 0.3 2 2 0.4 0.5 0.3 0.6 
E 0.2983 0.4931 0.3000 2.0048 1.9963 0.4107 0.4734 0.2925 0.6037 
R 0.57% 1.38% 0.00% 0.24% 0.19% 2.68% 5.32% 2.50% 0.62% 
T 0.3 0.5 0.5 2 2 0.4 0.6 0.4 0.5 
E 0.2557 0.5448 0.5000 2.0000 2.0000 0.4062 0.5856 0.3941 0.5097 
R 14.77% 8.96% 0.00% 0.00% 0.00% 1.55% 2.40% 1.48% 1.94% 
T 0.3 0.5 0.5 2 2 1 0.4 0.5 0.7 
E 0.304 0.4949 0.5000 1.9999 1.9999 1.0068 0.3923 0.4939 0.7093 
R 1.33% 1.02% 0.00% 0.00% 0.00% 0.68% 1.93% 1.22% 1.33% 

Notes: T means the true parameters. E means the estimated parameters. R means the relative errors. 
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4. Empirical Analysis 
4.1. Data 
The 25 portfolio returns used in Fama and French(1993) are analyzed. Data are downloaded from the French’s 
Data Library6. Sample period is from January 1926 to December 2011. Caculated by Eviews, Table 4 lists the 
descriptive statistics of the 25 porfolios’ excess returns7. We can see that 23 out of 25 portfolios have positive 
values for the skewness, and all values of the kurtosis are more than 3 , which documents asymmetric and fat 
tail characteristics. And the P-value of the Jarque-Bera test for each stock is zero. Hence, we conclude that all 
asset returns do not follow the Normal distribution under 5% significance level. 

4.2. Estimation Results 
4.2.1. CAPM Not Alive 
• Estimates and Significant Tests for Parameter Restrictions  

The estimates for the new model are listed in Table 5. Empirical results show the new model can capture the 
fat tailness8. Parameters in non-Normal error such as SSAEPD do not capture the skewness and the asymmetric 
tails9. In contrast, EGARCH-type volatilities could capture the asymmetric effects in the data. Hence, one can 
conclude that the EGARCH-type volatilities is more powerful to capture the asymmetric effect than non-Normal 
error such as SSAEPD. 

For comparison, we also estimate the CAPM-EGARCH (1,1) model. The results are listed in Table 6 and 
Table 7. The sensitivity and volatility persistence in these models are not affected by different error 
 
Table 4. Descriptive Statistics.                                                                             

Size Book-to-market quintiles 

Quintile Low 2 3 4 High  Low 2 3 4 High 

 Mean  Median 

Small 0.73 1.09 1.30 1.45 1.66  0.55 0.95 1.25 1.46 1.49 

2 0.87 1.23 1.32 1.36 1.48  1.18 1.49 1.56 1.50 1.65 

3 0.96 1.16 1.26 1.28 1.42  1.38 1.36 1.56 1.47 1.35 

4 0.97 1.03 1.12 1.23 1.32  1.24 1.36 1.54 1.53 1.54 

Big 0.88 0.89 0.94 0.98 0.03  1.07 1.05 1.15 1.08 1.22 

 Standard Deviation  Skewness 

Small 12.23 10.58 9.21 8.64 9.57  2.71 4.40 1.77 2.73 3.07 

2 7.98 7.88 7.34 7.61 8.75  0.35 1.87 2.06 1.68 1.75 

3 7.64 6.61 6.75 6.83 8.63  1.01 0.27 1.01 1.16 1.88 

4 6.24 6.30 6.41 7.02 8.98  0.21 0.82 0.94 1.79 2.02 

Big 5.48 5.24 5.75 6.90 13.23  -0.02 -0.09 0.81 1.84 4.85 

 Kurtosis  P-value of Jarque-Bera Test 

Small 30.86 60.01 18.48 33.33 33.26  0 0 0 0 0 

2 7.90 24.01 24.94 20.94 20.43  0 0 0 0 0 

3 13.40 9.46 17.17 15.91 22.39  0 0 0 0 0 

4 6.45 15.00 17.40 23.24 24.78  0 0 0 0 0 

Big 8.26 8.05 17.24 26.37 39.84  0 0 0 0 0 

 

 

6Thanks Din Yin who provides the well organized Excel files. Thanks Professor French for kindly providing the risk free rate by e-mail. 
7Excess returns are got by portfolio returns minus the risk free rate. 
8Since all values of ip  are smaller than 2 ( )1,2i = , which means fat tailedness is documented. 
9Since most estimates of α  are equal to 0.5 and 14 out of 25 estimates of 1p  are equal to 2p . For comparison, in Table 12, the estimates 
of CAPM-SSAEPD show that the skewness parameter α  of 23 portfolios is not equal to 0.5, which captures the skewness in the data. And 
24 out of 25 portfolios have fatter right tails than left tails. Hence, CAPM-SSAEPD can document the asymmetric tails. 
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Table 5. Estimates for the CAPM-SSAEPD-EGARCH (1,1) Model.                                               

Size Book-to-market quintiles 
Quintile Low 2 3 4 High Low 2 3 4 High 

 1β  2β  

Small −0.69* −0.28* −0.05 −0.09 0.17* 1.36* 1.26* 1.13* 1.05* 1.06* 
2 −0.22* 0.02* 0.31* 0.15 0.20* 1.25* 1.20* 1.09* 1.19* 1.25* 
3 0.05 0.08 0.14 0.27* 0.18 1.20* 1.13* 1.09* 1.07* 1.17* 
4 −0.02 −0.01 0.07* 0.12* 0.15* 1.10* 1.09* 1.06* 1.04* 1.11* 

Big −0.07 0.01 0.07 0.06* 0.17* 0.98* 0.93* 0.91* 0.95* 1.07* 

 α  1p  

Small 0.50 0.50 0.50 0.50 0.50 1.41 1.50 1.50 1.00 1.50 
2 0.50 0.50 0.50 0.50 0.50 1.50 1.20 1.90 1.20 1.50 
3 0.50 0.50 0.50 0.50 0.50 1.49 1.50 1.20 1.50 1.50 
4 0.50 0.50 0.49 0.50 0.50 1.50 1.50 1.47 1.50 1.50 

Big 0.50 0.50 0.50 0.50 0.50 1.10 1.50 1.50 1.50 1.45 

 2p  0a  

Small 1.21 1.50 1.50 1.20 1.50 0.06* 0.05* 0.01 0.16* 0.04* 
2 1.50 1.20 1.30 1.20 1.50 0.52* 0.04* 0.23* 0.25* 0.23* 
3 1.50 1.50 1.80 1.50 1.51 0.14* 0.02* 0.13* 0.05* 0.22* 
4 1.50 1.50 1.43 1.50 1.20 0.08* 0.04 0.04* 0.02* 0.02 

Big 1.00 1.50 1.50 1.20 1.19 0.06* 0.05* 0.07* 0.09* 0.13* 

 1a  1c  

Small 0.98* 0.99* 1.00* 0.96* 1.00* −0.07 −0.05* −0.05* −0.09* −0.10* 
2 0.82* 0.99* 0.88* 0.91* 0.93* −0.09 −0.04* −0.04 −0.05 −0.02 
3 0.93* 0.99* 0.93* 0.98* 0.91* −0.02 −0.04* −0.03 −0.04 −0.05 
4 0.94* 0.97* 0.97* 0.99* 0.99* 0.06* −0.04 −0.07* −0.04* −0.07* 

Big 0.94* 0.95* 0.94* 0.96* 0.95* −0.01 −0.01 −0.05* −0.07* 0.09 

 1d       

Small 0.25* 0.33* 0.17* 0.31* 0.22*      
2 0.48* 0.23* 0.50* 0.41* 0.41*      
3 0.43* 0.11* 0.28* 0.23* 0.35*      
4 0.29* 0.26* 0.27* 0.22* 0.27*      

Big 0.22* 0.25* 0.28* 0.27* 0.37*      

Note: *means the parameter is statistically significant under 5% significant level. 
 
assumptions10. However, the values of asymmetric parameter 1c  changes a lot11. 

Joint significance tests show both regression parameters are statistically significant (see Panel A of Table 8)12. 
Individual significance tests show all coefficient 2β  is statistically significant. That is, market returns have 
significant effect on the returns of individual portfolio. 13 out of the 25 portfolios have statistically significant 
coefficient 1β  under 5% significance level13. And most of them concentrate in higher Book-to-market quintiles  

 

 

10In Table 7, 17 out of 25 stocks have the same estimates of Beta ( )2β , and 20 estimates for 1d  of 25 portfolios are the same in both models. 
11In Table 7, 16 out of 25 stocks have different estimates of 1.c  
12Likelihood Ratio test (LR) is used. The P-values of the joint significance test for all the 25 portfolios are close to 0, which means the coef-
ficients of 1β  and 2β  are statistically significant under 5% significance level. 
13The null hypothesis is 0 : 0iH β =  in the CAPM-SSAEPD-GARCH model ( )1,or 2i = . The P-values of the LR test are listed in Panel B 
and Panel C of Table 8, respectively. Take one portfolio (Size quintile: Small; Book to Market quintile: 2) as an example, the P-value of its 

1β  is 0, smaller than 5% . That means, we can reject the null hypothesis and conclude that the coefficient 1β  has statistically significant 

effect on the value of portfolio returns. P-value of 2β  for this portfolio is 0. That means, under 5% significance level, we reject the null 

hypothesis and conclude that the coefficient 2β  is statistically significant. That is, market returns have significant effect on the returns of 
individual portfolio. 
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Table 6. Estimates for the CAPM-EGARCH (1,1) Model.                                                        

Size Book-to-market quintiles 
Quintile Low 2 3 4 High Low 2 3 4 High 

 1β  2β  

Small −0.62 −0.28 −0.06 −0.09 0.15 1.37 1.26 1.13 1.05 1.05 

2 −0.22 0.00 0.32 0.16 0.19 1.26 1.20 1.08 1.19 1.26 

3 0.06 0.08 0.15 0.26 0.19 1.19 1.13 1.09 1.07 1.17 

4 −0.01 −0.01 0.04 0.12 0.16 1.10 1.09 1.10 1.05 1.12 

Big −0.05 0.00 0.09 0.05 0.24 0.98 0.93 0.91 0.95 1.20 

 0a  1a  

Small 0.03 0.05 0.00 0.17 0.03 0.99 0.99 1.00 0.96 1.00 

2 0.51 0.02 0.23 0.24 0.24 0.82 0.99 0.89 0.91 0.92 

3 0.19 0.02 0.14 0.05 0.26 0.92 0.99 0.93 0.98 0.92 

4 0.08 0.04 0.14 0.02 0.03 0.95 0.97 0.91 0.99 1.00 

Big 0.06 0.05 0.08 0.09 0.08 0.93 0.94 0.95 0.96 0.99 

 1c  1d  

Small −0.01 −0.05 −0.05 −0.10 −0.10 −0.01 0.33 0.17 0.31 0.20 

2 −0.10 −0.03 −0.07 −0.06 0.00 0.48 0.22 0.50 0.42 0.41 

3 0.00 −0.04 0.02 −0.03 −0.05 0.39 0.11 0.28 0.23 0.40 

4 0.06 −0.04 −0.04 −0.05 −0.08 0.29 0.26 0.35 0.22 0.27 

Big 0.00 0.00 −0.06 −0.07 0.09 0.22 0.23 0.28 0.26 0.43 

Notes: 0.5,α =  P1 = P2 = 2. 

 
Table 7. Comparison between the estimates.                                                                  

CAPM-SSAEPD-EGARCH 
vs. CAPM-EGARCH 1β  2β  1a  1c  1d  

= 15 17 20 9 17 
> 10 3 5 7 4 

 
Table 8. P-values of Likelihood Ratio Test.                                                                   

Size Book-to-market quintiles 
Quintile Low 2 3 4 High  Low 2 3 4 High 

 Panel A. 0 1 2: 0H β β= =   Panel B. 0 1 2: 0.5, 2H p pα = = =  

Small 0* 0* 0* 0* 0*  0* 0* 0* 0* 0* 

2 0* 0* 0* 0* 0*  0* 0* 0* 0* 0* 

3 0* 0* 0* 0* 0*  0* 0* 0* 0* 0* 

4 0* 0* 0* 0* 0*  0* 0* 0* 0* 0* 

Big 0* 0* 0* 0* 0*  0* 0* 0* 0* 0* 

 Panel C. 0 1 1 1: 0H a c d= = =        

Small 0* 0* 0* 0* 0*       

2 0* 0* 0* 0* 0*       

3 0* 0* 0* 0* 0*       

4 0* 0* 0* 0* 0*       

Big 0* 0* 0* 0* 0*       

Note: ∗means the parameter is statistically significant under 5% significant level. 
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or smaller Size quintiles. In conclusion, with non-Normal error distribution and EGARCH-type volatilities, the 
CAPM theory is not alive since they can earn Alpha returns. 

12 out of 25 portfolios have significant parameter c . The asymmetric parameters 1c  are most negative 
which means positive shocks generate less volatility than negative ones. All values of the ARCH terms 1d  and 
the GARCH parameters 1a  are statistically significant. The ARCH terms 1d  are relatively larger than 0.1, 
which means the volatility is sensitive to market shocks. The GARCH parameters 1a  are all positive and 
relatively large, e.g. above 0.9, so the volatility takes a long time to die out following a crisis or a shock in the 
U.S. stock market. 
• Residual Checks 

Test results for residuals (see Table 9) show that the error terms of these 25 stocks do follow SSAEPD14 and 
the CAPM-SSAEPD-EGARCH model is adequate for data used in Fama and French(1993). However, the 
CAPM-EGARCH model is not adequate for the data since most of its residuals do not follow the Normal 
distribution under 5% significance level15. Also, non-Normality16 is documented in Panel B of Table 8. 

Same conclusions are also can be drawn from the PDFs of the residuals (i.e. method of “eye-rolling”). Taking 
one portfolio (Size quintile 2 and BE/ME quintile Low) as an example, we plot the residuals of CAPM- 
SSAEPD-EGARCH and CAPM-EGARCH in Matlab. They are shown in Figure 1 and Figure 2 respectively. In 
the figures, for the CAPM-SSAEPD-EGARCH, the difference between the PDF of the residuals and that of 
SSAEPD is smaller, and these curves are very close to each other. Therefore, one can conclude that the CAPM- 
SSAEPD-EGARCH fits the data well. 

4.2.2. Higher Beta Values for Smaller Size Portfolios 
The Beta value ( )2β  in the regression model stands for the relationship between the market portfolio and stock 
portfolio. The bigger the value, more volatile the fluctuation. From each column of the estimates of 2β  in the 
CAPM-SSAEPD-EGARCH model (see Table 5), we can find that the 2β  value decreases as the Size of the 
 
Table 9. P-values of KS test.                                                                               

Size Book-to-market quintiles 

Quintile Low 2 3 4 High Low 2 3 4 High 

 CAPM-SSAEPD-EGARCH CAPM-EGARCH 

Small 0.58 0.20 0.13 0* 0* 0* 0* 0* 0* 0* 

2 0.35 0.50 0.72 0.20 0.06 0* 0.17 0* 0* 0* 

3 0.22 0.53 0* 0.75 0.48 0* 0.12 0* 0.28 0* 

4 0.98 0.55 0.24 0.59 0.25 0.33 0.15 0* 0.36 0* 

Big 0* 0.77 0.92 0.38 0.22 0.33 0.11 0.20 0* 0* 

Note: *means the null is rejected under 5% significant level. 

 

 

14The residuals for models are checked with Kolmogorov-Smirnov test. The null hypothesis of KS test is the residuals do follow some dis-
tribution. The P-value of KS test is in Table 9. If the P-value of KS test is bigger than 0.05 , then do not reject the null hypothesis. Other-
wise, reject the null hypothesis. First, apply KS test for the CAPM-SSAEPD-GARCH residuals with the null hypothesis 

( )0 1 2ˆ ˆ ˆ: CAPM-SSAEPD-EGARCH residuals are distributed as SSAEPD , , .H p pα  

From the test results shown in Table 9, only 4 portfolios in CAPM-SSAEPD-EGARCH are not significant under 5% significant level, 
which suggests most error terms of 25 portfolios do follow SSAEPD. 
15Then, we test the residual of CAPM-EGARCH, and the null hypothesis 

( )0 ˆ ˆ: CAPM-EGARCH residuals are distributed as Normal , .H µ σ  

Based on the test results shown in Table 9, we can see that 16 out of 25 portfolios in CAPM-EGARCH are not significant under 5% sig-
nificant level, which suggests most of the error terms do not follow Normal distribution. 
16We test the SSAEPD and EGARCH parameters respectively with Likelihood Ratio test. In Panel A ( )0 1 2: 0.5, 2H p pα = = =  of Table 6, 
all of the P-values except are statistically significant under 5% significance level. GARCH terms (see Panel F) and ARCH terms (see Panel H  
are all statistically significant under 5% significance level. In Panel G ( )0 1: 0H c = , 12 out of the 25 portfolios have statistically significant 

leverage parameter 1c . And most of these 12 portfolios concentrate in higher Book-to-market quintiles. That is, the asymmetric effects are 

more significant in stocks with higher Book-market quintiles. In Panel I ( )0 1 1 1: 0H a c d= = = , all of the P-values of portfolios are statisti-
cally significant under 5% significance level. The test results show strong non-Normality and EGARCH-type volatilities. 
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Figure 1. PDFs of CAPM-SSAEPD-EGARCH residuals and 

( )1 2ˆ ˆ ˆSSAEPD , ,p pα .                                     

 

 
Figure 2. PDFs of CAPM-EGARCH Residuals and 

( )ˆ ˆNormal ,µ σ .                                         

 
portfolio gets bigger. Hence, one can draw a conclusion that a portfolio with a smaller Size may have a larger 

2β , which means that they are more sensitive to market. Same results can be drawn for CAPM-EGARCH 
model. 

Then we compare the Beta values with those results in model CAPM-SSAEPD (see Appendix 1). From 
Table 10, we can see that 17 out of the 25 portfolios, marked with #, in the CAPM-SSAEPD-EGARCH model 
have smaller 2β . These portfolios concentrate in the quintiles of smaller Size and higher Book-to-market. 
Hence, we conclude the portfolios with smaller Size and higher Book-to-market are less sensitive to market in 
the new model. 

4.3. Model Comparisons 
The new model is compared with others by AIC criterion (see Table 11). We find out our new model is the best 
one since its AIC are the smallest for 24 portfolios. Hence, we conclude the CAPM model with SSAEPD errors 
and EGARCH-type volatilities has better in-sample fit. 

5. Conclusions and Future Extensions 
Based on the SSAEPD in Zhu and Zinde-Walsh (2009) and the EGARCH-type volatilities in Nelson (1991), a  



L. L. Li et al. 
 

 
678 

Table 10. English Estimates of Beta (Sample period: 1926-2011).                                                  

Size Book-to-market quintiles 
Quintiles Low 2 3 4 High Low 2 3 4 High 

 CAPM-SSAEPD-EGARCH CAPM-SSAEPD 
Small 1.36# 1.26# 1.13# 1.05# 1.06# 1.43 1.27 1.25 1.16 1.19 

2 1.25# 1.20# 1.09# 1.19# 1.25 1.26 1.21 1.12 1.13 1.25 
3 1.20# 1.13 1.09# 1.07# 1.17# 1.23 1.13 1.12 1.09 1.20 
4 1.10 1.09 1.06 1.04# 1.11# 1.08 1.05 1.06 1.08 1.25 

Big 0.98 0.93 0.91# 0.95# 1.07 0.97 0.93 0.93 0.98 1.07 

Note: # are marked with 2β  in CAPM-SSAEPD-EGARCH which are smaller than those in CAPM-SSAEPD. 

 
Table 11. Values of Akaike Information Criterion (AIC).                                                        

Size Book-to-market quintiles 
Quintile Low 2 3 4 High 

 CAPM-SSAEPD-EGARCH 
Small 6.33# 5.86# 5.63# 5.50# 5.75# 

2 5.46# 5.05# 4.92# 5.03# 5.51# 
3 4.91# 4.50# 4.54# 4.65# 5.35# 
4 4.16# 3.91# 4.11# 4.58# 5.30# 

Big 3.65 3.50# 4.02# 4.46# 5.55# 
 CAPM-EGARCH 

Small 6.45 5.93 5.67 5.61 5.87 
2 5.51 5.13 4.97 5.09 5.59 
3 4.97 4.53 4.55 4.67 5.43 
4 4.19 3.93 4.17 4.62 5.36 

Big 3.64# 3.53 4.05 4.53 5.74 
 CAPM-SSAEPD 

Small 6.52 6.04 5.85 5.58 5.77 
2 5.57 5.14 5.00 5.11 5.61 
3 4.98 4.55 4.56 4.81 5.47 
4 4.32 4.04 4.28 4.70 5.52 

Big 3.66 3.60 4.20 4.73 5.74 

Note: # marks the smallest AIC values. 
 
new CAPM model is suggested in this paper (denoted as CAPM-SSAEPD-EGARCH). And this new model is 
used to empirically test the CAPM theory with 25 stock portfolios of Fama and French (1993). The sample 
period is from January 1926 to December 2011. Maximum Likelihood Estimation method is used. Likelihood 
Ratio test (LR) is used for testing the significance of the coefficients. The Kolmogorov-Smirnov test (KS) is 
used to check the residuals. Model is compared by the value of Akaike Information Criterion (AIC). 

Our empirical results shows 1) With non-Normal error terms and EGARCH-type volatilities, the CAPM 
theory of Sharpe (1964), Lintner (1965) and Mossin (1966) can not explain the US stock market well. They can 
earn Alpha returns; 2) The estimates of SSAEPD-EGARCH parameters can capture fat-tailness, asymmetric 
effects and volatility persistence in the data. The EGARCH-type volatilities is more powerful to capture 
asymmetric effects than the parameters in SSAEPD; 3) The new model has better in-sample fit than others by 
Akaike Information Criterion (AIC); 4) A portfolio with a smaller Size value may have a larger Beta value, 
which means that they can be more sensitive to the market. 

Future extensions will include but not be limited to the followings. First, different data can be analyzed. 
Second, the new model can be compared with others such as ARIMA, ARCH and SETAR. Third, the 
EGARCH-type volatilities and SSAEPD errors can be used to extend Fama-French 3-factor model. Last, the 
new model can also be applied to risk management such as calculating Value-at-Risk.  
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Table 12. Estimates for the CAPM-SSAEPD Model.                                                            

Size Book-to-market quintiles 
Quintile Low 2 3 4 High Low 2 3 4 High 

 1β  2β  
Small −0.50 −0.04 0.21 0.41 0.60 1.43 1.27 1.25 1.16 1.19 

2 −0.22 0.16 0.32 0.34 0.39 1.26 1.21 1.12 1.13 1.25 
3 −0.11 0.16 0.26 0.29 0.36 1.23 1.13 1.12 1.09 1.20 
4 −0.01 0.07 0.16 0.25 0.24 1.08 1.05 1.06 1.08 1.25 

Big −0.03 0.01 0.06 0.06 −0.41 0.97 0.93 0.93 0.98 1.07 
 η  α  

Small 7.51 5.71 5.06 4.55 5.14 0.50 0.66 0.63 0.69 0.59 
2 4.15 3.46 3.21 3.46 4.41 0.60 0.62 0.68 0.66 0.61 
3 3.11 2.42 2.56 2.86 4.14 0.72 0.63 0.68 0.52 0.60 
4 2.22 1.95 2.23 2.78 4.24 0.50 0.54 0.74 0.66 0.54 

Big 1.53 1.51 2.12 2.97 6.72 0.55 0.44 0.52 0.49 0.17 

 1p  2p  
Small 0.85 1.22 1.27 1.56 1.29 0.71 0.66 0.72 0.65 0.69 

2 1.31 1.36 1.57 1.42 1.33 0.89 0.78 0.74 0.72 0.77 
3 1.55 1.58 1.52 1.18 1.34 0.74 1.00 0.76 0.95 0.77 
4 1.07 1.20 1.68 1.56 1.13 1.03 0.92 0.68 0.75 0.81 

Big 1.46 1.09 1.05 0.83 0.39 1.23 1.32 0.96 0.77 1.31 
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Appendix 1. Estimates from the CAPM-SSAEPD Model 
A new way to empirically test the CAPM theory using SSAEPD errors is suggestedy b Zhuo (2013) as follows: 

( ) ( )1 2 ,t ft mt ft tR R R R zβ β η− = + − +                              (30) 

( )1 2, , , 1, 2, , .tz SSAEPD p p t Tα =                            (31) 
where tR  is the returns for the stock portfolio. mtR  is the returns for the market. ftR  is the risk-free rate. 1β , 

2β  and η  are the coefficient parameters in the regression model. T  is the sample Size. The error term tz  is 
distributed as the Standardized Standard Asymmetric Exponential Power Distribution (SSAEPD) proposed by 
Zhu and Zinde-Walsh (2009). 

The estimation results of CAPM-SSAEPD based on 25 portfolio returns used in Fama and French (1993) are 
listed in Table 12. According to the results, the skewness parameter α  of 23 portfolios are not equal to 0.5, 
which captures the skewness in the data. The left tail parameter 1p  and the right tail parameter 2p  of all the 
25 portfolios are both smaller than 2, which documents the fat-tail characteristics. And 24 out of the 25 
portfolios have fatter right tails than left tails. Hence, CAPM-SSAEPD can document the asymmetric tails. 
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