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ABSTRACT 

We study the information structure implied by models in which the asset price is always risky and there are no arbitrage 
opportunities. Using the martingale representation of Harrison and Kreps [1], a claim takes its value from the stream of 
discounted expected payments. Equivalently, a pricing-kernel is sufficient to value the payment stream. If a price proc- 
ess is always risky, then either the payment or the discount factor must also be continually risky. This observation sub- 
stantially complicates the valuation of contingent claims. Many classical option pricing formulas abstract from both 
risky dividends and risky discount rates. In order to value contingent claims, one of the assumptions must be aban- 
doned. 
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1. Introduction 

The pioneering work of Black and Scholes [2] and Mer- 
ton [3] and introduced continuous-time methods and, in 
particular, diffusion models into contingent claims valua- 
tion. Diffusion processes have become the standard speci- 
fication of the underlying asset price in option pricing 
models (e.g., Melino and Turnbull [4], Heston [5] among 
many others) and of the term structure of interest rates 
(e.g., Cox, Ingersoll, Ross [6] and Heath, Jarrow and Mor- 
ton [7]). 

A diffusion process can be thought of as the continu- 
ous-time limit of a binomial tree. A shared feature among 
all these models is that at any time t − 1, we do not know 
the value of the asset at time t. The one-step ahead price 
is always risky. Equivalently, the one-step ahead vari-
ance of the price is always positive. 

In the present paper, we study the information struc-
ture implied by models with continually risky prices when 
there is no arbitrage. We use the binomial tree to moti-
vate the problem and provide intuition before providing 
the analysis in continuous time. 

If an economy has no arbitrage, the martingale repre-
sentation of Harrison and Kreps [1] and Harrison, Pliska 
[8] implies that an asset price  can be written  tp

1 , 1

1
d

1t t t t tp Ep
r   



where  are the cashflows and , 1t t  is a stochastic 
discount factor (SDF)1. This says that the value of a 
claim can be decomposed into the payments and a co-
variance term. 

dt m 

If the asset price is a binomial process (or diffusion), 
the one-step ahead conditional variance is 

 1var 0.t tp               (2) 

Combining Equations (1) and (2), the conditional vari-
ance of the RHS of Equation (1) must also be positive. 
Thus under no arbitrage, either the payout dt  or the 
SDF , 1t tm   (or both) must also be risky each period. 

For the purposes valuing contingent claims, this com-
plicates the interpretation and application of classical 
methods2. Black and Scholes [2] assume the underlying 
stock price is a diffusion process. It is continuously risky 
(the instantaneous variance is positive). This means the 
LHS of Equation (1) has a strictly positive variance. But  

1We follow Cox and Rubinstein [9] in using the term “binomial process” 
to refer generally to two-state models in discrete time. This encompasses 
models in which the log of the stock price at any time period has a 
binomial distribution. The convergence of binomial models to diffusion 
limits is formally studied in Brennan and Schwartz [10], Cox, Ross and 
Rubinstein [11], Duffie and Protter [12] and He [13]. 
2Note that this problem cannot be illustrated in model with less than 3 
periods, as Equation (1) is ill-defined if T < 3. In this sense, there is a 
strong loss-of-generality is describing the continuous-time framework 
with a 2-period model as is commonly done in textbook expositions of 
option-pricing. 

m             (1) 
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they also assume that there are no risky payments and no 
risky discounting. This would imply the RHS of Equa-
tion (1) has identically zero variance. 

The full set of assumptions made in Black and Scholes 
[2] can be made consistent by dropping the standard no 
arbitrage condition. Without a no arbitrage condition, the 
martingale representation (1) of Harrison and Kreps [1] 
and Harrison and Pliska [8] needs not hold. Changes in 
the asset price can be divorced from both payments and 
discounting. For example, price moves could be driven 
by incomplete information or by learning about distribu- 
tions of random variables. 

Unfortunately, such a solution then creates another 
problem. If the economy violates the no arbitrage condi- 
tion, we cannot use it to value contingent claims. This 
does not mean that they cannot be valued-rather, they 
cannot be valued by arbitrage methods. 

We could as an alternative solution insist on keeping 
the no arbitrage condition and drop the classical assump-
tions about either dividends or discount rates. No arbi-
trage can be maintained if the binomial asset price is 
driven by binomial dividends or a binomial discount rate.  

For stocks, bonds and many other assets types, it would 
be empirically unreasonable to assume risky payments 
are made every period. This leaves as the only realistic 
possibility allowing the discount rate to be risky every 
period. In this case, the asset behaves like a perpetuity. 
All variations in the asset price come from changes in the 
discount rate. 

The structure of the article is as follows: Section 2 out- 
lines the main result in discrete time using the binomial 
model. Section 3 analyzes the implications for continu- 
ous-time option pricing models. Some solutions are dis- 
cussed in Section 4 and Section 5 concludes. 

2. Risky Asset Prices under No Arbitrage 

Before turning to the analysis in continuous time, we 
discuss the Binomial model. The discrete time analog 
simplifies the mathematics somewhat without any loss in 
intuition. If there is no arbitrage, the value of a claim  
can be written as an expectation 

tp

1 , 1

1
d

1t t t t tp E p m
r      

          (3) 

where  is the payout at time t and , 1t t  is the 1-step 
ahead stochastic discount factor (SDF) at time t. 

dt m 

Under the no arbitrage condition (as defined by Harri-
son and Kreps [1]), an asset price is equal to an observed 
payment  plus a covariance. To calculate the covari-
ance term at any time t, all we need to know is the joint 
distribution of  and 1

dt

1t ,t tp  m  . 
The simplest binomial asset price model is the process  

1t t tp p 1                 (4) 

where 

1

with probability

with probability 1
t

u q

u q
 

 
 

 

and  is the step size3. Combining (3) with (4), the 
asset price equals  

0u 

 1

1
d .

1t t t t tp E p
r


  


 

Rearranging and simplifying terms,  

 1

1
d .

1 1t t t t

r
p E

r r


 
 

 

Write out the expectation, 

 1
d 1

1 1t t t t

r
p uq u

r r
     q

 
       (5) 

where tq  is the Arrow-Debreu state price or martin-
gale-equivalent probability of an up move. From Harri-
son and Pliska [8], these subjective probabilities are 
given by 

, 1t t tq qm
                (6) 

where q is the actual probability of an up-move and 

, 1t tm   the SDF. Making this replacement in Equation 
(5), 

 , 1 , 1

1
d 1

1t r 1t t t t t

r
p uqm u qm

r        
 

and simplifying  

, 1

1
d 2 .t t t t

r
p uqm u    1 1r r 

We can explicitly calculate the variance of the LHS of 

      (7) 

this equation. The one-step ahead conditional variance at 
1t  , 

 
      

1

22
1 1 1

var

var var 1 2 1

t t

t t t t t

p

p u 



       
 

q

ino-
mial. This of course implies the conditional variance 
which is strictly positive for any non-degenerate B

1var 0.
1 r 

Turning to the

t t

r
p

                (8) 

 RHS of Equation (7), the conditional 
variance equals 

3This discussion is not sensitive to the particular functional form of the 
two-state Binomial model. The analysis would be virtually identical, 
for example, if the price was a geometric Brownian motion, 

 1 11 .t t tp p     
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, 1

     

     




      (9) 

Assu
Geome

If for some t, the payments and SDF were known 

   1 1 , 1var d var 0t t t t tm   

d       

        (10) 

expression (9) would be identically zero. Since a Bino-
mial asset price is always risky, Equation (10) cannot 
hold. At least one of the two variables must be random 
each period so that  

 1var d 0t t   or   1 , 1var 0t t tm  

for any t. 

3. Implications for Option Pricing Models  

The workhorse model of asset prices in continuous-time 
models is the generic diffusion process 

   d dt t t t t tP P t P W     (11) 

where dWt is a standard Brownian motion. The variance 
is determined by the function  which is defined 
as  

 t tP

   22

0

1
lim .t t h t
h

p E P P P
h

 
  t p

t

 

At any time t,  is the instantaneous variance 
and  the instantaneous drift. 

 t tP
 dt tP t

For the diffusions typically used in Finance, including 
Black-Scholes [2], Cox, Ingersoll, Ross [6] and in the 
multivariate case, Heath, Jarrow, Morton [7] and Heston 
[5], the instantaneous variance is positive for all t and all 
Pt 

  0.t tP                (12) 

There is no state of the world in which changes in 
price are deterministic. 

A leading example is the lognormal diffusion of Black- 
Scholes [2], 

d d dt t tP P t P W             (13) 

where  ,    are fixed constants. The volatility pa-
rameter  must be strictly positive or the price process 
would be purely deterministic for all time periods. In this 
case, the instantaneous variance is simply  

 2 2 0t t tP P                (14) 

and is strictly positive. 
The option pricing formula originally formulated in 

Black and Scholes [2] is derived under the conditions: 

mption 1. The underlying stock price Pt is a 
tric Brownian Motion. 

Assumption 2. The discount rate is not stochastic. 
Assumption 3. The dividend payment Dt is not sto- 

chastic over 0 t T  . 
Assumptions 1-3 cannot all hold simultaneously under 

the no arbitrage condition defined in Harrison and Kreps 
[1] and Harrison and Pliska [8]. The martingale repre- 
sentation which results from no arbitrage implies that the 
price is an expectation, 

  , ,
0 0

d d
T T

t t t s t T t s t t s T t TP E D s E P E D s E P 
        



 

(15) 

where T is any future date and t,t+s is the stochastic dis-
count factor. Rearranging Equation (15), 

  , ,
d

d
T

t t t s t t s T t T
t

P D E D s E P 

 
     

 
    (16) 

for any t T . The instantaneous variance of Pt is just 

    , ,
d

var var d .
T

t t t t t s t s T t T
t

P D E D s E P

 
     

 
 

s

 (17) 

Expanding the conditional variance,  

   

  

,
d

,

var var d

var cov .

T

t t t t s t s
t

t T t T t

D E D

E P



 
  

 

  




      (18) 

Under the Black-Scholes Assumption 3, the variance 
of the payments t sD   are zero for . The first term 
in (18) is trivially zero.  

t T

Assumption 2 of Black-Scholes says the discount fac- 
tors t,t+s also have zero variance. This implies that  

   , ,t s t t s t t s t sE D E D       

which is a known constant. The conditional variance  

    

  

, ,
d d

2
,

d

var d var d

var d 0

T T

t t s t t s t t s t t s
t t

T

t t s t t s
t

E D s E D s

E D s

   

 

 
   

 

  

 


 

since the variance of a unconditional mean is zero. Simi-
larly the third term in (18) is  

   

 
, ,

2
,

var var

var 0

t T t T t t T T

t t s t T

E P E P

E P

      

    


     (19) 

where  T  is an unconditional mean. The covariance 
terms also vanish so that each element in (18) is identi-
cally zero. 

E P

We conclude that the conditional variance would be  
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 var 0P t t  under the standard no arbitrage condition. 
This contradicts Assumption 1, that the price is a diffu-
sion process. 

4. Possible Solutions 

Under no arbitrage the price of an asset is driven by two 
fundamentals—the payments on which it is a claim and 
the discount rate. The Black-Scholes [2] Assumptions 1- 
3 can be made consistent but only by violating no arbi- 
trage. 

Intuitively, Black-Scholes [2] construct a stock price 
that is continuously risky but for no fundamental rea- 
son—not because of risky payments nor because of 
changes in discounting. We can imagine, for example, 
that unpredictable stock moves are driven by incomplete 
information or by learning about distributions of random 
variables. Learning allows the stock price to be de-cou- 
pled from the fundamentals, in the manner of Assump- 
tions 1-3. But this comes at the cost of violating the no 
arbitrage condition. 

This is an important consideration. If the economy 
violates no arbitrage, we can no longer use it to value 
derivatives. Without some additional restriction, it is not 
necessarily true that the value of a contingent claim will 
depend on its underlying. 

Since the stock does not depend on its underlying (the 
dividends), it would seem unnatural to assume that an 
option or other contingent claim would depend on its 
underlying (the stock). Nevertheless, we could follow the 
original Black-Scholes [2] development and explicitly 
add a condition like: 

Assumption 4. The value of an option depends on its 
underlying asset price V V  and not on any 
other random variables. 

 ,t tP t 

However, Assumption 4 cannot be made consistent 
with a no arbitrage condition. Rather it must replace the 
no arbitrage condition, since Assumptions 1-3 imply no 
arbitrage is violated. 

We could also examine what would happen if we drop 
the assumptions about either dividends or discount rates. 
Continue to assume that the underlying asset price is a 
Geometric Brownian motion. First, make no assumption 
about the dividend payments, but suppose the discount 
rate is not stochastic.  

From (16), the instantaneous variance of the underly-
ing price is  

   
d

1 1
var d 0

T

t t s s T T
t tt

D E D s E P
 

      
    (20) 

which is strictly positive for all . The second and 
third terms in expression (17)  

t T

  
d

1 1
d

T

contain only constants and unconditional moments. The 
variance of an unconditional moment is zero so that  

ly constants and unconditional moments. The 
variance of an unconditional moment is zero so that  

   
d

1 1
var d 0.

T

t s s T T
t tt

E D s E P
 

     
   

The only term that remains is Dt as the sole source of 
risk. It follows that 

  var vart t t tP D   

all variance in the asset price is explained by the risky 
dividend. 

This would hold, for example, with dividends that are 
proportional to the stock price, t t  where k is 
some constant. This implies Dt is linear in Pt and in par-
ticular that the dividend process Dt is also a lognormal 
diffusion (this follows immediately from Ito’s Lemma). 

D kP

Since the instantaneous variance of the dividend is 
positive, the discount rate must be constant if we want to 
use arbitrage pricing. The asset price would in this case 
equal 

0
e drs

t t sP E D s
 

   

where r is the constant discount rate. Since 

d
d dt

t
t

D
t W

D
    

we can write the price 

 
0

1
e d .r s

t t tP D s D
r




  

  

The stock is a linear derivative written on the dividend 
payment and obeys a form of the Gordon growth model 
for stock prices. This may be an unrealistic characteriza-
tion of dividend payments at high frequency such as 
daily observations.  

Risky Discounting 

Suppose that instead of deriving the behavior of divi-
dends, we assume dividends are deterministic  

 var 0t tD                   (22) 

but we make no assumptions about discount rates. 
The variance of the asset price is thus given by the last 

two terms in (18). The instantaneous variance is  

   

     

d

2

1

d

1
var d

var d

T

t s s T T
t t

T

t t s s T T
t

E D s E P

E D s E P

  
       

 
     

 





    (23) 

where we have taken the unconditional moments out of 
the variance. Expression (20) is positive if and only if 

s s
t tt

E D s E P  
  T T        (21) 
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 1var 0t t
                 (24) 

the discount rate is stochastic at any time t. 

5. Conclusions 

If an asset price is modeled using binomial trees or their 
continuous-time diffusion limits, it is risky each period. 
A standard no arbitrage condition implies that there must 
also be a risky dividend and/or risky discount rate each 
period. 

In order to value derivatives on an asset by arbitrage, 
we cannot allow both to be risky simultaneously. This 
leaves two possibilities. We can treat the dividends as a 
diffusion and fix the discount rate. This would seem 
somewhat unrealistic for most asset types such as stocks 
whose dividends tend to be smooth and paid only inter-
mittently. Alternatively, we can assume dividends are 
purely deterministic and let the discount rate be a diffu-
sion. 

Another possibility is to abandon arbitrage valuation 
of contingent claims in favor of other methods (e.g., 
Heston [5]) which can accommodate multiple risky shocks. 
This would permit modeling both the discount rate and 
the dividend payment as risky simultaneous. 
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