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Abstract 
This research uses random networks as benchmarks for inferential tests of 
network structures. Specifically, we develop formulas for expected values and 
confidence intervals for four frequently employed social network centrality 
indices. The first study begins with analyses of stylized networks, which are 
then perturbed with increasing levels of random noise. When the indices 
achieve their values for fully random networks, the indices reveal systematic 
relationships that generalize across network forms. The second study then 
delves into the relationships between numbers of actors in a network and the 
density of a network for each of the centrality indices. In doing so, expected 
values are easily calculated, which in turn enable chi-square tests of network 
structure. Furthermore, confidence intervals are developed to facilitate a net-
work analyst’s understanding as to which patterns in the data are merely 
random, versus which are structurally significantly distinct. 
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1. Introduction 

Many social network analyses begin with identifying actors with high centrality. 
Depending on the nature of the actors and the ties that link them, highly central 
actors may be actors with power or prestige, expected to be influential in the 
network ([1] Bonacich, 1987; [2] Mizruchi and Potts, 1998). Numerous centrali-
ty indices are available to characterize actors’ positions amidst the structural ties 
in social networks, including degree, closeness, betweenness, and eigenvector 
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centralities, among others, each with a distinct conceptualization ([3] Freeman, 
1978; [4] Bonacich, 1972). 

It is not unusual for social network scholars to obtain centrality scores to un-
derstand a network structure in a descriptive sense, and perhaps to use the cen-
trality indices as input into subsequent analyses to study associations with actor 
attributes or behaviors of the actors or network. Descriptive statistics on net-
works are certainly very informative, yet even more information may be ob-
tained via inferential methods with statistical methods that allow testing hypo-
theses about network structure. For example, social network analysts might pose 
questions such as whether a set of actors are significantly different from others, 
to help formulate conclusions about patterns that appear different, making those 
assessments with greater confidence. This study is intended to contribute to the 
literature on inferential analyses of social network data. We take a relatively 
novel and straightforward approach to obtain the statistics, and we believe it is at 
least as important that this approach should be easily implemented by users for 
their own social networks. 

In building toward these statistics, we begin in Study 1 by examining the de-
scriptive statistics for four popular centrality indices across several stylized net-
works. (These particular centrality indices are the four that are most frequently 
implemented in network texts and software). The network prototypes are drawn 
from the social networks literature which has frequently used clean structures to 
illustrate various characteristics of networks, from centrality features to cliques 
and equivalence patterns. We then add error to the networks so the structures of 
ties might resemble real data more closely than their stylized forms, and we 
compare the descriptive statistics as more noise is introduced into the network. 
The results show that as the networks become more errorful, their statistical 
profiles become similar, regardless of the initial structure of the network. 

Given the convergence in similar centrality indices, we conduct a comple-
mentary investigation in Study 2, in which we focus on fully random networks. 
Networks of random ties can serve as a benchmark against which real network 
data may be compared to assess the extent to which the observed network struc-
tures are real patterns and phenomena versus merely those that would be ob-
served in networks of random collections of ties. We use this information to de-
velop formula to test hypotheses about centrality scores. Specifically, we derive 
expected values for centrality indices and compare those against observed net-
work centralities in a chi-square test, with follow-up z-tests. Additionally, we create 
confidence intervals to form bands within which observed network ties may be 
said to be expected at the rate of a random network, and beyond which, in either 
direction, higher or lower real centralities may be said to reflect truer, non-random 
network structure in the social network data.  

It is our hope that this research and these tools might be useful in assisting 
network researchers in determining whether their observed sets of network pat-
terns are reliable and statistically significant network structures, above and beyond 

https://doi.org/10.4236/sn.2018.74017


D. Iacobucci et al. 
 

 

DOI: 10.4236/sn.2018.74017 222 Social Networking 
 

random collections of ties. We derive these expected values, the statistical tests, 
and the confidence intervals for each of four popular centrality indices: degree, 
closeness, betweenness, and eigenvector centralities.  

The paper is organized as follows. We first briefly review the centrality indices 
that comprise the focus of this research. In Study 1, we examine the centrality 
indices on three stylized networks, and observe the centrality profiles as random 
errors are introduced into the networks. In Study 2, we consider results for 
wholly random networks with varying numbers of actors and network densities. 
We use the results to derive more general formula, for any number of actors and 
density, to obtain expected values and confidence intervals for each of the four 
centralities.  

2. Four Focal Centrality Indices 

This research focuses on four centrality indices: degree, closeness, betweenness, 
and eigenvector centrality. Degree reflects overall volumes of ties, closeness cap-
tures the extent to which the relational ties travel via few “degrees of separation”, 
and betweenness highlights those actors through whom much of the rest of the 
network is interconnected. Eigenvector centrality is a weighted function that in-
corporates information about an actor’s connections with other actors who may 
themselves be highly central. Scholars have proffered additional centrality 
measures, but these four are prevalent across texts on social network analysis 
(e.g., [5] Knoke and Yang, 2007; [6] Wasserman and Faust, 1994) and across so-
cial network analysis packages (e.g., UCINet, NetMiner, LibSNA, NodeXL, even 
Mathematica; each network package may provide additional indices, but such 
indices do not appear consistently across network packages, unlike the four core 
centralities in our studies). Next, we briefly review each index. 

Degree. The notion of an actor degree is intuitively understood as capturing 
the volume of interconnections ([3] Freeman, 1978; [7] Bolland, 1988; [5] Knoke 
and Yang, 2007; [8] Lu, Chen, Ren, Zhang, Zhang, and Zhou, 2016; [9] Opsahl, 
Agneessens, and Skvoretz, 2010; [10] Rothenberg et al., 1995; [6] Wasserman 
and Faust, 1994). For a g g×  sociomatrix on g actors, { }ijx=X , with actors 
in rows 1,2, ,i g=   sending ties to the actors in columns 1,2, ,j g=  , the 
in-degree is defined as the column sum and the out-degree as the row sum. For 
binary ties, the in-degree and out-degrees for actor or node “i” are: 

( ) 1,
g

D in jij i jC i x− = ≠
= ∑  and ( ) 1,

g
D out ijj i jC i x− = ≠

= ∑ . 

Actor degrees are normed as  

( ) ( )
1

D
D

C i
C i

g
′ =

−
,  

for ( )1g −  being the maximum number of links for an actor to the others in 
the network. 

Closeness. An actor’s closeness is “based upon the degree to which [an actor] 
is close to all other [actors] in the [network]” ([3] Freeman, 1978, p. 224). 
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Closeness uses the geodesics, or shortest paths between actors ([11] Brandes, 
Borgatti, and Freeman, 2016; [3] Freeman, 1978; [12] Kim, Hyun, and Kim, 2015; 
[13] Smith and Moody, 2013; [14] Stephenson and Zelen, 1989). Given ijd  as 
the distance or number of edges in the geodesic linking actors i and j, or the 
length of the shortest tie that connects them, closeness is the inverse of the sum 
of the geodesic distances, defined for binary and mutual or symmetric ties (i.e., 

′=X X ) as follows:  

( )
1,

1
C g

ijj i j

C i
d

= ≠

=
∑

.  

At most, one actor may be as far as ( )1g −  steps from another, so closeness in-
dices are normed: ( ) ( ) ( )1C CC i g C i′ = −    . 

Betweenness. Betweenness is “based upon the frequency with which [an actor] 
falls between pairs of other [actors] on the shortest or geodesic paths connecting 
them” ([3] Freeman, 1978, p. 221; [15] Costenbader and Valente, 2003; [2] Mi-
zruchi and Potts, 1998; [16] Riondato and Kornaropoulos, 2016; [17] Venkata-
ramani, Zhou, Wang, Liao, and Shi, 2016; [18] Xiao, Wu, and Huang, 2014; [19] 
Zemljič and Hlebec, 2005). With ijkg  representing the number of geodesics 
linking j and k that contain actor i, the betweenness indices on binary and sym-
metric ties are defined: 

( ) g ijk
B j k

jk

g
C i

g<
= ∑ .  

The maximum value is ( )( )1 2 2g g− −   , so this centrality is normed: 

( ) ( )
( )( )

( )
2

2 2
1 2 3 2

B B
B

C i C i
C i

g g g g
′ = =

− − − +
. 

Eigenvector. [4] Bonacich (1972), building on [20] Katz (1953), proposed that 
the first eigenvector (corresponding to the largest eigenvalue) of a sociomatrix 
could serve as a centrality measure that would capture patterns of direct and in-
direct connections ([21] Bonacich, 2007; [22] Bonacich and Lloyd, 2015; [23] 
Borgatti, Carley, and Krackhardt, 2006; [24] Li, Liu, Jiang, and Liu, 2016). The 
index captures a weighting of ties such that actors would have a larger eigenvec-
tor index to the extent that they were connected to other actors who themselves 
are highly inter-connected. For the sociomatrix X, the eigenvector, v, is derived 
from the familiar equation: λ=Xv v . The eigenvector score for actor i is 

( )EVC i , a weighted function of the statuses of the other actors to whom actor i 
is connected: ( ) 1 1 2 2EV i i gi gC i x v x v x v= + + + . 

Various research articles have certainly considered alternative centrality in-
dices, such as information centrality ([10] Rothenberg et al., 1995; [14] Stephen-
son and Zelen, 1989), or indices for directed graphs ([25] Freeman, Borgatti, and 
White, 1991; [26] White and Borgatti 1994). However, the four indices we have 
selected—degree, closeness, betweenness, and eigenvectors—seem most trans-
ferable in their general use across network textbooks, research articles, and 
available software packages. 
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Next, in Study 1, we examine the empirical performance of these four central-
ity indices on small social networks that have exemplar, stylized network struc-
tures drawn from the literature. We will then perturb the clean, prototype struc-
tures by adding random error to the network ties and observe the effects on the 
four centrality indices. 

3. Study 1: Performance of the Centralities on Stylized  
Networks 

To understand the nature of the differences among the centrality indices, it 
should be useful to begin with clean networks, simple and classic in appearance. 
Figure 1 depicts social networks with prototypical structures that have been used 
to inform the conceptual development of many social networks analytics, from 
centrality indices to definitions of cliques and stochastic equivalence. First is the 
“hierarchy” (or “fork” or “tree” per [3] Freeman, 1978, p. 233, [6] Wasserman 
and Faust, 1994, p. 468), a structure frequently used to depict structures of or-
ganizations, for example. In terms of network centralities, the top player may 
have the largest degree, and the middle layer may have the largest betweenness 
indices. Next is the “star” or “wheel” structure with one highly central actor 
whose ties emanate out to other actors, who are not themselves connected (cf., 
[3] Freeman, 1978, pp. 219, 233; [6] Wasserman and Faust, 1994, p. 171). The 
star network has regular or uniform degrees with the exception of the cen-
tral-most actor, who is both closest to all the others, and through whom the oth-
ers must traverse to reach other actors in the network. Thus, for example, close-
ness indices should be reasonably high for these actors. The final figure depicts a 
“core and periphery” structure in which a subset of actors within the network 
are highly interconnected (at the extreme forming a clique), and in which a 
second set of actors is connected to the first, but not as completely linked to 
those in the first set nor to each other (cf., [27] Borgatti and Everett, 1999; [28] 
Mizruchi and Potts, 1998, p. 357).  

The intention in selecting these particular stylized networks was to represent 
some variability across structural properties that might be reflected better by one 
or more of the centrality indices. Indeed given these structures, it would not 
seem unreasonable to anticipate that some centrality indices may be more sensi-
tive to certain elements of different network structure. For example, one might 
expect the core-periphery network to have high degrees, and high closeness,  
 

 
Figure 1. Three stylized networks: Hierarchy, star, core-periphery. 
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whereas the hierarchy might yield greater betweenness indices. Nevertheless, 
before proceeding, it is important to note that even if one might have preferred 
that a different selection of network structures be included for examination, the 
particular structures will not matter soon, as we add random noise, which will 
become clear shortly. 

3.1. Means of the Four Centralities, for Each Network 

To examine whether these relationships hold, we analyzed each network to ob-
tain all four sets of centralities. (For simplicity, we constructed the adjacency 
matrices to be binary and symmetric). The means of each centrality computed 
across the actors are presented in Table 1, for each network. The pattern of re-
sults are essentially as anticipated, e.g., betweenness scores being higher for the 
hierarchy than for the star or core-periphery, both of which have more direct 
ties. Similarly, the core-periphery had larger degrees, and so forth. These results 
are not critically of interest except that they serve as a foundation to compare 
results when we add noise. We do so next. 

These stylized networks are exemplar structures that should epitomize net-
work patterns for which one type of centrality index would be optimal to use. 
Yet the networks are so simple and clean that they do not seem particularly rep-
resentative of real network data. Thus, we build further, adding noise to these 
stylized networks. 

Noisy or errorful networks have been used to study numerous network phe-
nomena ([7] Bolland 1988; [15] Costenbader and Valente 2003). For example, 
[28] Watts and Strogatz (1998, p. 441) used structures of random networks as a 
benchmark against which to compare an observed network to verify the exis-
tence of a network clustering characteristic beyond chance. [15] Costenbader 
and Valente (2003) sampled from eight real data sets, calculated 11 centrality in-
dices, and tested recovery to the centralities of the full, intact networks, showing 
that in-degrees and eigenvector scores were relatively stable until sample size 
proportions dropped below 40% - 50%, whereas closeness and betweenness in-
dices were diminished even when larger portions of the data were retained. [19] 
Zemljič and Hlebec (2005) obtained real network data with different levels of 
measurement (e.g., binary, categorical, ratio from continuous line generation, 
etc.) and found greater test-retest reliability for degree and closeness centralities 
than for betweenness indices, particularly for more dense networks. [23] Borgatti,  
 
Table 1. Mean centrality indices per stylized network. 

 Network Structure 

Centrality Index Hierarchy Star Core-Periphery 

Degree 0.095 0.095 0.167 

Closeness 0.360 0.536 0.470 

Betweenness 0.100 0.048 0.065 

Eigenvector 0.173 0.184 0.162 
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Carley, and Krackhardt (2006) studied networks of varying size (g = 10 to 100) 
and densities (1% to 90%) to understand the stability of network indices as net-
work data are sampled, simulated by the addition or deletion of nodes or edges. 
The perturbations were more disruptive to network recovery than sampling var-
iations on the nodes. [13] Smith and Moody (2013) sampled nodes from 12 real 
data sets to study missing data, and found greater robustness for in-degrees and 
closeness than betweenness centralities, with large and centralized networks dis-
playing the least bias in the estimates of the remaining network data. 

Real datasets can serve as an acceptable truism, against which the effects of 
sampling and adding noise may be compared. However, in real data, the extent 
to which betweenness or closeness, say, should reflect elements of the true, un-
derlying network structure is unknown. Hence, we will add noise to our pre-
viously analyzed stylized networks to gauge the sensitivities of the centrality in-
dices, having begun from bases with pure, known network patterns. 

3.2. Adding Noise to the Stylized Networks 

We continue this investigation by perturbing the network structures by adding 
random error from a uniform distribution. Specifically, for each network struc-
ture, and each cell in the sociomatrix, a 0 (1) was changed to a 1 (0) with proba-
bilities that ranged from 0.0 to 0.5. For example, for a probability of 0.2, on av-
erage, 80% of the ties in the network remained the same, with 20% reversals. 
Changes were made to the upper triangle of the matrix, and then copied to the 
lower triangle so as to maintain symmetry. Once the sociomatrix was revised, 
the centrality indices were calculated. This process was repeated 100 times for 
each combination of network structure and level of error. 

The results are presented in Figure 2. The results for zero error—the left-most 
points in each plot—represent the perfectly stylized networks of Figure 1, with 
means that had been conveyed in Table 1. What is new in Figure 2 are the 
means for 0.1 through 0.5 error levels, which allow us to observe the mean cen-
tralities migrating from idealized network forms to random collections of ties 
lacking systematic forms. 

In the results, note that the mean centrality indices for each network begin at 
slightly different values (per Table 1), where each network is in its purest form 
without error. From there, as error is added and the network structures per-
turbed, the inherent structures of the networks (e.g., hierarchy, star, etc.) have 
less of an impact in determining the centrality indices because more random ties 
are contributing as well.  

As error is introduced, the average degree centrality increases for each net-
work, as does the average closeness centrality. The average betweenness central-
ity decreases slightly (not having far to drop from low initial values). The eigen-
vector indices remain stable, increasing only a modest amount (e.g., from 0.162 
to 0.214 for the core-periphery network).  

As the level of noise added approaches the level of 50%, the centrality indices  
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(a) 

 
(b) 

 
(c) 

Figure 2. Comparative descriptives on “Stylized + Noise” centrality indices. (a) Mean 
centralities with varying errors—hierarchy network; (b) Means of centralities with vary-
ing errors—star network; (c) Means of centralities with varying errors—core-periphery 
network. 
 
converge. This result may be anticipated by some, or may certainly be easy to 
understand in hindsight. Specifically, the indices should converge regardless of 
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which of the three starting networks on which it is being calculated, because as 
error is added to the 50% level, the network is at its noisiest, essentially a ran-
dom network, with none of the original inherent structure remaining. The hie-
rarchy network, for example, began in its clean form depicted in Figure 1. With 
the noise level at 0.5, each tie, present (absent), had a 50:50 chance of remaining 
present (absent) or being modified to a state of being absent (present). The val-
ues to which all networks converge are: 0.50 for degree, 0.67 for closeness, 0.03 
for betweenness, and 0.21 for eigenvectors. That is, the right-most values in each 
panel, regardless of the initial network structure, all share the values of 0.50, 
0.67, 0.03, and 0.21. These values are therefore “expected values” for networks 
comprised of random collections of ties. For real network data, one would hope 
that the structures would yield centrality indices (significantly) different from 
(higher or lower) these base expected values. 

This finding makes sense because the networks at the right in each panel of 
Figure 2 are all random networks. The networks at the left had certain struc-
tures (hierarchy, star, core-periphery) but those structures have been replaced at 
the right in the plots with networks comprised of random ties, heads or tails as 
to whether a tie connected any given dyad of actors. Thus the random networks 
to the right in the first panel (that had begun as hierarchy networks) are simply a 
random sample from a population network without structure, that is, a random 
network. The random networks to the right in the second and third panels simi-
larly represent random samples from a population network with no inherent 
structure. Given that all three panels show random networks at the right (where 
the error levels are 0.5), each of the four centrality indices converge (across pa-
nels) such that closeness, for example, on the random networks in the first panel 
are, within sampling, the same values as the closeness indices for the random 
networks in the second and third panels. In the study that follows, we pursue 
this observation about random networks in greater detail, to create a baseline for 
the centralities indices. Once we have a baseline of what value a centrality index 
may be expected, we can compare observed centralities that have been calculated 
from networks that have some non-random structure. The comparison will al-
low summary statements as to the extent to which a network varies from ran-
domness.  

Therefore, next we shall show that in their random states, the four centralities 
may be derived as a function of the size of the network or the number of actors, 
g, and the network’s density, the proportion of extant ties. In the section that 
follows, we show this relationship to be precisely true for degree centrality, and 
approximately true for closeness, betweenness, and eigenvector centralities. 

4. Study 2: Fully Random Networks 

In this next investigation, we consider the purely random network form to un-
derstand what the centrality indices may be measuring in such contexts. We will 
derive the expected values for degree centralities analytically, and empirically 
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calculate the expected values for closeness, betweenness, and eigenvector cen-
tralities. In addition, we will provide the formulas for confidence intervals for 
each of the centrality indices. 

Figure 3 shows the progression of covering a continuum from stylized to 
random networks. Specifically, whereas Study 1 considered clean, stylized net-
works, as well as results examining the effect of added noise, we turn now to the 
scenario of fully random networks; i.e., networks that have been generated as 
collections of random ties.  

1) At the left are the stylized networks presented in Figure 1 and analyzed in 
Table 1 and the left-most points of Figure 2.  

2) The scenario of “Stylized + Noise” were networks that were analyzed and 
mean centralities presented in the panels of Figure 2 for the 0.1 to 0.5 random 
error levels. 

3) The fully random networks will be analyzed in Figure 4, to be presented 
shortly. 

To proceed in the creation of the random networks, we varied networks in 
size, g = 50, 100, 150 actors, and densities = 0.1, 0.3, 0.5, 0.7. For each combina-
tion of parameters, e.g., g = 50 and density = 0.7, we created a network with 
those specifications and proceeded to calculate the four centrality indices, noting 
their descriptive statistics and correlations. This process was repeated 100 times 
for each combination.  

Let us consider first the mean centralities, presented in Figure 4 for each of g 
= 50, 100, 150 actors. For degree centralities, regardless of the number of actors 
in the network, g, the values start at 0.10 (for 10% density), and achieve mean 
values of 0.7 (for 70% density). We derive the relationship between the expected 
degree value and density analytically shortly, and like many things, the relational 
form will appear obvious in hindsight.  

For the closeness centrality indices in a 10% density network, the values are 
0.41, 0.45, and 0.48 for g = 50, 100, 150 respectively, whereas in a 70% density 
network, the values are 0.77, for all g. We will formulate the expected values for 
closeness shortly. 

The results are different for the betweenness and eigenvector centralities. Both 
remain relatively constant regardless of the densities of the network, or network 
size, g. The average betweenness scores range from 0.03 (for 10% density) to 0.01 
(for 70% density) for g = 50, 0.01 to 0.003 for g = 100, and 0.01 to 0.002 for g =  
 

 
Figure 3. Classes of networks. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Mean centralities on random networks. (a) 50 actors; (b) 100 actors; (c) 150 
actors. 
 
150. The changes in the average eigenvector scores are similarly modest, in-
creasing from 0.13 for 10% density to 0.14 for g = 50, and 0.095 to 0.099 for g = 
100 actors, and 0.079 to 0.082 for g = 150 actors. It is perhaps sensible that the 
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betweenness and eigenvector centralities are rather insensitive to differences in 
densities, even if neither is explicitly normed to adjust for the prevalence of ties. 
Betweenness values reflect the inter-connectivity, and eigenvectors the direct 
and indirect ties, both doing so regardless of the overall volume of ties, indeed 
both are presumably stabilizing with increased density as, by definition, the di-
rect connections increase, therefore leaving fewer indirect paths remaining, 
which affect both betweenness and eigenvector scores. Note that by comparison, 
these results almost suggests that social network analysts should introduce a 
normative adjustment for degree and closeness centralities to account for densi-
ty (not just network size) so as to tease out that confound from indices intended 
to reflect actors’ patterns of connections. 

Across the panels in Figure 4, it might seem odd at first that the means for the 
betweenness and eigenvector centralities are flat, whereas degree and closeness 
climb. Yet upon further consideration, the result makes sense. Let’s take degree 
and closeness first. For degree centralities, as density increases, the number of 
ties has increased for a fixed number of actors, hence the additional ties become 
distributed in some fashion across the actors, thereby boosting the degrees. Si-
milarly, closeness increases because with the additional ties, it becomes ever 
more likely that any dyad of actors becomes directly connected, thereby reduc-
ing the number of links of separation, thereby strengthening closeness. In con-
trast, betweenness centralities stay relatively constant, because these centralities 
reflect a particular structural formation, not simply the presence of a greater (or 
lesser) number of ties. If an actor lies between two groups, the actor is still the 
bridge through which the other connections must pass. Certainly as ties are 
added (i.e., density increases), one would expect there to be more direct connec-
tions between the two groups that had previously only the one actor serving as 
an intermediary conduit, so that is presumably a matter of proportions (i.e., size 
of networks, numbers of highly between actors, etc.). (It should be mentioned 
again that the betweenness centralities did indeed decline, albeit very modestly, 
from 0.03 to 0.006 for g = 50 actors, 0.01 to 0.003 for g = 100 actors, and 0.007 to 
0.002 for g = 150 actors. That is, the index behaved in the direction expected, it 
simply had not far to fall). Lastly, the eigenvector centralities appear flat, but this 
too is sensible in that the eigenvectors capture more explicitly than the other 
three centralities both direct and indirect ties, though here too, while the in-
creases are so slight that they are difficult to discern in the graphs, the eigenvec-
tor centrality values increased modestly presumably reflecting the influx of some 
additional direct ties (i.e., from 0.13 to 0.14 for g = 50 actors, 0.09 to 0.10 for g = 
100 actors, and 0.079 to 0.081 for g = 150 actors). 

4.1. Benchmarks: Expected Values 

These various results on fully random networks can be used to derive baselines 
for the purposes of comparing real network structures and determining the ex-
tent of the validity of the inherent patterns in the network ties. For example, for 
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the mean centralities depicted in Figure 4, we note that the points and seeming 
constancies across the panels (depicting varying network size g’s) are meaning-
ful. For symmetric, binary sociomatrices, we can easily derive an expected value 
for degree centralities for a network, in the mathematical statistical sense, as a 
function of its size (g) and density. Consider the formula for density, defined as 
the proportion of existing ties relative to all that might exist: 

( )
( )

1 1,# ties
#possible

De ity
1

ns
g g

iji j i x

g g
= = ≠

= =
−

∑ ∑
 

Given the formula for a degree centrality is: 

( )
1,

g

D ij
j i

C i x
= ≠

= ∑  

Then density may also be written as: 

( )
( )

1De sity
1

n
g

Di
C i

g g
==
−

∑ . 

Furthermore, note the mean degree centrality is:  

( )1

g
Di

D

C i
C

g
== ∑  

so: 

Density
1

DC
g

=
−

. 

Thus, if we have the mean centrality, dividing it by ( )1g −  yields density, or 
if we have a network’s density, we can multiply it by ( )1g −  to obtain the mean 
centrality. Note also that given the normed degree centrality is: 

( ) ( )
1

D
D

C i
C i

g
′ =

−
 

the mean normed centrality would be:  

( )1

g
Di

D

C i
C

g
=

′
′ = ∑  

So density may also be written as a function of the mean normed centrality. 
Specifically: 

Density DC= ′ . 

Thus, if we create a random network with density 0.7, say, then the mean of 
the normed degree centrality indices will be 0.7 also. In Figure 4, for each g = 50, 
100, 150, these relationships hold. That is, for random networks with densities of 
0.1, 0.3, 0.5, and 0.7, the mean normed degree centralities were also 0.1, 0.3, 0.5, 
and 0.7, respectively.  

As just previewed, now that this relationship has been established, its nature is 
rather intuitive—if the overall density is 0.7, then on average, one would expect a 
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degree centrality to be 0.7 if the network was a manifestation of only random 
sets of ties. If the network were real data depicting real network structures, pre-
sumably the set of actor degrees would vary from 0.7, some being lower and 
some higher as ties cluster around some actors but not others. 

4.2. The Chi-Square Test on Degree Centralities 

Next we create a chi-square calculation to compare real network data to a ran-
dom network to highlight the structural elements of the real network that is not 
shared by a random network (cf., [28] Watts and Strogatz, 1998). If centrality 
indices had known distributions, and were not, for example, dependent upon 
structures of non-independent tie configurations, then a network researcher 
could follow the usual statistical procedure of calculating a mean and standard 
deviation from the data to test a hypothetical value (or conduct bootstrapping to 
build an empirical distribution). However, given the lack of independence, the 
typical procedure is not directly applicable, yet the logic is still useful. Specifical-
ly, the random ties have no such structural connections, they are by definition 
independent, so they may serve as the effective statistical distribution against 
which real data may be compared to determine whether the real data are differ-
ent from the point of comparison, that is, structures of random networks.  

For example, let us begin with the case for degree centralities. Upon receipt of 
network data, a network modeler knows immediately the size of the network, g, 
and can easily obtain the density. From that, as just shown, the expected value of 
the normed degree centrality would be the density value (i.e., DensityDC′ = ), 
and the expected value of the raw (non-normed) degree centrality would be: 

( )Density 1DC g= − . That is, if the network showed no particular structure va-
rying across the actors, then each actor would have a degree centrality of ap-
proximately DC .  

These expected values can be used in the familiar chi-square test: 

( )
( )2

2
1

1

g
i i

g
i i

o e
X

e−
=

−
=∑  

where, ( )i Do C i= , i De C= , and 2X  would be distributed as (tested for sig-
nificance against) the 2χ  on ( )1g −  degrees of freedom. This statistical dis-
tribution is applicable given that the ties are binary, distributed Bernoulli indi-
vidually, summed to binomial and approximated by the normal distribution (the 
sum of squares being distributed chi-square; [29] Hogg, Tanis, and Zimmerman 
2015). 

As an example, consider the core-periphery network depicted in Figure 1. It 
has35 ties (70 1’s in its corresponding sociomatrix) and a density of 0.17, so the 
ei’s would be ( ) ( )0.17 1 0.17 20 3.40g − = = . The oi’s seen in Figure 1 are (in 
some order): 14 (1)’s and 7 (8)’s. The  

( ) ( ) ( ) ( )
2 2

2 1 3.40 8 3.40
14 7 14 1.694 7 6.224 67.282

3.40 3.40
X

   − −
= + = + =   
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compared to 2χ  on (21 - 1) degrees of freedom, yielding 0.0001p < , indicat-
ing that the actors’ degree centralities indeed vary significantly from a uniformly 
distributed expected degree as if the ties were random. 

Given that chi-squares are most applicable to frequencies, the raw, non-normed 
degree centralities should be used, as in the example just shown. If a network re-
searcher wished to work with the normed degrees, it is easy to show that the 

2X  would merely need to be scaled up by multiplying the normed 2X  by 
( )1g − , obviously to cancel the effect of the norming having previously divided 
by ( )1g − . That is, ( )2 2

normed1X g X= − . 

4.3. Follow-Up Tests to the Chi-Square 

Given that the chi-square statistic is comprised of the sum of squared elements 
each of which is distributed as a z-statistic ([30] Haberman 1973), we may also 
use the micro, actor-by-actor level of information as well. Specifically, the  

standardized residuals, i i

i

o ez
e
−

=  (each piece to be squared in the chi-square  

formula above) may be compared to a z-distribution, e.g., for 95% confidence 
level at ±1.96. To continue with the core-periphery example just analyzed, any of 
the actors with a degree centrality of “1” (namely those in the periphery) would 
be deemed not significantly different from what a random network would yield, 
because  

1 3.4 1.30 1.96
3.4

z −
= = − > − ,  

whereas the actors with degrees of “8” (that is, those in the core) have centralities 
that significantly exceed those which would result from a random network: 

8 3.4 2.49
3.4

z −
= = ,  

which exceeds 1.96. Obviously real networks will have finer gradations of degree 
centralities, and each observed degree centrality value can be tested in this man-
ner. 

4.4. Expected Values for Closeness, Betweenness, and Eigenvector  
Centralities 

Expected values are more challenging to derive analytically for closeness, bet-
weenness, and eigenvector centralities, however, they are easily obtained empir-
ically, through the generation of numerous random networks, for fixed g’s and 
densities. To do so, we generated 100 random networks each for 15 levels of va-
rying g (10, 20, 30, …, 150) and 9 levels of density (0.1, 0.2, …, 0.9). The means 
for the standardized degree, closeness, betweenness, and eigenvector centralities, 
as well as their standard deviations, were obtained.  

Rather than presenting 15 × 9 tables of reference values, those values were 
submitted to regressions to replicate the tabled findings and also to allow for es-
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timates of expected centralities for g’s or densities not tabled, such as g = 27, or 
134, etc. Thus we used the results as a database in which we regressed the aver-
age degree (or closeness, or betweenness, or eigenvector) centrality against the 
predictor factors of g and density. The resulting equations appear in Table 2. 
Note that for most predictions, we added another predictor, the natural log of 
the number of actors, because the regressions without these terms had shown 
relatively large residuals for extreme values of the predictors. (The number of 
actors and its log were not significant contributors to the predictions for degree 
centralities, hence they are not included in the equations).  

It is not surprising that the R2 for degree centrality is nearly perfect, given the 
analytical solution shown previously (indeed this empirical approach was not 
necessary for degree centralities, given the explicit analytical solution just pre-
sented). The R2 for eigenvector and betweenness centralities are high enough to 
suggest that the equations can be useful.  

The R2 for the closeness centralities is very weak, so those forecasts should be 
considered very approximate. We sought better predictive models for closeness, 
and obtained increases in R2 to levels of 0.3 and 0.4, but the models seemed 
convoluted, e.g., adding predictive terms such as g2 (in addition to ( )n g

), or  
 
Table 2. Formulas for obtaining expected values.  

 Degree* Eigenvector Closeness Betweenness 

 b p b p b p b p 

Intercept −0.00063048  0.50379  1.74651  0.14623  

g   0.00059528 <0.0001 0.00458 0.009 0.00030033 <0.0001 

density 1.00082 <0.0001 0.01969 <0.0001 0.28678 0.004 −0.02882 <0.0001 

( )n g    −0.10348 <0.0001 −0.36897 0.0003 −0.03423 <0.0001 

R2 0.9999  0.9635  0.1789  0.7116  

As an example of using these equations, a network with 30g =  actors and 25% density would yield ex-
pected values of betweenness centralities of 0.03 (read the table above within a column):  

( ) ( ) ( )( )
( ) ( ) ( )

Expected Normed Betweenness Centrality

0.14623 0.00030033 0.02882 density 0.03423

0.14623 0.00030033 30 0.02882 0.25 0.03423 3.4012
0.031612

g n g= + − −

= + − −

=



 

The network’s actual (normed) betweenness centralities may be compared to that expected base. Say there 
were 10 actors with betweenness centralities of 162.4 (normed betweenness of 0.4), 10 actors with between-
ness centralities of 81.2 (normed at 0.2), and 10 actors with betweenness centralities of 0 (normed at 0.0). A 
X2 may be calculated: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 0.4 0.03 0.2 0.03 0.0 0.03
10 10 10

0.03 0.03 0.03

10 4.563 10 0.963 10 0.030 45.63 9.63 0.30 55.56

X
     − − −

= + +     
          

= + + = + + =

 

On ( )1 29g − =  degrees of freedom, the critical value of chi-square is 2 42.56χ = , which the observed X2 

value exceeds; alternatively, the observed chi-square yields a probability value of 0.002. That is, for this hy-
pothetical scenario, the set of 30 actors’ betweenness centralities are significantly different from the values 
of betweenness that would be expected for a network with a random distribution of ties among 30 actors 
with 25% ties present. *Given the analytical derivation for expected degree, this prediction equation would 
be simply of the form: Expected Normed Degree Centrality = 1.0 (density). Expected centrality values may 
be calculating using the spreadsheet available from the authors or the SAS code in the Appendix. 
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the interaction between the number of actors and ties, but these terms were not 
significant. There was one outlier observation: for a normed closeness of 1.0, the 
standardized residual was very large, 3.0, but we did not delete that observation, 
because statistically speaking these random samples were as likely as any other 
random samples, and to purify the results in this manner seemed arbitrary and 
potentially misleading. Next, given that closeness centralities reflect distances, in 
a manner not true of degree, eigenvectors, or even betweenness, we sought al-
ternatively to model the raw, non-normed closeness centralities (on the same 
network data) and were more successful: the regression equation,  

( )0.279 0.00084 0.0075density 0.0776g n g+ − −  , 

resulted in an 2 0.562R = . The coefficient for density was not significant, and the 
reduced model, ( )0.275 0.00084 0.0776g n g+ −  , fit nearly as well, 2 0.559R = , 
certainly better than the R2 for the normed closeness values. Still, it seems rea-
sonable to conclude that predicting expected values for closeness needs further 
study. 

The formulas in Table 2 may be used to calculate the values for degree, bet-
weenness, and eigenvector centrality indices on a network with random ties (and 
more tentatively for closeness centralities). A network with no apparent in-
ter-connected structure can serve as a useful benchmark, against which a real 
network should show significantly greater structure. Table 2 contains an illu-
stration of calculating the centrality indices for actors in a random network of 30 
actors with 25% density. The expected values are then compared to the real cen-
tralities for the actors in such a network, and a chi-square is calculated to deter-
mine whether the observed centrality scores simply fall within the realm of ran-
dom values, or do they exceed the lower and upper bounds of the random value 
to express significant network structures.  

Table 3 illustrates still another use of these random network benchmark sta-
tistics. The table shows how to calculate confidence intervals for the centrality 
indices. Having obtained a confidence interval, of say [2.3, 13.9], a network re-
searcher may compare the real network data centrality vector, say [1, 2, 3, 3, …, 
12, 13, 15, 24, 27]. In this scenario, the observed centralities of values from 3 to 
13 are contained in the confidence interval, indicating the actors whose centrali-
ties are not significantly different from those that would be expected if the net-
work ties were simply random. The values 1 and 2 and 15 or greater fall outside 
the confidence interval, indicating these actors’ patterns are distinct from ran-
dom variability on network inter-connections. That is, for some reason the net-
work researcher would investigate, the actors with only 1 or 2 or 15 or more ties 
are different from the others. The actors with centralities between 3 and 13 may 
still be interesting for other reasons, such as their forming cliques or equivalence 
blocks, but their volume of centralities are not particularly distinctive from net-
works of random collections of ties. Also note that the network researcher would 
conclude that overall, the network pattern was significantly different from a 
random network (just not the inner set of actors with values 3 to 13). A random  
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Table 3. Formulas for obtaining confidence intervals. Step 1: Calculate Expected 
Value, EV (from the appropriate equation in Table 2); Step 2: Calculate Ex-
pected Standard Deviation, ESD (in the following table); Step 3: form 95% con-
fidence interval as ( ) ( ) ( )( )1 , 2 1 1gEV t ESD gα−± − . 

 Degree Eigenvector Closeness Betweenness 

 b p b p b p b p 

Intercept 0.26271  0.27074  2.35759  0.18596  

g 0.00038748 <0.0001 0.00054664 <0.0001 0.00473 0.11 0.00050449 <0.0001 

density   −0.06384 <0.0001 −0.67384 <0.0001 −0.03206 <0.0001 

( )n g  −0.05663 <0.0001 −0.06160 <0.0001 −0.53919 0.002 −0.04801 <0.0001 

R2 0.8511  0.7338  0.2472  0.6403  

To continue with the example of a network with g = 30 actors and 25% density, and an expected value for 
betweenness centralities of 0.03 from Table 2, the expected value for the standard deviation on the bet-
weenness centralities would be: 

( ) ( ) ( )( )
( ) ( ) ( )

. . 0.18596 0.00050449 0.03206 density 0.04801

0.18596 0.00050449 30 0.03206 0.25 0.04801 3.4012
0.29788 0.3

S D g n g= + − −

= + − −

= =



 

A 95% confidence interval is then calculated: 

( ) ( ) ( ) ( ) ( )
[ ]

29 ,.0250.03 0.3 1 29 0.03 2.36 0.3 1 29

0.03 0.00244 0.027559,0.32441

t± = ±

= ± =
 

If the observed normed betweenness centralities were once again, ten 0.4’s, ten 0.2’s, and ten 0.0’s, we could 
conclude that the actors with 0.4’s had significantly greater betweenness scores, and the actors with 0.0’s 
had significantly lower betweenness centralities, than would be expected for a network with a random dis-
tribution of ties among 30 actors with 25% ties present. The actors with betweenness centralities of 0.2 had 
scores within the bounds of what would be expected in a random network. Confidence intervals may be 
calculating using the spreadsheet available from the authors or the SAS code in the Appendix. 

 
network would contain all of its centrality values within the span of the ran-
dom-derived confidence interval. A real network will very likely contain many of 
its centralities therein, but the difference is that some centralities will fall outside 
the bounds of the confidence interval.  

The different states of the actors’ centralities may be correlated with other in-
formation. Actors who have significantly lower or higher centralities may be of 
one political party affiliation, gender, ethnicity, or attitude compared to actors 
whose centralities fall in the span of random values. That is, these inferential 
tests allow networks researchers to draw conclusions beyond simply which ac-
tors are significantly different, but in conjunction with other explanatory va-
riables, the distinctions and variability may be explained. 

This investigation considered the usefulness of random networks, whereby the 
lack of structure provides a beneficial baseline to determine a stochastic likelih-
ood of substantial structure over random structure. Study 2 used wholly random 
networks of varying size and densities to derive expected values, with a combi-
nation of analytical and empirical derivations. Illustrations of the calculation of a 
chi-squared statistic on the expected values, and confidence intervals using the 
expected values and their standard deviations, were also provided. 

For convenience, software for calculating expected values of centralities as in 
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Table 2, or confidence intervals as in Table 3, is available from the authors in 
the form of Excel spreadsheets. In addition, the Appendix contains the SAS code 
for obtaining both expected values and confidence intervals. 

The establishment of expected values, the chi-square tests, the z-score fol-
low-up tests, and the confidence intervals are all important contributions to con-
tinue building on the inferential arm in the social network analysis literature. 
For both the network scholar and for the scholar’s intended audience, tests of 
hypotheses enable conclusions about what effects in the network are “real” in a 
manner offered with greater statistical confidence than the presentation of 
merely descriptive statistics. 

5. Discussion 

This research considered four key centrality indices: degree, closeness, between-
ness, and eigenvectors. Study 1 began with forms of stylized networks expected 
to exemplify conditions under which specific particular sensitivities of the four 
centralities should be clearest. Depending on the nature and content of the rela-
tional ties, some centrality indices seem more applicable or meaningful than 
others. As noise was added to the network ties, any distinctiveness was erased to 
the point that the average centrality indices converged across the network struc-
tures. This observation was suggestive, thus Study 2 focused on networks com-
prised entirely of random ties.  

Study 2 focused on fully random networks. The examination of random ties 
allowed for the development of several comparative benchmarks. First, expected 
values were derived analytically for degree centralities and empirically for close-
ness, betweenness, and eigenvector centralities. The accuracies of the between-
ness and eigenvector centrality estimators (and of course, degree) were at rea-
sonably acceptable levels, but further research will be required to clarify the 
closeness estimators. Future research can also envelop non-binary and directed 
ties.  

The expected values then enabled further tools for inferential tests of network 
structures, including first the chi-square test and its follow-up analyses for the 
micro-level examination, actor by actor to establish whether a set of actor cen-
tralities exceeded random patterns. Next, standard deviations were derived, which 
allowed for the construction of confidence intervals, similarly for the purpose of 
testing and demonstrating whether a set of observed centralities fell within the 
realm of random parameters or were significantly different from random, the-
reby indicating their more systematic and substantial patterns and natures. 

In any given real network, many centrality values will be near the expected 
values, but the network as a whole would not be considered random unless all 
values were near their expected values, with none being statistically different. In-
stead, when actors’ centralities are significantly different from values expected in 
random networks, researchers can be confident that there is indeed something 
structurally interesting about those actors. Furthermore, those differences may 
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be investigated to learn whether the different classes of actors (significantly low-
er, significantly higher, or random levels of centrality indices) are correlated 
with or explained by independent variables of theoretical interest to the network 
scholar. 

This research builds further on the literature for inferential methods for ana-
lyzing social network data. Many centrality indices were originally created as de-
scriptive statistics, without accompanying statistical distributions to test the signi-
ficance of their observed values. The statistics offered in this paper were derived 
using random networks that served conceptually as a comparison. Observed 
centrality indices may now be tested against those standards to test the hypothe-
sis as to whether the apparent network structure is random, or the pattern of ties 
is connected in a more meaningful way. Descriptive statistics are certainly in-
formative, however an inferential approach goes a step further in allowing hy-
pothesis testing about network structure, in turn enabling conclusions based less 
on subjective judgment and more on stronger grounds of statistical confidence. 

We believe these techniques are easily implemented (see the Appendix). We 
hope they lend complementary insight to understanding actors in social network 
data. 
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Appendix 

SAS Code to Generate Expected Values and Confidence Intervals for Degree, 
Eigenvector, Closeness, and Betweenness Centralities  

prociml; 
g = 30; *<-- enter number of actors, g, here; 
density = 0.25; *<-- enter density (or approximation) here; 
degree = 1.0 × density;  
print “expected degree” = “degree”; 
eigenv = 0.50379 + (0.00059528 × g) + (0.01969 × density) − (0.10348 × 

(log(g)));  
print “expected eigenvector” = “eigenv”; 
closen = 10.74651 + (0.00458 × g) + (0.28678 × density) − (0.36897 × 

(log(g)));  
print “expected closeness” = “closen”; 
between= 0.14623 + (0.00030033 × g) − (0.02882 × density) − (0.03423 × 

(log(g)));  
print “expected betweenness” = “between”; 
sdd = 0.26271 + (0.00038748 × g) − (0.05663 × (log(g))); 
sde = 0.27074 + (0.00054664 × g) − (0.06384 × density) − (0.0616 × (log(g))); 
sdc = 20.35759 + (0.00473 × g) − (0.67384 × density) − (0.53919 × (log(g))); 
sdb = 0.18596 + (0.00050449 × g) − (0.03206 × density) − (0.04801 × (log(g))); 
lowcid = degree − (sdd × (1/(g−1)) × (tinv(0.975, (g−1))));  
hicid = degree + (sdd × (1/(g−1)) × (tinv(0.975, (g−1)))); 
lowcie = eigenv − (sde × (1/(g−1)) × (tinv(0.975, (g−1))));  
hicie = eigenv+ (sde × (1/(g−1)) × (tinv(0.975, (g−1)))); 
lowcic = closen − (sdc × (1/(g−1)) × (tinv(0.975, (g−1))));  
hicic = closen + (sdc × (1/(g−1)) × (tinv(0.975, (g−1)))); 
lowcib = between − (sdb × (1/(g−1)) × (tinv(0.975, (g−1))));  
hicib = between + (sdb × (1/(g−1)) × (tinv(0.975, (g−1)))); 
print “95% Confidence Interval for Degrees”: “ lowcid” to “hicid”; 
print “95% Confidence Interval for Eigenvector”: “lowcie” to “ hicie”; 
print “95% Confidence Interval for Closeness”: “lowcic” to “hicic”; 
print “95% Confidence Interval for Betweenness”: “lowcib” to “hicib”; 
quit; run; 
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