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Abstract 
In this article, we are initiating the hypothesis that improvements in short term energy load fore-
casting may rely on inclusion of data from new information sources generated outside the power 
grid and weather related systems. Other relevant domains of data include scheduled activities on 
a grid, large events and conventions in the area, equipment duty cycle schedule, data from call 
centers, real-time traffic, Facebook, Twitter, and other social networks feeds, and variety of city or 
region websites. All these distributed data sources pose information collection, integration and 
analysis challenges. Our approach is concentrated on complex non-cyclic events detection where 
detected events have a human crowd magnitude that is influencing power requirements. The 
proposed methodology deals with computation, transformation, modeling, and patterns detection 
over large volumes of partially ordered, internet based streaming multimedia signals or text 
messages. We are claiming that traditional approaches can be complemented and enhanced by 
new streaming data inclusion and analyses, where complex event detection combined with Web- 
based technologies improves short term load forecasting. Some preliminary experimental results, 
using Gowalla social network dataset, confirmed our hypothesis as a proof-of-concept, and they 
paved the way for further improvements by giving new dimensions of short term load forecasting 
process in a smart grid. 
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1. Introduction 
A smart grid is an advanced electricity transmission and distribution network that utilizes information, commu-
nication and control technologies to improve economy, efficiency, and security of the grid [1] [2]. We were 
witnesses of tremendous development and improvement of electrical distribution systems during the last decade. 
The governments as well as electricity distribution companies are keen to improve the automatic control and to 
provide the seamless integration of the various new elements in the smart grid. Distributed generation of elec-
tricity is replacing the traditional centralized electricity generation [3]. This trend is enhanced in particular by 
ever increasing ecological awareness in the modern society and recent technological advancement in the elec-
tricity generation systems. The internal combustion engines, gas turbines, micro-turbines, photovoltaic, fuel cells, 
and wind power turbines can be found all together in a relatively small geographical region (such as micro-grid 
on Figure 1) to be used as a complement to the classical electrical energy supply system. 

In the Figure 1, one can see the graphical presentation of the complexity of the hypothetical islanded smart 
grid. On the left side of Figure 1, different consumers are presented together with the smart meters and distri-
buted intelligence (DI) needed for the collection of the appropriate data from the customers. In the middle part, 
distributed generation is presented together with the low voltage transformer substations and the customers like 
electric vehicles who are not fixed to the single position or to the one single area. On the right side, Control Mi-
crogrid 1 is presented where the data for that particular micro-grid are processed for optimal match of the distri-
buted generation and consumption in the islanded smart micro-grid. Control Microgrid 2 is needed as well as a 
control of more than one islanded micro-grids connected into the smart grid. 

We can talk about the concept of smart grid only if the management of the grid is supported by advanced au-
tomated solutions using information technology supported by applied math. Data generation in smart grids has 
grown exponentially, and new challenges in organizing and analyzing these big data are to be faced to efficient-
ly optimize smart grids. These data include production levels, loads, price information and others, and they are 
collected at regular short time intervals (usually up to half an hour intervals). Traditional energy forecasting 
systems dispose with other types of data which are influencing consumption or production of electrical energy. 
Such data include outdoor temperature, humidity, social events, geographical differences, demographic informa-
tion, traffic intensity and day of the week. Also, it is clear, based on previous analyses, that the load demands 
have multiple patterns including seasonal, daily and weekly periodicity. Besides that, the load level during the 

 

 
Figure 1. Islanded smart micro-grid example [3]. 
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weekends and holidays is lower than that of the working days, which leads to conclusion that the load demands 
are highly influenced by the calendar days [4]. 

In general, forecast relies on historical consumption data to determine how much power a consumer (or group 
of customers) may require. Forecasting on a level of smaller geo-locations is obviously more difficult due to va-
riability of human behavior. Because of a complexity and the amount of data, forecasting problem may be clas-
sified as big data problem requiring new approaches to computing [5]. The techniques from different fields, such 
as artificial intelligence, high performance computing, data mining, simulation and stochastic modeling, are em-
ployed for the development of forecasting subsystems on a smart grid. 

Accurate load forecasting enables a utility provider to plan the resources and control actions balancing the 
supply and the demand of electricity. However, short term load forecasting (STLF) is a difficult task because 
energy consumption is influenced by many factors such as weather conditions, daily, weekly or seasonal cyclic 
characteristics, special events, economy status, patterns of behavior for different consumer types, and habits of 
individual customers. Current short term forecasting models for smart grid primarily combine factors such as 
power usage data, weather forecast, time-related cyclic patterns, and some demographics data. A variety of 
modeling techniques have been applied with different levels of success including autoregressive integrated 
moving average (ARIMA), fuzzy-logic and neuro-fuzzy methods, artificial neural networks such as radial basis 
function neural network (RBFN), and recently support vector regression methodology (SVR). 

One-size-fits-all models are gone for the utility forecaster. To improve forecast performance, reduce uncer-
tainties and generate value in the new data-intensive environment, forecasters must be able to decide which spe-
cific factors affect the load, and what are their characteristics in time and space? For example, spatiotemporal 
load profiles are analyzed in Finland, where characteristics for different regions in the city of Helsinki are ob-
tained, and one illustrative example is given in the Figure 2 [6]. Graphs show that power demand peaks in the 
city center are at noon or in the early afternoon, whereas in the outer suburbs of the city with high share of resi-
dential buildings, the peak occurs around 7-8 pm. 

 

 
Figure 2. Spatiotemporal load for Helsinki in early February: (a) 2-3 am; (b) 11-12 am; (c) 7-8 pm; (d) Peak load for the 
day [6]. 
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In this article, we present a new approach for predicting spatiotemporal, short-term power demands in a form 
of function P(x, y, t), where (x, y) are coordinates of the micro-grid or a smaller location while t is a discrete 
time [6]. The power demand P is affected by a large set of: 
• “traditional“ factors, such as type of consumer, human behavior, cultural factors, time of year and weather 

conditions, but also 
• “non-traditional” factors, such as social and sport events in the region, outage logs, etc. 

Social networks on the Web and the other Web-based apps may be a primary source of data related to 
“non-traditional” factors. They could significantly improve short term load forecasting especially in the situation 
where the emphasis is on peak load detection. 

2. Related Work 
Traditional approaches in STLF are based on so-called “the similar day method”, where the task is to find a day 
in the history that is similar to the forecasted day. The similarity is usually based on day of the week, season of a 
year, and the weather patterns. While the similar day method is one of the earliest methods being applied to load 
forecasting, even today, many system operators are still having the load and temperature profiles of the repre-
sentative days hanging on the wall of the operations room [7]. Modern similar day method is often implemented 
using some clustering techniques. Instead of one similar day, the algorithms may identify several similar days or 
similar segments of a day, and then combine them to obtain the forecasted load profile [7] [8]. 

New load forecasting models in the smart grid era take advantages of modern automatic metering infrastruc-
ture, information technology, and advancements in atmosphere science. Most of load forecasts were made using 
one of three categories of methods: trending, simulation, or hybrid approaches [9]. Trending methods use a ma-
thematical function to fit the past load growth and then extrapolate to the future load. Many research studies as-
sume the electricity loads as the time series. Even the naïve, direct approaches, analyzing trends, cycles and er-
rors of the time series, are considered as a part of a trending class [7]. More complex methods use the Artificial 
Neural Networks [3] [10] [11], and specifically developed statistical methods [12] [13]. Recently, in [14], the 
authors are using statistical learning theory, and they develop the prediction method based on the support vector 
regression. More complex methods show better performances, but at the same time they are often more time- 
consuming. Today, the most common approaches include multiple regression, ARIMA technique, support vec-
tor machines, fuzzy logic systems, or artificial neural networks, in which the load history is made a function of 
trend terms [7] [10] [11]. The advantages of machine learning based methods include ease of use, simplicity, 
and a short-range response to recent load-growth trends. But, many utilities are simply not comfortable or not 
allowed to use these black-box models for forecasts in everyday practice. Despite how fancy the models are, 
they are not useful for businesses because the explanations are weak and often not available [9]. 

New extended data sources support improved load forecasting models using machine learning techniques. 
These sources generate data such as: hourly/daily load history at end user level, hourly weather history at 
weather stations, demographic and economy information, industry code mapping, outage logs, and energy sys-
tem loss information [5] [15]. Additional attributes may include the effects of varying sunrise and sunset times 
which determine when domestic and street lighting are used. Weather data may be extended with cloud cover, 
humidity, visibility, and precipitation [16]. Modeling repetitive patterns and some aspects of seasonality, in-
cludes techniques which determine how loads during different holidays and their surrounding days are being al-
tered to better reflect the holiday load profiles. For example, in New England area Independence Day may be 
modeled as typical Sunday, while Thanksgiving Day is most similar to Saturday [9]. A comprehensive short 
term load model should make a distinction between three classes of electricity customers: residential, commer-
cial, and industrial customers [5] [8] [9]. Residential customers have the most weather responsive electricity 
consumption behavior. Although the load of an individual residential customer can be quite stochastic (Figure 
3), residential load aggregated in a micro-grid is more predictable than the loads of other customer classes. 

Load forecasting for small commercial customers is similar to residential load forecasting, because small 
commercial customers usually have close response to weather. In addition to weather, most large commercial 
loads are significantly affected by the business schedules. Also, some of them have strong seasonal patterns. For 
instance, the load of hotels in a vacation area is mainly affected by tourism demand during holiday seasons, 
while the load of hotels in central business districts responds to the local economy and major conferences [9]. 
Additional illustrative example is the load of education institutions which also has its own characteristics and 
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patterns. For instance, many students stay up late studying. Therefore, daily peaks of student dorms often occur 
close to midnight. At annual level, education institutions follow academic calendars. The load level is recogniz-
able low during academic holidays. 

Most of the previous methodologies assume that the data, directly originated from the smart grid, is comple-
ment with the outdoor temperature and sometimes with the data about the humidity, or type of the day, and they 
are used together for load forecasting. For example, in [12] there is a use of humidity, sunrise and sunset times 
beside the temperature. In [14] the authors used the temperature and humidity, while Figure 4 clearly shows the 
correlation and interdependence between the electrical load and the outside temperature over the period of 300 
days. The authors in [13] use price-incentive signals together with weather projections for STLF (in the presence 
of wind turbine which efficiency can be forecast for few hours to few days). Lately, the promising results are 
achieved with a kind of disaggregation of the load forecasts among costumers, and their later recombination at 
several levels: forecast the integrated loads for a day and thereafter predict hourly consumption [11]. All data 
necessary for STLF are not collected only by energy industry. Similar to other utilities, STLF system can “bor-
row” data from external sources to perform the analyses. Typical sources include national survey conducted by 

 

 
Figure 3. Diverse daily load profiles of residential customers [8]. 

 

 
(a)                                          (b) 

Figure 4. Correlation between load and temperature is very high: 0.83 [7]. (a) Load data during 10 month period; (b) Tem-
perature during the same 10 month period. 



M. Kantardzic et al. 
 

 
124 

the government, case studies performed by consulting firms, public reports from other utilities, and academic 
publications [8]. Many other outside factors such as price of energy, social and other events, in the stronger or 
weaker manner influence the electrical consumption, and can be used for the prediction of electrical loads. 

The impact of human activities to energy consumption can be realized in several aspects. In the hourly resolu-
tion, the impact varies over the calendar variables including day of the week, and/or month of the year. In the 
long-term monthly or quarterly resolution, the impact varies on different economic conditions. For instance, 
during the year of 2009, which is the early part of a recession in US, the energy consumption of US is lower 
than that of 2008, because people were using power more conservatively, and lots of businesses were closed 
[17]. 

A STLF model very often includes the loads of some preceding hours as part of the inputs, which captures the 
autocorrelation of the current hour load and the preceding hour loads. But the problem is that there are some 
outliers/peaks in the load, which are not detectable by standard approaches [17]. Outliers’ removal by averaging 
peaks is not improving short term forecasting. On the contrary, losing the information about short term local 
peaks, the predictive system is not performing one of its main STLF tasks; peak control. Our research and the 
proposed methodology make emphasis on a detection and successful forecasting of these short term, irregular 
peaks. 

3. Short Term Load Forecasting Using Web-Based Social Network and Event  
Schedule Information 

Recent activities and publications show that a great amount of effort is invested in the research of load forecast-
ing [4] [8] [10] [15] [18]. Main results include some applications targeted the load forecast for big, national 
electric energy network where the aggregation of the load is based on over millions of users. The appearance of 
the smart grid, where the islanded mode of operation is favored, changed completely the perspective, and direc-
tions of research and applications [10]. The interest is shifted towards the sub-grid network of at most several 
thousand consumers (industrial, commercial, residential, apartment buildings, sport venues etc.), where different 
types of aggregation came to the stage. Figure 1 presents one such islanded smart micro-grid where the produc-
tion, the consumption, and the control and management are localized to the narrow geographical area. Only a 
fraction of consumed energy is supplied from outside a micro-grid. Reduction in space, is also followed by re-
duction in time. Long-term forecasting methodologies are followed with more medium-term, and recently even 
short-term load forecasting approaches (STLF—for the length of period going maximum up to one day). 

This research is primary interested in the STLF methodology for the islanded smart grid with up to several 
thousands of users. Short term load forecasting (STLF) in that framework has several characteristics we have to 
take care when we are developing a new modeling methodology [15] [18]: 
• Large volume of data, because many regions today have been storing hourly load for years. 
• Requirements for high quality of data due to the maturity of the metering technology. Most outliers are 

physically explainable, such as system outages, sudden demand response activities, etc.  
• Multiple patterns of seasonality, such as: hours in a day, days of week, and months of a year.  
• Load is highly dependent on several input variables, including high correlation to the local temperature due 

to space heating and cooling needs.  
• High accuracy requirements are established for STLF system applicability. For example, it is expected that 

MAPE (Mean Absolute Percentage Error) for hourly forecast in one day is <5%.  
• Societal necessity support—improvements in STLF quality can help system reliability and energy efficiency, 

which means less outages, reduction of cost, and in general greener environment. 
The data-rich smart grids offer new opportunities to optimize their management more efficiently. There is a 

huge set of new, innovative input variables influencing the smart grid model, sometimes in a very complex way. 
The importance of better short term load forecasting is recognized, and it should include new real time data 
sources supported by new methodologies, and sometimes even totally new approaches. Regardless of the me-
thod applied, one important issue of STLF is the selection of input features from a large pool of candidates. 
Many input features, such as historical loads with different time lags, meteorological factors, and calendar in-
formation, have been widely examined in the load forecasting literature [4]. Comprehensive analyses show that 
some of them might be redundant or even irrelevant to a specific STLF problem. Therefore, an effective and ef-
ficient feature selection approach that is able to identify the best predictive subset of features by eliminating 
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noisy, irrelevant, and redundant features without degrading the performance of the model is highly needed. 
The days of one-size-fits-all models are gone. To improve forecast performance, reduce uncertainties and 

generate value in the new data-intensive environment, forecasters must be able to decide which model, or com-
binations of models, is best. In addition, they must be able to determine relevant indicators that affect load [4]. 
Many energy forecasting papers reported amazingly low errors, but failed miserably in practice [9]. To further 
advance our predictive system, we have to take an interdisciplinary approach by involving various communities, 
such as statistical forecasting, artificial intelligence, meteorological science, and power engineering, but also so-
cial science which is becoming more important with the development of internet-based social networks. 

We are proposing an integrated forecasting framework with the concentration on the short term load forecast-
ing (STLF) engine that can easily be linked and extended to various other forecasts. One of the most important 
goals of short term energy demand forecasting is to accurately predict the occurrence of peak loads—a situation 
where the demand for power goes beyond the current power generation capacity. Traditionally energy demand 
has been often cyclical, with load patterns observed across a 24 hour period for different types of users (com-
mercial, industrial, and residential), and easy recognizable seasonal patterns seen across a calendar year. The 
current STLF models for Smart Grid primarily combine power usage, weather forecast and sometimes demo-
graphics data where numerous sensors in smart appliances and smart meters are under deployment to monitor 
continuously power use activities [1]. Improvements to power information systems rely on data from existing 
and new information sources generated outside the power grid from other relevant domains—weather, real-time 
traffic, schedule of large events and conventions, equipment duty cycle schedule, data from call centers, Face-
book and Twitter feeds, city websites, other social networks, and so on [19]. All these distributed data sources 
pose information integration and analysis challenges. The problem space is affected by the dynamic nature of 
information present within this environment. For example, as people migrate within the city because of some 
important events, prior load forecast models will need to adapt. We are exploring two important aspects related 
Smart Grid data: 

1) streaming data collection, processing and analysis, and 
2) complex event detection, 

both applicable in the field of short-term energy demand forecasting. This means that both, the algorithms used 
for data mining, as well as the information sources used, will need to change and adapt over time. The ability of 
the system to continuously learn and rapidly incorporate new information sources and predictors will be essen-
tial. Predictive models should be responsible for handling different types of irregularities in the input data. The 
problem is that some input data which are source of irregularities are not used to build the model. Usually, in 
current models, these effects are interpreted as outliers or random peaks, which are removed to “improve the 
model” [5]. Therefore, we have to revisit the issue of outlier removal which are correct measurements, with 
useful information that we wrongly excluded [16]. 

The technologies that will enable these tasks assume scalable data mining and complex event processing sys-
tems that accept continuously data from distributed sources and detect emergency situations based on defined 
policies. The system should be smart enough to filter out noise from distributed multimedia data and present 
only information and patterns that are relevant to the current energy consumption. A variety of distributed 
streaming data, collected from numerous of traditional or non-traditional sources, should be included in the con-
text of energy demands analysis and prediction [1]: 
• Real Time Consumption—data collected from smart meters and other currently available Smart Grid mea-

surement equipment in the area, 
• Infrastructure Information—information about the power grid network interconnectivity, together with 

building structures, building orientation, and equipment installation, 
• Natural Conditions—weather and seasonal changes at different spatial and temporal scale, 
• Customer Behavior—collected data that helps in understanding customer power usage patterns including 

analysis of customer demographics, social networks roles, adopters of new tools, person’s action influence, 
etc., 

• Schedule Information—scheduling information provides knowledge about a future occurrence of differ 
events ahead of time. This information enables estimation of the demand at the particular region based on the 
type of event scheduled, as well as on the number of people (the size of a crowd!) expected to turn up for the 
event. Schedule information about individual people as well as facilities may be useful, but they require 
much more complex information infrastructure to collect and process all data [1] [2]. 



M. Kantardzic et al. 
 

 
126 

Complex event detection deals with computation, transformation and pattern detection in time and space over 
large volumes of partially ordered streaming multimedia signals, structured records, or text messages [20]. This 
approach has been used successfully in financial services industry to detect stock trading patterns or as a support 
for supply chain management systems. Several vendors such as Oracle, Microsoft have developed integrated 
software products to support event detection [20] [21]. The main idea is that traditional approaches can be com-
plemented by data driven dynamic algorithms that integrate multiple streaming data, locate patterns among a 
large class of real-time information, and predict usage trends and peak occurrences. We are proposing a novel 
dynamic prediction technique which should be implemented as additional modules in the integrated short term 
forecasting system. This extension will enable a finer control of power use. For example, announcing and sche-
duling of a massive convention in the area, blog postings about the concert of a famous entertainer in a local 
concert hall, or referencing a public holiday, all can affect power usage in a city, a region, or a micro-grid. Pre-
diction algorithms should recognize and locate patterns using a large class of historical and real-time informa-
tion, and adjust dynamically models used to predict power usage [22]. Complex event detection combined with 
Web-based technologies is a promising solution to dynamic demand forecasting and our proposal for modified 
architecture of a forecasting system from [2] is presented in Figure 5. 

Figure 5 summarizes and schematically presents proposed approach where the social network data and event 
schedule information are used to adjust and refine the forecast for the peak loads. The main novelty in the pro-
posed research is the proof of the ability to improve STLF system by integrating text-based information availa-
ble on the Web with a streaming real-time data about energy consumption and weather condition. Using ma-
chine learning techniques in the modeling phase we expect to prove the advantages in use of dynamic, Web- 
based, multimedia data for modeling in load forecasting. 

 

 
Figure 5. Overview of the proposed load forecasting scheme (modified from [2]). 
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Highlighting and better understanding the process of peak load detection may significantly improve prediction 
results. Let’s illustrate the problems with a simple illustrative example. Standard average value as a smoothed 
replacement for peak occurred in Figure 6 part F1, may not be adequate measure for assessing a forecast in time. 
We have to take care about regular peaks, which are relatively easy detectible, but also about irregular behavior 
which is most difficult to detect. The hypothetical forecasts, illustrated with dashed lines, consist of a flat fore-
cast (F1) (corresponding to the average usage) and a single peak forecast centered around three different times 
(F2-F4), with the correct background usage. In the context of using the forecasts to reduce the peak demand, F2 
is a very good forecast, F3 is reasonable, and both F1 and F4 are poor. 

Any successful forecast method requires a degree of flexibility in the spatial/temporal positioning of the peaks 
[23]. Selection of input features plays an important role in developing models for short-term load forecasting 
(STLF) which includes irregular peak detection. Since electric power loads often exhibit nonlinear and non-  
stationary dynamics over time, various factors such as climate factors, social activities and seasonal factors 
should be explored for accurate electricity load forecasting [24]. 

4. Load-Related Events Detection Using Social Networks Data and Other  
Web-Based Resources 

This section is presenting a proof-of-concept that Web-based resources may give enough spatio-temporal infor-
mation about human crowd in specific locations. While this crowd may cause load peaks in energy consumption, 
the available information is important step in improvements of short term load prediction system. To experi-
mentally validate the proposed approach in irregular peak detection using social networks and other Web-based 
tools, we used the following resources: 

1) Gowalla Social Network, 
2) Google Map, and 
3) Louisville City Events Website. 
Gowalla is a location based social network website. Users check-in at locations, and share their checked-in 

locations within the network. Gowalla records participating locations, and assigns a location ID and a static GPS 
coordinate to each location ID. For any users checking in at the same location, the GPS coordinates of that 
check-in instance are always the same. The dataset is separated into user friendship network data and location 
data. The user network data contains pairs of user ID with a total of 950,327 pairs. Each pair means the two us-
ers are “friend” within the Gowalla social network. The location data contains all location check-in data with 
6,442,892 instances, and Table 1 shows a sample data. The Gowalla check-in dataset is obtained from Stanford 
Network Analysis Project (SNAP) website (http://snap.stanford.edu/data/loc-gowalla.html). 

 

 
Figure 6. Four “forecasts”, F1, F2, F3 and F4 (dashed lines), together with the actual data (solid lines) [23].            

http://snap.stanford.edu/data/loc-gowalla.html
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We focus on the location check-in data in the crowd-based event detection experiment. An event is defined as 
a set of check-ins of users at the same location with the number above a specified threshold value, and within a 
short time span. To detect a possible event in Gowalla database, our approach looks for check-ins at a given lo-
cation within a 15 minutes timespan. We applied a grid approach with two dimensions: longitude and latitude, to 
count the number of check-ins at each location. After analyzing the entire dataset, we count the number of 
check-ins in each grid and look for grid with above a threshold value density. In our experiment we found sev-
eral locations that contains more than 9 check-ins in less than 15 minutes. Table 2 illustrates some of the top 
check-in locations. 

We cross-reference the longitude and latitude for each location with Google Map available information, and 
we are able to confirm the character of human gathering on these locations. The result is shown in Table 3. 

From Table 3 we are able to detect multiple types of social crowd: restaurant gathering, in Austin, TX, school 
activities and church event in Lille, France, and finally late hour’s crowd in one of Austin’s hotels. As shown in 
Table 3 there are different types of event occurring around the world. We are also interested in looking for time 
dynamics of these check-in event patterns. Temporal distributions of check-ins for all four events from Table 3, 
with the one minute grid interval, is visualized on Figure 7. 

Presented patterns in time domain are very simple, and they are only proof-of-concept. In the cases of large 
human crowd, with longer term duration of an event, we may use these temporal diagrams for better prediction 
of event dynamics through the crowd size. When, using real time data, the beginning part of the diagram is rec-
ognized as initiation of an event, the ending part of a pattern will give the best estimation of the trend in the 
crowd and duration of an event. These real world large events, with an influence on load peaks, we didn’t detect 
in our relatively small Gowalla dataset. While the other more popular social networks may enable this detection 
and further analyses, the main advantage of Gowalla social network is free availability of social network data. 

Second source of Web data are specific Web sites which are announcing scheduled large events in the area. 
Extracting the data from these sites, and including this information in our predictive system, may also signifi-
cantly improve short term load predictive model, and in general may influence on local energy consumption. 
Almost every larger city has this kind of Web site, where the data on events, if available, are already prepro-
cessed and prepared for inclusion in the proposed STLF system. As an illustrative example, we visited the 
Louisville City Events Web site, extracted events in the spring 2015, and segment of preprocessed results in a 
form of table is presented in Figure 8. Efficient implementation of social network event data collection and 

 
Table 1. A sample of Gowalla location check-in data. Source: (SNAP) website.  
(http://snap.stanford.edu/data/loc-gowalla.html) 

User ID Check-in time Latitude Longitude Location ID 

196514 2010-07-24T13:45:06Z 53.3648119 −2.272346583 145064 

196514 2010-07-24T13:44:58Z 53.36051123 −2.276369017 1275991 

 
Table 2. Selected locations with high density of check-in. Source: (SNAP) website.  
(http://snap.stanford.edu/data/loc-gowalla.html) 

Time Location ID Longitude Latitude # of check-ins 

3/15/2009 18:07 9250 30.26713388 −97.74451911 19 

10/15/2009 10:11 27090 50.61957326 3.048555851 28 

10/15/2009 13:50 27426 50.63573561 3.067001402 12 

3/14/2010 3:08 9222 30.25801062 −97.73973942 9 

 
Table 3. Google map location of event. Maps source: https://www.google.ba/maps/. 

Time Location ID Name Type City Country 

3/15/2009 15:00 9250 tenOak: Bourbon House and Lounge Restaurant Austin US 
10/15/2009 10:00 27,090 Lycée International Montebello School Lille France 
10/15/2009 13:45 27,426 Paroisse Saint Maurice Church Lille France 
3/16/2009 22:15 9222 The Driskill Hotel Austin US 

http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/loc-gowalla.html
https://www.google.ba/maps/
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Figure 7. Check-in pattern in time for locations from Table 3. 

 

 
Figure 8. Louisville city events (Source: https://louisvilleky.gov/events). 

 
analysis with data from scheduled events Web sites, and integration with other modules of forecasting system, 
should represent an important direction of smart micro-grid short term load forecasting. 

The results presented in this Section clearly show that complex events can often be detected using social net-
works. The first technique is using the activities recorded on social networks, analysis of these big data and 
partly or completely automatic recognition of the complex events. The second technique is more naïve and relies 
on the data provided for announcing scheduled large events in the area. Both techniques have their importance 
because the first one detects the complex events when they are already in progress and the second one detects 

https://louisvilleky.gov/events


M. Kantardzic et al. 
 

 
130 

them in advance. Proper approach is the combination of both complex events detection techniques. 
Once these techniques are available for detecting complex events, short term energy load forecasting can be 

improved because complex events are usually connected with a specific energy load for micro-grid. We know 
that events where many people gather together on the small area are related to much higher energy consumption 
at the venue of the event and up to certain point lower energy consumption at home or business premises for 
example. 

We believe to be the first one to investigate the idea of complex event detection application into the problem 
of STLF for micro-grid. Our approach improves STLF because one important information can be included in the 
context of energy demand analysis and prediction. The results in this Section are the starting point for improved 
STLF model. Such model is improvement of the current models because it will include an information with very 
specific features. Improved STLF model for micro-grid control will handle energy consumption peaks on the 
small area. This control is important for STLF because the energy supply disruption are to be expected as a re-
sults of unusual events or behavior of many individuals in the area. Complex events that we can detect and rec-
ognize are in this group of events and incorporating the technique of complex events detections will provide 
important information to be used for improvements of the STLF models. 

5. Conclusions 
We initiated our research with the hypothesis that improvements in short term load forecasting may rely on in-
clusion of data from new information sources generated outside the power grid and weather related systems. 
Relevant domains of data may include scheduled activities on a smart grid, large events and conventions in the 
area, equipment duty cycle schedule, data from call centers, real-time traffic, social networks feeds, and variety 
of city or region websites. All these distributed data sources pose information collection, integration, and analy-
sis challenges. Our approach is concentrated on complex non-cyclic events detection, where detected events 
have a human crowd magnitude that is influencing power requirements in the area. We are claiming that tradi-
tional approaches can be complemented and enhanced by new streaming data inclusion and analyses, where 
complex event detection is enhanced by Web-based technologies, and that may improve short term load fore-
casting. Preliminary experimental results, using Gowalla social network, Google maps, and Louisville city event 
website, show directions how Web-based resources may be used as a part of enhanced forecasting system. 

We are planning to study, design, develop, and experimentally test the proposed approach, summarized in 
Figure 5, within two complementary real-world frameworks: 
• Considering the entire islanded smart micro-grid with up to several thousand users and taking perspective of 

aggregated load. 
• Classify all nodes in the smart grid with respect to their nature (industrial, commercial, residential, etc.), and 

build the enhanced model using Web data for the local short term prediction on each node, or on each class 
of nodes. 

Our final goal is to optimize energy production such that consumption is better predicted because complex 
events are recognized in advance and may be followed in time. It was possible to evaluate possible cost reduc-
tion under the assumption that complex events were recognized compared to the environment where complex 
events were not detected in advance. Results presented in this article are just initial ideas and some preliminary 
experiments performed as a proof-of-concept. If this approach is successfully implemented and achieved ex-
pected goals, it will also pave the way for further improvements of smart micro-grids. 
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