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Abstract 
While renewable power generation and vehicle electrification are promising solutions to reduce 
greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. 
The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) 
arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV 
charging may cause load surge in a power grid. This paper studies the optimization of PEV charg-
ing/discharging scheduling to reduce customer cost and improve grid performance. Optimization 
algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a 
pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV 
arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The 
bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermit-
tency of PV power generation and the peak load of the Microgrid. Simulation has been performed 
for all three cases and the simulation results show that the presented optimization algorithms can 
meet defined objectives. 
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1. Introduction 
In recent years, Microgrid is becoming an increasingly popular concept. It has flexibility to react grid supply 
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variation and robustness to overcome grid disturbance due to its self-supporting capability. Usually, key com-
ponents of a Microgrid include residential or commercial loads and localized Renewable Energy Sources (RESs) 
such as photovoltaic arrays, wind turbine, energy storage and Plug-in Electric Vehicles (PEVs). Renewable 
energy sources and green vehicles are critical to deal with the dependence of fossil energy as well as greenhouse 
gas emissions. According to the global greenhouse gas emission data published by the United States Environ-
mental Protection Agency [1] in 2014, about 45% of greenhouse gas emission was produced by electricity pro-
duction, transportation and buildings. The increasing penetration of RESs and green vehicles such as PEVs 
could be a potential solution to solve the environmental issues. However, there are open challenges to integrate 
them into Microgrids due to the intermittency of RESs and bi-directional power flow enabled by PEVs. 

PV generated power depends significantly on weather conditions. For example, cloud could result in irra-
diance variation and introduce the intermittency of PV generated power. This will lead to power imbalance and 
frequency/voltage fluctuation in Microgrids. Although, battery packs of PEVs can function as energy swap sys-
tems to mitigate the above issue by charging and discharging, the approach of using PEV batteries has limitation 
and operational constraints. Firstly, PEV batteries have charge/discharge power limits based on the level of 
charging stations. PEVs might not be able to mitigate power imbalance when the power imbalance amount is 
greater than the PEV charge/discharge limits. Secondly, from PEV driver perspective, frequently charge and 
discharge might accelerate battery degradation.  

A number of researchers have investigated PEV charging load modeling and optimal control in power grid. 
Ahourai et al. [2] study the impact of PEV charging load in a residential distribution network with various PEV 
penetration rates. Cao et al. [3] propose an optimal EV charging model in response to utility Time-of-Use (TOU) 
price regulation. Eric et al. [4] develop unidirectional charging regulation algorithms for an aggregator with 
10,000 EVs to increase aggregator’s profits and reduce the impact of charging load and customer costs. Chenrui 
Jin et al. [5] investigate the optimal scheduling of EV charging with energy storage using combined information 
of day-ahead price and real-time price. Tushar et al. [6] propose EV charging scheme to reduce the effect of PV 
power intermittency and the cost of PV-powered charging stations. Castello et al. [7] explore the mitigation of 
load surge in local distribution network due to EV charging loads using a combination of PV panels and Energy 
Storage Systems (ESS). Three ESS control strategies are investigated and evaluated using data from a private 
site that has 25 solar-assisted charging stations and 4 at a public charging station. Weckx et al. [8] investigate 
PV inverter control to balance a three-phase distribution network. Bhattarai et al. [9] propose a two-stage control 
method for alleviating overvoltage problem of a PV-tied distribution grid. The centralized control prepares op-
timal set point for PV and EVs in a 15-minute time interval. Droop control is adopted as second stage decentra-
lized control to regulate quick voltage fluctuation within 15-minute time interval. Gao et al. [10] presents an in-
tegrated control scheme to manage vehicle-to-grid operation in a distribution grid with wind turbine, ESS, and 
EV charging stations. Vehicle-to-grid power is regulated to minimize the total operating cost of the grid and 
provide frequency regulation. 

This paper studies the optimization of PEV charging/discharging in Microgrids with PV arrays. The objective 
functions of the optimization algorithms are defined considering both for PEV driver benefits and Microgrid 
performance, including minimization of charging cost, minimization of Microgrid power deviation, and com-
bining these two objectives. The simulation for different objective functions is performed with two optimization 
methods. The rest of the paper is organized as follows. Section 2 describes the modeling of the Microgrid and its 
components. Section 3 discusses the objective functions for the optimization of PEV charging/discharging con-
trol. Section 4 presents the optimization methods and the simulation results. Section 5 concludes the presented 
work.  

2. Microgrid Model 
Figure 1 shows the Microgrid used in this study. It consists of commercial building load, four sets of PV arrays, 
and three bi-directional Electric Vehicle Supply Equipment (EVSE) for PEV charging/discharge. The commer-
cial building load is modeled as data-based load profile which demonstrates the feature of certain type of com-
mercial building. Four PV arrays are connected to the Microgrid through solar inverters. They provide PV gen-
eration as RES in the Microgrid. Intermittency caused by cloud variation is considered in the PV array model. 
We assume that multiple PEVs can connect to the same EVSE at different timeslots in a day. When a PEV con-
nects to an EVSE, it can be charged or discharged based on the grid condition and the requirement specified by  
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Figure 1. Microgrid topology with commercial building load, PEVs and solar generation.           

 
the PEV driver. Meters are placed to measure power consumption of each component and breakers are designed 
to protect Microgrid from over-current. The weather and location information required in Microgrid model is 
based on Arizona Phoenix during summer time, and a unit power factor is assumed. The Microgridis modeled 
using Grid Lab-D [11], a power distribution system simulation and analysis tool. PEV charging/discharging op-
timization algorithms are implemented in Matlab. Co-simulation is performed between Grid Lab-D and Matlab. 

2.1. Commercial Building Load 
The commercial building load model is a data-based load profile extracted from Commercial and Residential 
Hourly Load Profiles for all TMY3 Locations in the United States published by EERE [12]. We choose a small 
office building type which typically has one floor with floor area over 3000 ft2 [13]. Only electricity load of the 
building are considered in the commercial building load model. The load profile of selected commercial build-
ing is shown in Figure 2. 

2.2. Photovoltaic Arrays 
The solar irradiance that PV array receives can be calculated by (1)  

( ) ( ) ( ) ( ) ( ) ( )1
cos

2
tilt

Irra shade beam inc horz diff gh gf

COS
E t E t Perez E t E t

θ
α φ γ

−
= + + ⋅               (1) 

where ( )beamE t , ( )diffE t  and ( )ghE t  are direct normal irradiance, sky diffuse horizontal irradiance and 
global horizontal irradiance; shadeα  is shading factor; incφ  is solar incident angle; horzPerez  is the Perez ho-
rizon parameter that used to determine diffuse irradiance [14]; tiltθ  and glγ  are solar module tilt angle and 
ground reflectivity that commonly determine ground reflected irradiance. The PV module generated power can 
be calculated by (2) 

( ) ( )PV PV Irra module modulep t N E t S η= × × ×                           (2) 

where PVN  is number of PV arrays; moduleS  represents module area; and moduleη  is PV module conversion ef-
ficiency.  

The simulation parameters of PV array model in Grid Lab-D are listed in Table 1. The orientation azimuth 
angle and panel tilt angle are set to 180˚ and 33.5˚, respectively, for maximizing received solar irradiance. The  
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Figure 2. Load profile of selected small office building.                                                

 
Table 1. Parameters of PV array model.                                                                        

Solar parameters Value 

Panel type Single crystal silicon 

Orientation azimuth angle 180˚ (facing south) 

Panel tilt angle, tiltθ  33.5˚ 

Efficiency, moduleη  0.15 

Array area 64.4 m2 

 
efficiency of single crystal silicon PV arrays typically varies from 13% to 17%. We select the median energy 
conversion efficiency of 15%. The PV array area is referenced from Canadian Solar CS6P-255P Black Solar Panel. 
Each PV array consists of 40 CS6P-255P panels. The area of a single CS6P-255P panel is 1.64 m 0.982 m×  
(1.61 m2).  

The variation of PV array output power due to the change of weather condition is considered in this model. 
The shading factor, shadeα , is designed as a random variable between 7:00 am - 11:30 am to emulate the impact 
of cloud shading on PV power generation in a cloudy day. The PV power output with intermittency caused by 
fast shading change is shown in Figure 3. 

2.3. PEV Charging/Discharging Model 
In this Microgrid model, PEV charging stations are modeled as AC level II EVSE units with 6.6 kW maximum 
charging/discharging rate. The power demand/output of thi  EVSE can be represented as 

( ) ( ),

0 when no PEV is connected
elseEVSE i

i MAX
p t

t pγ


= 


                 (3) 

where 6.6 kWMAXp =  is the maximum power that an EVSE allows PEV to be charged or discharged. ( )i tγ  
is a time function of charge/discharge status and the ratio of actual and maximum charge/discharge rate, 
( ) [ ]1,1i tγ ∈ − . 
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The total PEV charge/discharge power for all EVSE units can be expressed as 
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1

EVSEN

dis / charge EVSE i
i

p t p t
=

= ∑                                (5) 

0 2 4 6 8 10 12 14 16 18 20 22 24

Time

5

7

9

11

13

15

17

19

LO
AD

(k
W

)

Small Office Load Profile (Summer, AZ, Pheonix)

Small Office



C. Cao et al. 
 

 
119 

 
Figure 3. The intermittent PV power output.                                                           

 
where, EVSEN  represents the number of EVSE units. The PEV charging/discharging rate of thj  PEV con-
nected to thi  EVSE at time t can be expressed as 

( ) ( ), , , , ,
, , 0 else

EVSE i s i j l i j
EV i j

p t t t t
p t

≤ ≤
= 


                           (6) 

where , ,s i jt  and , ,l i jt  represent the arriving and leaving time of the thj  PEV connected to thi  EVSE. 

3. Three Optimization Cases for PEV Charging/Discharging Control 
3.1. Case 1: Optimal PEV Charging/Discharging Schedule to Minimize PEV Charging Cost 
The objective of this optimization problem is to minimize the overall PEV charging cost in the Microgrid. Con-
sider time period of 24 hours with time steps of kt , 1, 2, ,k T=  . The object function of PEV charge/dis- 
charge scheduling is shown in (7). 

( ) ( )1
1

TK

k dis / charge k
k

f rate t p t t
=

= × ×∆∑                             (7) 

where t∆  is time interval between 1kt −  and kt . ( )dis / charge kp t  is the total charge/discharge power of all 
EVSE units, which is defined in (5). ( )krate t  is the real time electricity price as shown in Figure 4. This Time 
of Use rate is obtained from Phoenix local utility for summer plan [15]. 

The constraints of this optimization problem are defined in (8), (9) and (10). 
1) Single PEV charge and discharge rate should not exceed power limit. 

( ), , , , , , , ,whendis MAX EV i j k ch MAX s i j l i jp p t p t t t− ≤ ≤ ≤ ≤                     (8) 

where ,ch MAXp  and ,dis MAXp  are absolute value of maximum charge and discharge rate, , ,ch MAX dis MAXP p= =
6.6 kWMAXp = .  

2) PEV battery SOC should not exceed an acceptable SOC range , ,SOC ,SOCth low th high    

( )
( ), , , ,

, ,

,

, , , , , ,
1SOC SOC SOC

s i j l i j

k s i j

t t t

th low init i j EV i j k th high
t tMAX

p t t
E

∀ ∈

=

≤ + × ×∆ ≤∑                (9) 

where MAXE  represents the total capacity of PEV battery. In this study, the PEV battery specification uses Nis-
san leaf 2013 battery packs. The total battery capacity is set as 24 kWh. ,SOCth low  and ,SOCth high  are lower 
and upper SOC thresholds. 

3) At PEV leaving time, battery should be charged above lowest acceptable SOC, but lower than SOC upper 
threshold 
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Figure 4. Real time electricity price.                                                     
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where ,SOClower accept  is lowest acceptable SOC at PEV leaving time. 

3.2. Case 2: Optimal PEV Charge/Discharge Schedule to Minimize Microgrid  
Power Deviation 

From Microgrid point of view, large deviation between the local load demand and grid supply capability is not 
acceptable. In some energy plan, electricity supplier will publish day-ahead load forecasting information com-
monly with TOU as a guild of customer power usage. The published information is not only the prediction of 
customer power consumption activity, but also as power supply plan in one day ahead. By following the 
day-ahead load signal, Micro Grid can contribute to main grid load regulation and benefit from TOU price plan.  

For this optimization problem, we assume that the power supplier published day-ahead load schedule is as 
shown in Figure 5. To minimize power deviation, we define the objective function as a root mean square error 
as shown in (11) 

( ) ( ) ( ) ( )( )2
2

1

TK

dis / charge k building k PV k day ahead k
k

f p t p t p t p t−
=

= + − −∑               (11) 

where ( )building kp t  is the commercial building power demand; ( )PV kp t  is total power generation of four PV 

arrays; and ( )day ahead kp t−  is the day-ahead load forecasting. 

3.3. Case 3: Optimal PEV Charge/Discharge Schedule with Combined Objective Functions  
The objective of third optimization problem is to minimize charging cost and Microgrid power deviation 
simultaneously. The objective function is defined as shownin (12) 

( ) ( ) ( ) ( )( )

( ) ( ) ( )
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f p t p t p t p t

rate t p t t

α

α

−
=

=

= × + − −

+ − × × ×∆

∑

∑
             (12) 

where, α  is a tradeoff coefficient of two separate objectives. Other constraints remain the same as before. 

4. Optimization Methods and Simulation Results 
The optimization of PEV charging/discharging scheduling is investigated in a Microgrid described in Section 2. 
It is assumed that EVSE model has following information: PEV arriving time, initial SOC and vehicle leaving 
time. The simulation is performed with the number of PEVs and their arriving time, leaving time, and initial 
SOC listed in Table 2. Table 3 lists the values of SOC constraints define in (9) and (10). 

4.1. Mixed Integer Linear Programming (MILP) Method for the  
Minimization of PEV Charge Cost 

This section presents the optimization of PEV charging/discharging scheduling using MILP method. The objec-
tive function and constraints for minimizing PEV charge cost are defined in Section 3.1. For the MILP method, 
the objective function in (7) is modified to 
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Figure 5. Day-ahead load forecasting for Microgrid.                                                            

 
Table 2. Available PEVs in Microgrid and their arriving time, leaving time, and initial SOC.                               

EVSE 
PEV sequence 

PEV Arriving Time Leaving Time Initial SOC 

EVSE1 

PEV11 5:00 am 9:00 am 30 

PEV12 9:12 am 13:06 pm 40 

PEV13 13:12 pm 21:00 pm 50 

EVSE2 

PEV21 7:00 am 11:00 am 40 

PEV22 11:30 am 15:00 pm 50 

PEV23 15:30 pm 20:00 pm 40 

EVSE3 

PEV31 9:00 am 11:48 am 55 

PEV32 12:00 pm 16:30 pm 33 

PEV33 16.42 pm 22:00 pm 41 

 
Table 3. SOC constraints used in the simulation                                                                      

SOC constraints values 

Lower SOC threshold, ,SOCth low  Vehicle initial SOC 

Upper SOC threshold, ,SOCth high  100% 

Lowest acceptable SOC at leaving time, ,SOClower accept  90% 

 

( ) ( )1
1 1

EVSET NK

k i k MAX
k i

f rate t t p tγ
= =

  ′ ′= × × ×∆  
  

∑ ∑                         (13) 

where 10t∆ =  minutes is the simulation time step. In MILP method, the possible PEV charge/discharge power 
is restricted to maximum charge/discharge power rate based on PEV charging state. ( )i ktγ ′  is defined to 
represent charging state of a PEV as shown in (14). Idling state means that the EVSE is not charging or dis-
charging a PEV. 

( )
1 charge
0 idle or inavailable

1 discharge
i ktγ


′ = 
−

                             (14) 

Based on TOU rate in Figure 4, available PEVs in Table 2, objective function (13), and constraints in (9), 
(10), (14), and Table 3, the MILP algorithm finds optimal charging/discharging schedules for PEVs connected 
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to EVSE1-EVSE3 as shown in Figures 6-8. The SOC variations for PEVs connected to EVSE1-EVSE3 are 
given in Figures 9-11. From these figures, we can see that the final SOCs of all the PEVs meet the charging re-
quirement and the lowest SOC values are above the lower SOC threshold during the charging process. The time 
function of the accumulated charge price for individual PEVs are shown in Figures 12-14. The accumulated 
charge price drops when a PEV provides reverse power to the grid, such as EVSE1-PEV3, as shown in Figure 
12. 

Figure 15 shows the Microgrid power profile using MILP method for the optimization of PEV charging/dis- 
charging scheduling. The power profile includes PV generation, commercial building load, and PEV charge/ 
discharging power. It is seen that the power fluctuation is quite severe and frequent. At time around 19:00 pm, 
the power variation within 10 minutes is about 40 kW. 

 

 
Figure 6. Charging/discharging schedule for PEVs connected to EVSE1.                

 

 
Figure 7. Charging/discharging schedule for PEVs connected to EVSE2.                  

 

 
Figure 8. Charging/discharging schedule for PEVs connected to EVSE3.                 
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Figure 9. SOC variation for PEVs connected to EVSE1.                                 

 

 
Figure 10. SOC variation for PEVs connected to EVSE2.                           

 

 
Figure 11. SOC variation for PEVs connected to EVSE3.                           

 

 
Figure 12. Accumulated PEV charge price for PEVs connected to EVSE1.              
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Figure 13. Accumulated PEV charge price for PEVs connected to EVSE2.                 

 

 
Figure 14. Accumulated PEV charge price for PEVs connected to EVSE3.              

 

 
Figure 15. Microgrid metered power using MILP method.                             

4.2. Nonlinear Programming Method for Minimizing Microgrid Power Deviation 
The objective function to minimize the power deviation of the Microgrid has been defined in (11). Constraints 
of PEV charge/discharge are defined in (8), (9) and (10). Due to the nonlinear feature of the objective function, 
this optimization problem is solved using Nonlinear Programming technique. We assume that the TOU rate and 
available PEVs in Microgrid are the same as MILP method in Case 1. The simulation results obtained by Non-
linear Programming method are shown in Figures 16-25. Comparing with MILP method, the PEV charging/ 
discharging rate using Nonlinear Programming method can be any value between [−6.6 kW, 6.6 kW] as shown 
in Figure 16, Figure 19, and Figure 22. For the SOC requirement, Figure 17, Figure 20 and Figure 23 illu- 
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Figure 16. Charging/discharging schedule for PEVs connected to EVSE1.         

 

 
Figure 17. SOC variation for PEVs connected to EVSE1.                    

 

 
Figure 18. Accumulated PEV charge price for PEVs connected to EVSE1.        

 

 
Figure 19. Charging/discharging schedule for PEVs connected to EVSE2.        
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Figure 20. SOC variation for PEVs connected to EVSE2.                        

 

 
Figure 21. Accumulated PEV charge price for PEVs connected to EVSE2.        

 

 
Figure 22. Charging/discharging schedule for PEVs connected to EVSE3.          

 

 
Figure 23. SOC variation for PEVs connected to EVSE3.                      
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Figure 24. Accumulated PEV charge price for PEVs connected to EVSE3.           

 

 
Figure 25. Comparison of Microgrid metered power with day-ahead forecasted 
power consumption.                                                   

 
strate that the Nonlinear Programming method can also meet the SOC requirement defined in (9) and (10). The 
accumulated PEV charge price using Nonlinear Programming method are shown in Figure 18, Figure 21 and 
Figure 24, and the Microgrid metered power consumption is shown in Figure 25. 

Table 4 compares the PEV charge bill for Case 1 and Case 2 optimization approaches. Although the total 
PEV charge price in Case 1 is 18.35% lower than Case 2, the Case 1 optimization approach results in large 
power fluctuationin Microgrid as shown in Figure 15. With the objective of minimizing power deviation, the 
Case 2 optimization approach can generally follow day-ahead power forecast from power suppliers as shown in 
Figure 25. 

4.3. Optimization with Combined Objectives 
The objective function for Case 3 optimization approach with combined objectives is defined in (12). To find a 
proper value for the weightingfactor α, two sweep testsare performed. The first sweep test selects the range of α 
values from 0.1 to 0.9 with a step size of 0.1. The second sweep test selects the range of α values from 0.01 to 
0.09 with a step size of 0.01. The values of PEV charge bill and the Root Mean Square Error (RMSE) of power 
deviation in (12) are calculated for all the test points. Selected calculation results from the sweep tests are listed 
in Table 5. When α is between 0.01 and 0.05, the increase of α value can significantly reduce the RMSE of 
power deviation with reasonable increase of total charge bill. When α value is greater than 0.05, its impact to 
RMSE of power deviation is reduced. For this reason, we select the α value to be 0.05. With this weighting fac-
tor value, the optimized PEV charging/discharging schedules for EVSE1-EVSE3 are shown in Figures 26-28. 
The Microgrid metered power consumption is shown in Figure 29. Comparing to Case 1 and Case 2 optimiza- 
tion approaches, the total charge cost and power deviation in Case 3 are between Case 1 and Case 2 performance. 
This achieves the objective of balancing the control of charge cost and Microgrid power deviation. 
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Figure 26. Charging/discharging schedule for PEVs connected to EVSE1 in Case 3 optimization.   

 

 
Figure 27. Charging/discharging schedule for PEVs connected to EVSE2 in Case 3 optimization.    

 

 
Figure 28. Charging/discharging schedule for PEVs connected to EVSE3 in Case 3 optimization.     

 

 
Figure 29. Microgrid metered power consumption in Case 3 optimization.                          
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Table 4. Comparison of PEV charge bill for Case 1 and Case 2 optimization approaches. .                                

EVSEs 
PEV charge final price 

PEV Case 1: charge cost minimization ($) Case 2: power deviation minimization ($) 

EVSE1 

PEV11 0.84 0.80 

PEV12 0.72 1.04 

PEV13 0.82 1.37 

EVSE2 

PEV21 0.61 0.69 

PEV22 0.99 1.06 

PEV23 1.49 1.85 

EVSE3 

PEV31 0.42 0.61 

PEV32 1.56 1.59 

PEV33 1.27 1.67 

Total 8.72 10.68 

 
Table 5. Sweep test for selecting the value of weighting factor.                           .                        

Tradeoff coefficient α 0.01 0.03 0.05 0.07 0.09 0.1 0.3 0.5 0.7 0.9 

PEV total bill ($) 8.29 8.53 9.83 10.19 10.34 10.38 10.60 10.64 10.65 10.66 

RMSE of power deviation 59.52 51.43 16.66 11.06 9.28 8.91 7.61 7.56 7.54 7.54 

5. Conclusion 
In this paper, a Microgrid model has been built with commercial building load, PV array generation and bi- 
directional PEV charging/discharging stations. The optimization of PEV charging/discharging schedule has been 
studied with three different objective functions and two optimization methods. The first objective function is to 
minimize the PEV charging cost; the second objective function is to minimize Microgrid power deviation; and 
the third objective function combines the first two objective functions. The simulation results show that the 
optimization with combined objectives can achieve relative low charging cost with acceptable Microgrid power 
deviation. The simulation results also illustrate that the charging/discharging of PEVs provides grid service to 
reduce the intermittency of PV power generation. In future study, we will focus on decentralied PEV charging/ 
discharging control for a PEV fleet in larger scale smart grid with renewable energy sources. 
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