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ABSTRACT 

Dedifferentiation, as one of the mechanisms 
rerouting cell fate, regresses cells from a dif- 
ferentiated status to a more primitive one. Due to 
its potential of amplifying the stem/progenitor 
cell pool and reproducing sizable and desirable 
cellular elements, it has been attended in the 
field of regenerative medicine, which will hope- 
fully provide novel therapeutic strategies for 
currently incurable diseases, such as varieties 
of central nervous system (CNS) diseases and 
injuries. In this article, we will first discuss 
naturally occurring and experimentally induced 
dedifferentiation, and then set forth principles in 
stem-cell based therapy in the neural field; be- 
yond that, we will introduce two recent studies 
that show dedifferentiated stem cells contribute 
to neural regeneration. Moreover, we also pre- 
sent our recent research results of dedifferen- 
tiated muscle stem cells for neurogenic differ- 
entiation study in vitro. Further work will be 
conducted to elucidate the mechanism under- 
lying the dedifferentiation process to facilitate the 
development of new strategies in regenerative 
medicine. 
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1. DEDIFFERENTIATION, A POTENTIAL 
APPROACH INVOLVED IN  
REGENERATIVE MEDICINE 

The ability of animals to regenerate lost tissues is a 
dramatic and poorly understood aspect of biology. The 
sources of the new cells and the routes to these regenera-  

tive phenomena have been sought after for decades. De- 
differentiation, which is one process involved in natural 
regeneration, refers to the reversion of a terminally dif- 
ferentiated cell back to a less differentiated stage within 
its own lineage as part of regenerative process. It was 
first used to describe ascidian stolon regeneration in 
1902 [1] but there was little evidence for this concept be- 
sides cellular morphology. Since then, intensive studies 
have been carried out in this field and accumulating evi- 
dence of this naturally occurring process has emerged 
from lower organisms as well as from mammalian tissues; 
this evidence will shed light on the basic mechanism 
underlying regeneration and aid in conceiving new strat- 
egies in regenerative medicine. 

In non-mammalian vertebrate species, complete re- 
generation of zebrafish heart following ventricle amputa- 
tion can be achieved by dedifferentiation of cardiomyo- 
cytes through disassembling the sarcomeric contractile 
apparatus, which contains a large proportion of termi- 
nally differentiated cells that physically impede cytoki- 
nesis [2-9]. Another intensively studied case is the blas- 
tema formation after limb amputation in the urodele am-
phibians. Shortly after limb amputation, cells adjacent to 
the wound dedifferentiate and form a blastema that con-
sists of undifferentiated cells, which subsequently prolif-
erate and eventually redifferentiate to create all the com- 
ponents of the lost limb [10-17]. In mammals, evidence 
of dedifferentiation has also been observed. In the case of 
peripheral nerve injury, Schwann cells are capable of 
dedifferentiating and proliferating when they lose contact 
with the axon that they are myelinating [18-21]. Astro-
cytes, another type of mature glial cell, can upregulate 
proteins that are characteristic of neural stem cells (NSCs) 
and re-enter the cell cycle after brain injury [22-30]. As 
determined in vitro, a fraction of these reactive astrocytes 
also shows long-term self-renewal and multipotency by 
forming neurospheres [22]. Another recent study showed 
that reversion of spermatogonia to germline stem cells  #Authors contribute as the first author. 
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occurs in the murine spermatogenic compartment [31- 
33]. Most recently, using an ingenious cre/lox system, 
our research demonstrated for the first time that dedif- 
ferentiation of skeletal muscle cells to early progenitor 
cells, including myoblasts and muscle-derived stem cells 
(MDSCs), occurs in an injured mouse model in vivo and 
can enhance cell proliferation and myogenesis [34]. 

In addition to the evidence demonstrating that dedif- 
ferentiation takes place naturally under certain stresses in 
a wide spectrum of species, recent studies have also clearly 
shown that this process can be achieved by experimental 
induction. After treatment with the extract isolated from 
regenerating newt limbs, mouse myotubes reduce the 
expression of the myoblast determination genes MyoD 
and myogenin, and subsequently dedifferentiate and pro- 
liferate [35]. Similarly, another group has shown that 
small chemical molecules can dedifferentiate lineage- 
committed myoblasts to multipotent mesenchymal pro- 
genitor cells, which can further go through adipogenesis 
and osteogenesis to generate fat cells and bone cells, 
respectively [36,37]. There are also examples of more 
dramatic dedifferentiation induction resulting in even 
pluripotency. A plethora of differentiated cell types can 
be induced to undergo an almost complete reprogram- 
ming through overexpression of a cocktail of transcript- 
tion factors, generating induced pluripotent stem cells 
(iPS cells) [38-42], which can be argued as the ultimate 
form of dedifferentiation by a broader definition, that is, 
a developmental event involving reduction in the mole- 
cular and/or functional properties of a differentiated cell 
type. According to this paradigm, cells might be “for- 
matted” through dedifferentiation to a primitive status 
and then re-differentiate towards a new lineage to gener- 
ate new types of cells. This lineage switch initiated 
through dedifferentiation makes it possible to use cell 
types that are relatively accessible and numerous in order 
to replace lost cell types that are scarcer and difficult to 
obtain through the progenitor cells of their own lineage. 
Given this possibility, some promising strategies might 
be conceived for the cell-based therapy for intractable 
diseases in certain organs and systems, such as the in- 
jured or degenerated central nervous system (CNS). 

2. REGENERATION IN CNS: NEURAL 
STEM CELLS AND ADULT  
NEUROGENESIS 

With respect to other organs, the CNS shows structural 
peculiarities, and owing to the relative lack of recovery 
from CNS injury, the dogmatic view of a “fixed, ended 
and immutable” neural tissue in mammals has been 
prevalent since the early 1900s [43-45]. The word “re- 
generation” in neuroscience was originally restricted to 
axonal regeneration by surviving cell bodies after in- 

jury [46-48]. Along with early emerging evidence of on-  
going cell division in adult mammalian brain [49-51], 
technical advances such as the use of the S-phase marker 
Bromodeoxyuridine (BrdU) [52-54], the development of 
immunocytochemical reagents that could identify the 
phenotype of various neural cells [55-57], and more re- 
cently, the delicate manipulation of genetic methods for 
cell labeling and mutation, have led to an explosion of 
research in the field [58-60]. After Reynolds and Weiss 
showed in 1992 that precursor cells could be isolated 
from the forebrain and differentiate into neurons in vitro 
[61], neural stem cells (NSCs) have been characterized 
as self-renewing, proliferative and multipotent for the 
different neuroectodermal lineages of the CNS, including 
the multitude of neuronal and glial subtypes [62,63]. 
Since then, the meaning of the word “regeneration” in 
CNS could be extended from axonogenesis and synap- 
togenesis to the replacement of lost cells with newly 
generated elements coming from stem/progenitor cells, 
i.e., adult neurogenesis. Such a possibility for cell re-
newal theoretically brings our nervous system into the 
context of regenerative medicine. However, before de-
veloping new strategies to figure out efficacious thera-
peutic approaches, it is a crucial point to determine how 
NSCs and adult neurogenesis provide the CNS with re-
generative potential. 

Adult neurogenesis is regulated by physiological and 
pathological activities at all levels, including the prolif- 
eration of adult neural stem cells or progenitors, differen- 
tiation and fate determination of progenitor cells, and the 
survival, maturation, and integration of newborn neurons. 
In normal conditions, adult neurogenesis has consistently 
been found to be restricted within two small germinal 
layer-derived areas, e.g., the Subventricular zone (SVZ) 
of the lateral ventricles and the Subgranular zone (SGZ) 
in the dentate gyrus of hippocampus [64-67]. In the re-
maining CNS parenchyma, local progenitor cells might 
support a “potential” neurogenesis, which in spite of 
their proliferative capacity and retention of potentialities 
in vitro, they do not perform neurogenesis in vivo [68,69]. 
Meanwhile, other studies believe that some local paren-
chymal progenitors actually sustain spontaneous neuro-
genesis in vivo. For example, in rodents and even some 
non-human primates, some newly generated neocortical 
neurons have been found [70-72], as well as some neu-
rons of the piriform cortex originating from Ng2+ pro-
genitor cells [73-75]. Thus, whether neurogenesis occurs 
in areas outside of the two widely accepted “neurogenic 
regions” remains controversial [76,77]. 

After unraveling the neurogenic potential in normal 
adult mammalian CNS, the question of how the neural 
stem/progenitor cells behave in different injury/path- 
ological contexts need to be addressed. Although topog- 
raphically restricted, neurogenic sites in mammalian  
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brain that are active throughout life can react to injury 
[78-81], and adult neurogenesis may also be substantially 
augmented in neurodegenerative diseases [82,83]. For 
instance, experiments carried out in rodent models of 
stroke revealed that reactive neurogenesis does occur 
from the SVZ, leading to increased cell production and 
migration of neuronal precursors to the lesion site [79,80]. 
In addition to reactive neurogenesis from stem cell-con- 
taining “neurogenic regions”, accumulating evidence in- 
dicates that different paradigms of brain lesion can in- 
duce neurogenic events from the local progenitors resident 
in normally “non-neurogenic sites”, including the neo- 
cortex [84-86], striatum [87-89], amygdale [90], hypo- 
thalamus [89,91,92], substantianigra [93,94] and brain- 
stem [95-97]. For example, local progenitors that are in a 
relatively quiescent state in layer I of the rat cerebral 
cortex were activated after ischemia, giving rise to new 
cortical interneurons [86]. These examples support the 
hypothesis that the mature CNS parenchyma may retain 
a latent stem/progenitor cell potential that is normally 
inhibited in vivo, but that, if properly evoked, might be 
exploited in situ for cell replacement. 

3. STRATEGIES AND CHALLENGES 
FOR NEURAL REGENERATION WITH 
STEM CELLS 

Given their ability to generate neuronal and glial cells 
in response to damage, neural stem cells are believed to 
play a core role in cell-based therapy for various neuro-
biological disorders, ranging from acute injury such as 
brain trauma and stroke, to chronic neurodegenerative 
diseases including Alzheimer’s Disease (AD) and Park-
inson’s Disease (PD), all of which are characterized by 
neuronal loss. As described above, it can be concluded 
that the brain has an endogenous regenerative potential 
and that in some pathological conditions, it becomes 
more permissive. Based on this point, one conceivable 
strategy for neural regeneration is to enhance the en- 
dogenous neurogenesis in situ [73,78,85,86,98,99]. The 
advantage of this approach is that it takes advantage of 
the intrinsic potential of endogenous neural stem/pro- 
genitor cells, and as a result, is less invasive and has 
fewer side effects in comparison with strategies relying 
on cellular transplantation [100-103], which will be dis- 
cussed later. However, in most cases, such neurogenic 
potential cannot be utilized in a successful way. First, the 
magnitude of the neurogenic response to injury appears 
small, and it remains unclear as to what extent this is, 
because new neurons fail to develop at a sufficiently 
rapid rate versus cell death prior to sufficient integration 
into the host environment. In one case of brain injury, the 
great majority of the newborn cells survive < 1 month, 
and fail to replace lost neuronal populations and to re 

store damaged neuronal circuits [104]. Newly born neu- 
rons could replace only 0.2% of the dead striatal neurons 
in another rat cerebral ischemia model [79]. The exact 
mechanism for this overall inability of the endogenous 
stem cell compartment to promote full and long-lasting 
neural regeneration remains unclear. Recent data suggest 
that an altered neurogenic niche, including various over- 
lapping local interactions between growth factors [105- 
108], extracellular proteins [109,110], metalloproteases 
[111-113], neurotransmitters [108,114,115], and angio- 
genesis [116-118], can be responsible for this failure. 
Even if enhanced cellular survival can be achieved, there 
are still significant impediments to neural maturation and 
integration, such as glial scar formation [119,120], cell 
death [121,122], inflammation [123,124] and aging [125, 
126], all of which are topics of an open field of research. 
Although encouraging results from various experiments 
involving the administration of neurotrophin [127-129] 
or anti-inflammatory drugs [130-132] have shown some 
evidence that functional recovery is related to enhanced 
endogenous neurogenesis, the road ahead is still rocky 
and full of obstacles. 

Paralleling this new understanding of endogenous 
neurogenesis, much progress has been made in the area 
of exogenous neuronal transplantation [100-103]. Early 
transplantation of embryonic midbrain tissue to the brain 
was first performed for PD and Huntington’s disease 
(HD) in animal models as well as human clinical appli-
cations [133-136]. However, these experiments demon-
strated a limited efficacy, along with other problems such 
as tissue availability and ethical questions. Today, it 
seems possible to achieve such therapeutic effects by 
using various sources of stem cells, due to their ability to 
replace the lost tissue as well as their “bystander” effects 
like neuroprotection and immunomodulation [101]. NSCs 
can be extracted directly from fetal or adult tissue via the 
dissection and digestion of CNS regions. In serum-free 
cultures with Epidermal growth factor (EGF) and Fibro- 
blast growth factor 2 (FGF2), they can proliferate and 
spontaneously differentiate into both neuronal and glial 
cells after withdrawal of growth factors [61,137]. This 
possibility of stable expansion and in vitro differentiation 
into desired neural cells makes human NSCs an attract- 
tive cell source for transplantation strategies. Fetal-tis- 
sue-derived NSCs are the only source of stem-cell-de- 
rived neural cells that have entered the clinical arena for 
treatment of Neuronal ceroidlipofuscinosis (NCL, Bat- 
ten’s disease) [138] and Pelizaeus-Merzbacher disease 
(PMD). Application of oncogene-immortalized NSCs 
[139] are also approved in a phase I clinical trial in the 
United Kingdom for stroke therapy. Results so far have 
been favorable and encouraging. Autologous NPCs ob-
tained at the site of focal damage would be an even more 
attractive option since they avoid immunogenicity, al 
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logenicity and ethical issues related to NSCs from other 
sources above [140]. The risk of tumor formation cannot 
be excluded and the long-term safety of such cells re- 
mains to be determined [141]. 

Embryonic stem cells (ESCs) are derived from blas-
tocysts during the 16 cell stage and have an almost unl- 
imited capacity to self-renew [142]. They can be expanded 
for many years and differentiated into neural stem or 
precursor cells and subsequently into brain cells, which 
makes them a feasible exogenous source [143-146]. On 
the other hand, ESCs also bear considerable teratogenic 
potential after implantation into host tissue, although 
protocols for inducing them into relatively pure different- 
tiated population before transplantation have been de- 
veloped [147]. Immunosupression is also needed. In ad- 
dition, immense ethical concerns exist regarding the use 
of human ESCs as well as government restrictions that 
continue to limit clinical applications [148]. 

The generation of iPS cells is considered the main 
breakthrough in regenerative medicine [38-42]. As men- 
tioned in the first section in this article, these cells are 
reprogrammed via a thorough reversion from a terminal 
stageback to a pluripotent status, which can be consid- 
ered a complete dedifferentiation. By re-differentiating 
along a neural lineage, such cells offer another autolo- 
gous source that is ethically acceptable and eliminates 
the risk of immunological complications. However, these 
cells are also under risk of tumor formation, and safety 
cannot yet be guaranteed [149]. In addition, differences 
seem to remain between ESCs and iPS cells that render 
the differentiation of the latter cells into mature neurons 
much more difficult [150-152]. Therefore, their clinical 
application does not seem feasible in the near future. 
Most recently, induced neurons (iN) have been obtained 
by reprogramming adult somatic cells directly into ma-
ture neurons without the intermediate step of iPS cells 
[153-159]. Future studies are necessary to show whether 
it is possible to generate such specific neurons that are 
sufficiently mature for transplantation and also lack the 
risk of tumor formation. 

Additionally, it has been shown that terminal neural 
differentiation can also be seen with non-CNS-derived 
multipotent somatic stem cells, such as mesenchymal 
stem cells (MSCs) [160,161], muscle stem cells (MuSCs) 
[162-164], placental cord blood stem cells [165,166], skin 
stem cells [167] and adipose derived stem cells [168,169]. 
These cells are relatively numerous and easy to collect 
from patients, presenting another autologous source 
without immune reaction. It is also possible that these 
stem cells provide trophic support to damaged neural tis-
sue and as a result, enhances the endogenous approach 
[170]. However, the proof of functional neurons derived 
from MSCs has not been provided. Although there are 
already some ongoing clinical trials that show some pos 

sible clinical improvement [171], many questions con- 
cerning how to enhance their survival and the potential of 
neural differentiation remain to be addressed. 

In summary, two main therapeutic strategies have been 
developed in neural regeneration. Exploring the potenti-
alities of resident, endogenous adult stem/progenitor 
cells is an ideal approach for the future. In parallel, an 
intense effort has been made to produce stem/progenitor 
cells that could be used as transplantation tools so as to 
replace lost elements in pathologies. Immune reaction 
and ethical controversy are the primary issues related to 
the allogeneic approach of mainly utilizing embryonic/ 
fetal oriented cells, while the powerful iPS cells cannot 
avoid the risk of tumor formation and genetic instability. 
Figuring out how to enhance the survival, migration and 
neural differentiation potential of non-neural somatic 
stem cells will be the problem that needs to be resolved 
before these accessible autologous resources can be 
clinically applied. 

4. DEDIFFERENTIATED SOMATIC STEM 
CELLS, A BETTER SOLUSTION? 

Addressing the last point summarized above, we here 
introduce two lines of evidence that show dedifferen- 
tiation might contribute to the resolution. One is from 
our work that focuses on muscle stem cells (MuSCs), 
and the other one published most recently is related to 
mesenchymal stem cells (MSCs) [172]. They start from 
distinct approaches of induction of dedifferentiation, but 
they arrive at the same conclusion that dedifferentiated 
MuSCs or MSCs present improved neural regenerative 
potential. 

4.1. Dedifferentiation-Reprogrammed MSCs 

Hsiao Chang Chan and his group used a culture induc- 
tion to perform dedifferentiation [172]. After establishing 
monoclonal MSC clones from primary rat bone marrow 
MSCs, they first initiated neuronal differentiation by 
transferring the clones into neuronal induction media and 
then returned them to stem cell characteristics by with- 
drawal of the induction media and reincubation in serum. 
These cells are considered dedifferentiated MSCs (De- 
MSCs). First, compared with uncommitted MSCs, De- 
MSCs are demonstrated to represent a previously unde-
scribed distinct population of stem cells with several 
distinguishing features. Apart from the morphological 
and phenotypical similarity and the potential for multi- 
lineage differentiation into osteoblasts, adipocytes and 
chondrocytes, De-MSCs exhibit a predisposition to the 
neuronal lineages as demonstrated by both genetic and 
functional assays. Global gene expression profiling and 
PCR data show that dedifferentiated cells express in- 
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creased levels of both neurogenesis-related genes and 
growth factors. The increase of nestin- and musashi- 
positive cells in De-MSCs suggests that these cells carry 
additional neuronal potentiality that is ready to be acti- 
vated under appropriate conditions, which is representa- 
tive of an immature neural phenotype, most likely neural 
stem/progenitor cells. Taken together, De-MSCs appear 
to represent a distinct population of stem cells with a 
higher potential for re-differentiation into neurons com-
pared to their original counterparts.  

Next, they asked the question of whether or not De- 
MSCs have significant advantages over undifferentiated 
MSCs with respect to proliferation and survival. Indeed, 
proliferating cellular nuclear antigen (PCNA) staining 
confirmed that De-MSCs proliferated vigorously at 24 
hours after dedifferentiation occurred and indicated this 
might be a result of acute reentry into the cell cycle. 
De-MSCs also exhibited a survival advantage over un- 
differentiated MSCs under conditions of hydrogen per- 
oxide (H2O2) oxidative stress, as demonstrated by FACS 
sorting analysis of Annexin-V/propidium iodide staining 
after H2O2 treatment. More importantly, they have found 
that De-MSCs maintained their anti-apoptotic properties 
after in vitro culture and passaging. Increased expression 
of bcl-2 family proteins was observed and appeared to 
play a role in the anti-apoptotic action. All of these re-
sults explained the observation of an increase in viable 
cells in De-MSCs compared to the uncommitted MSCs 
during the in vitro differentiation and dedifferentiation 
process and demonstrated that De-MSCs are advanced in 
cell survival and proliferation. 

They went further to demonstrate the therapeutic ad- 
vantage of De-MSCs in vivo in a rat model of neonatal 
hypoxic-ischemic brain damage (HIBD) via lateral ven-
tricular transplantation of fluorescent cells isolated from 
GFP-transgenic animal. On day 7, GFP expression could 
only be detected in De-MSCs group, indicating improved 
cell survival. Moreover, a number of the surviving GFP- 
De-MSCs were found outside of the injection site, indi- 
cating migration of the cells. Immunostaining revealed 
that some GFP-positive De-MSCs expressed differenti- 
ated neuronal markers NF-M or MAP2, indicating neu- 
ronal differentiation from the De-MSCs in vivo. Of note, 
they also showed that the better survival of De-MSCs 
might lie in their greater ability to promote angiogenesis 
in the ischemic region. Finally, shuttle box tests con-
firmed a more significant improvement of functional re- 
covery of HIBD animals after De-MSCs treatment. 
Taken together, these results indicated that De-MSCs had 
survival and neuronal differentiation advantages over 
undifferentiated MSCs under both in vitro and in vivo 
conditions. This makes them a promising cellular source 
in therapeutic strategies based on autologous transplanta- 

tion for neural regeneration. 

4.2. Update Study of Muscle Cell  
Dedifferentiation for Neurogenic  
Differentiation 

As mentioned at the beginning of our discussion on 
dedifferentiation, various studies in the amphibian limb 
regeneration field have demonstrated that dedifferentiation 
plays the core role by which the multipotent stem cells are 
generated via the formation of the “blastema” that cones- 
quently regenerates the entire limb [10-17]. However, the 
occurrence of this process in mammalian skeletal muscle 
has been questioned, partially due to the contamination of 
other endogenous progenitor cells which might not be 
excluded using regular cell isolation techniques, leaving 
the possibility that they are the source of dedifferentiation 
rather than the terminally differentiated cells [173,174]. 
Therefore, as recently reported, we developed a condi-
tional transgenic model based on cre/lox-β-galactosidase 
(gal) system to specifically and effectively isolate differ-
entiated myofibers both in vitro and in vivo to obtain the 
purified source [34]. Using this model, we have success- 
fully determined the superior myogenesis potential of the 
injury-induced dedifferentiated muscle stem cells (De- 
MuSCs) that were dedifferentiated from β-gal positive 
multinuclear myofibers in comparison with the non-injury 
counterpart. Moreover, some β-gal and CD31 (a marker 
for endothelial cells) dual positive signals were also found 
in the blood vasculation, raising the question of whether 
these De-MuSCs-could advantageously contribute to dif- 
ferentiation down other lineages, such as neurogenesis 
[34]. In the present experiment, we explored further with 
our previous novel cre/lox model in order to address this 
question. 

De-MuSCs were obtained as previously described [34]. 
Briefly, Muscle Creatine Kinase-cre muscle derived cells 
(MCK-cre MDCs) and ROSA-lox-β-gal MDCs were 
implanted into the gastrocnemius (GM) muscles of SCID 
mice via intramuscular injection of equal populations. 
Three weeks later, a laceration injury was created at the 
cell implantation site in the GMs. Four days after injury, 
β-gal positive cells were isolated by flow cytometry. The 
pre-plate technique was then applied to isolate and ex- 
pand the β-gal positive slow adhering cells (i.e., PP5 and 
PP6), which were convectively demonstrated to be De- 
MuSCs. We used primary mouse myoblasts, a muscle 
progenitor cell, as the control counterpart. 

After isolation, both cell lines were kept in muscle cell 
growth media for one week before being transferred into 
NSC media for the induction of neurosphere proliferation. 
For further neural differentiation analysis, single cells 
were transferred into neural differentiation media. Cul-
tured in NSC media, De-MuSCs successfully presented 
neural stem/progenitor characteristics. By day 3 in NSC 
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media, some De-MuSCs had aggregated to form neuro-
sphere-like structures that floated in suspension (Figure 
1(c)), a hallmark of the structure of NSCs or neural pro- 
genitor cells, while control cells showed no signs of 
forming these special structures (Figure 1(a)). By day 6, 
the majority of the De-MuSCs were floating as spheres 
(Figure 1(d)), while the control cells still retained mus-
cle cell morphology and stayed attached to the flask 
(Figure 1(b)). 

The phenotype of the cells within the De-MuSCs de- 
rived neurosphere was analyzed by immunocytochemis- 
try with typical neural markers. These spheres stained 
positive for Nestin, a marker for neural progenitor/stem 
cells, as well as the markers for more mature neural 
lineage cells: Glial fibrilllary acidic protein (GFAP) for 
astrocytes, CNPase for oligodentrocytes and Neurofila- 
ment (NFm) for neurons. EdU was detected in a select 
group of cells in each neurosphere (Figures 2(a)-(d)), 
indicating the proliferative status of these cells when 
cultured with mitotic reagents EGF and bFGF. 

RT-PCR was performed on De-MuSCs and myoblasts, 
under both non-induced and NSC medium-induced con- 
ditions to detect changes that occurred on a transcript- 
tional level. Within the non-induced group, the control 
cells had higher mRNA levels of myogenin compared to 
the De-MuSCs (Figure 3). In the induced group, both the 
control cells and De-MuSCs had lost myogenin mRNA 
expression (Figure 3). Meanwhile, nestin expression 
increased significantly for control cells and only slightly 
for MuSCs after NSC media induction (Figure 3). The 
expression of the stem cell marker Sca-1, which was ab- 
sent in control cells and low in De-MuSCs at the beginning, 

 

 

Figure 1. Results show that De-MuSCs Commit to Neural 
Lineage. Neurosphere-like structures were formed by De-MuSCs 
cultured in NSC proliferative media. De-MuSCs began to ag- 
gregate on day 3 (c) and presented morphology and architecture 
resembling that of neurosphere by day 6 (d), while the control 
primary myoblasts showed no signs of forming these structures 
(a)-(b) during these time period (3 and 6 days). 

 

Figure 2. Immunocytochemistry showed the neural phenotype 
and proliferative status of the cells in the spheres that derived 
from De-MuSCs. On the fifth day after culturing in the NSC 
medium, these spheres stained positive for Nestin, a marker of 
neural progenitor/stem cells (a), as well as for other markers of 
mature neural cells, such as GFAP, NFm and CNPase (b)-(d). 
Mitosis assay performed 2 hours after EdU administration 
demonstrated the proliferative status of the cells in these 
spheres (a)-(d). 

 

 

Figure 3. RT-PCR explored the alteration of the cell profile 
during culture with NSC medium. At the transcriptional 
level, the stem cell related markers Nestin and Sca-1 in- 
creased in both control cells and De-MuSCs after induction, 
although the De-MuSCs maintained a greater level. Mean-
while, the expression of Myogenin gradually decreased. 

 
increased for both cell types after NSC medium induc- 
tion (Figure 3). 

As for neural differentiation (ND) induction, the De- 
MuSCs but not the myoblasts successfully differentiated 
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into neural lineage cells. After 3 days in ND media, cells 
which were solely positive for NFM and possessed long, 
thin projections that resembled neuronal processes were 
observed. These cells were EdU negative, indicating 
their postmitotic status (Figure 4(a)). After 8 days, al- 
though some of the cells were positive for α-smooth 
muscle actin (α-SMA), which might count for myofibro- 
blast differentiation, the NFM positive cells were still 
detectable (Figure 4(b)). Meanwhile, other glial markers 
such as GFAP, CNPase were also positive in a subgroup 
of the cells, further suggesting the multiple potential of 
the De-MuSCs for neural differentiation. 

In summary, our results potentially showed that De- 
MuSCs successfully formed neurosphere-like structures 
that contained neural stem/progenitor cells within NSC 
medium culture. RT-PCR confirmed that they were en-
dowed with the capacity of differentiating along the neu-
ral lineage while they gradually lost myogenic potential. 
After being transferred into ND medium, De-MuSCs 
presented with neuronal morphology and immunophe  

 

 
(a) 

 
(b) 

Figure 4. De-MuSCs differentiated into neuron-like cells 
after induction within ND medium. After 3 days in ND 
medium culture, some cells which were solely positive 
for NFm and possessed long, thin projections that resem- 
bled neuronal processes were observed. These cells were 
EdU negative, indicating their post-mitotic status (a); 
Eight days later, some of the cells began expressing for 
α-smooth muscle actin (α-SMA), while there still scat- 
tered some NFm positive cells reminded scattered among 
the population (b). 

notype, confirming they became terminally differentiated 
neuron-like cells. Since our data implies that De-MuSCs 
have the potential to commit to the neural lineage, they 
may be able to aid recovery from neurological diseases 
by providing an easily accessible cell source for neural 
regeneration.  

Taken together, the two studies above indicate that 
through various approaches, lineage committed somatic 
stem cells can be further dedifferentiated to a more primi- 
tive status, such as De-MSCs and De-MuSCs, which ap- 
pear to have survival, proliferation, migration and neu- 
ronal differentiation advantages over their original coun- 
terparts under both in vitro and in vivo conditions. Be- 
cause of the aforementioned characteristics as well as 
their accessibility, substantial population, and autologous 
orientation, they provide hope for finding a novel treat- 
ment strategy with improved therapeutic efficacy. 

5. CONCLUSION 

Regenerative medicine carries the responsibility of 
tackling various neurological diseases with limited treat- 
ment efficacies. Stem cell-based therapy can restore neu- 
ral function by either enhancing the endogenous neuro- 
genesis that is normally quiescent or replacing the lost 
cellular elements via exogenous transplantation of stem 
cell-derived cells. Dedifferentiation, as one significant 
approach involved in naturally occurring regeneration 
and experimental reprogramming, gives us more insight 
into these strategies. Among a variety of theoretically 
available cellular sources, dedifferentiated somatic stem 
cells with enhanced survival, proliferation, migration and 
neural differentiation in addition to easy accessibility and 
low tendency of tumor formation may offer an optimal 
solution. We introduced a recent study that depicted the 
advantages of De-MSCs along with our preliminary re- 
sults that showed the remarkable superiority of De-Mu- 
SCs in neural regeneration. The detailed characterization 
of this novel stem cell population and the precise mecha- 
nism behind their beneficial effects still remain unclear, 
so further investigation must be conducted before the 
benefits of these stem cells can be clinically applied. 
However, the insight into dedifferentiation that we have 
already gained will bring us one step closer to finding 
effective bedside treatments for neurological disease. 
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