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ABSTRACT 

Human adult olfactory epithelium contains neu- 
ral progenitors (hONPs) which replace damaged 
cellular components throughout life. Methods to 
isolate and expand the hONPs which form 
neuronspheres in vitro have been developed in 
our laboratory. In response to morphogens, the 
hONPs differentiate along several neural line-
ages. This study optimized conditions for the 
differentiation of hONPs towards dopaminergic 
neurons. The hONPs were treated with Sonic 
hedgehog (Shh), in the presence or absence of 
retinoic acid (RA) and/or forskolin (FN). Transcrip-
tion factors (Nurr1, Pitx3 and Lmx1a) that pro-
mote embryonic mouse or chicken dopaminergic 
development were employed to determine if they 
would modulate lineage restriction of these adult 
human progenitors. Four expression vectors 
(pIRES-Pitx3-Nurr1, pLN-CX2-Pitx3, pLN-CX2-Nurr1 
and pLNCX2-Lmx1a) were transfected into the 
hONPs, respectively. Transcription factor expre- 
ssion and the rate-limiting enzyme in dopamine 
synthesis tyrosine hydroxylase (TH) were de-
tected in the transfected cells after 4 month-se-
lection with G418, indicating transfected hONPs 
were stably restricted towards a dopaminergic 
lineage. Furthermore, a dopamine enzyme immu- 
noassay (EIA) was employed to detect the syn-
thesis and release of dopamine. The most efficient 
transfection paradigm was determined. Several 
neurotrophic factors were detected in the pre- 
transfected hONPs which have potential roles in 
the maintenance, survival and proliferation of 
dopaminergic neurons. Therefore the effect of 
transfection on the neurotrophin synthesis was 
examined. Transfection did not alter synthesis. 
The use of olfactory progenitors as a cell-based 

therapy for Parkinson’s disease (PD) would al-
low harvest without invasive surgery, provide an 
autologous cell population, eliminate need for 
immunosuppression and avoid the ethical con-
cerns associated with embryonic tissues. This 
study suggests that specific transcription fac-
tors and treatment with morphogens can re-
strict human adult olfactory-derived progenitors 
to a dopaminergic neuronal lineage. Future stud-
ies will evaluate the utility of these unique cells 
in cell-replacement paradigms for the treatment 
of PD like animal models. 

Keywords: Human Olfactory Epithelium;  
Progenitors; Dopaminergic Neurons;  
Parkinson’s Disease 

1. INTRODUCTION 

Parkinson’s disease (PD) remains one of the leading 
causes of chronic degenerative neurological disability, 
which affects more than 6,000,000 people world-wide, 
with approximately 60,000 new cases diagnosed each 
year in the United States [1]. The incidence rises with 
age, being approximately 1:1000 overall and 1% of the 
population over the age of 60 and 4% in those over 80 
years. Unfortunately, the mortality rate of PD has in-
creased steadily in recent years [2,3]. PD is characterized 
by the extensive loss of dopaminergic (DA) neurons in 
the substantia nigra (SN) in the midbrain [4]. Currently 
the principle treatment for PD is oral L-3, 4-dihydroxy- 
phenylalanine (L-dopa) [5], which is the precursor of do- 
pamine that can pass the blood-brain-barrier [6]. L-dopa 
promotes symptomatic relief, but with time becomes less 
effective for two reasons: 1) During the progression of 
the disease the neurons become less sensitive to the drug 
[7] and 2) L-DOPA does not prevent or rescue the DA 
neurons from degeneration [8,9].  

Recent research has attempted to find cell populations 
that can be used to replace lost or degenerating dopaminer-
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gic neurons [2,10,11]. The basic concept of cell replace-
ment therapy is to restore function lost as a result of the 
disease in the central nervous system (CNS) by replacing 
degenerating or lost cells with viable functional cells. 
Recent studies also suggest that the engraftment of stem 
cells or progenitors can up-regulate or enhance existing 
endogenous progenitor populations [12-14]. Studies 
have employed neural cell grafts obtained from the fetal 
ventral mesencephalic (VM) dopaminergic neurons 
[15-20]. However, this frequently resulted in significant 
dyskinesia [21-24]. Even when clinical improvements 
were achieved in the absence of dyskinesia, the amount 
of tissue required for each PD patient necessitated a 
minimum of 4-5 fetal brains [25]. This requirement in-
creased the possibility of viral or bacterial infection and 
significantly limited the utility of this approach. In addi-
tion the number of surviving neurons was highly limited 
as the majority of the engrafted cells died in the initial 
days following transplantation [15,20,24]. The limited 
supply of fetal VM cells coupled with their poor graft 
viability severely limited the therapeutic utility of this 
population for the treatment of PD. Therefore, an alter-
nate expandable source of dopamine cells has become a 
major research focus [26-29]. 

Stem cells are undifferentiated cells with an unlimited 
capacity for self-renewal and the potential for lineage re-
striction (maturation) into one or more specific cell types, 
depending on their origin and the micro-environmental 
signals that they receive [28,30]. These characteristics 
make stem cells an attractive target population for PD cell 
replacement therapy [31-34]. Human embryonic stem 
cells (hESCs), lineage-restricted towards dopaminergic 
neurons when transplanted into a rodent model of PD, 
provide a significant relief of symptoms. However, with 
time, animals engrafted with hESCs have frequently de- 
veloped teratomas [35]. Clearly an alternate approach is 
warranted.  

Human olfactory epithelium (OE) is a unique source 
for neural progenitors that can be harvested by mini-
mally invasive endoscopic nasal surgery without a cra-
niotomy. Furthermore since no demonstrable olfactory 
deficits result from OE biopsy [36], the tissue can be 
used to generate an autologous progenitor population 
from patients with PD. An autologous cell source pro-
vides total histocompatability and thus eliminates the 
need for immunosuppressive therapy as well as long 
waiting lists for available matched tissue. Previously our 
laboratory developed methods for the isolation and cul-
ture of a neurosphere forming population [37]. To date 
more than 150 patient-specific cell lines of human ol-
factory neural progenitors (hONPs) have been estab-
lished from primary cultures of human adult olfactory 
epithelium isolated from cadavers [37] and patients un-
dergoing endoscopic sinus surgery [36]. Our studies have 

shown that the hONPs have the potential to differentiate 
along several neural lineages following exposure to en-
vironmental signals in vitro [38]. 

The objective of this study was to determine if hONPs 
could be lineage restricted towards dopaminergic neu-
rons and if so to optimize the methodology. Molecular 
techniques were applied for the transfection of Nurr1 [34, 
39], Pitx3 [40,41] and Lmx1a [42], transcription factors 
which promote dopaminergic differentiation. The trans-
fection effects of different paradigms were evaluated and 
compared. 

Several studies have shown that neurotrophic factors, 
such as brain-derived neurotrophic factor (BDNF), cil- 
iary neurotrophic factor (CNTF), neurotrophin-3 (NT-3), 
etc. are important for the survival and function of dopa-
minergic neurons in CNS [43-47]. Recent studies also 
indicate that the neurotrophins have the potential to op-
timize the local micro-environment of the damaged area, 
and thereby induce endogenous stem cells to replace or 
rescue degenerating neurons [48,49]. HONPs derived 
from adult human olfactory epithelium have been shown 
to produce and release neurotrophins [10,50,51], which 
could further support their use in a cell-based therapy for 
PD. Therefore, this study also evaluated the ability of 
pre and post transfected hONPs to synthesize key neuro-
trophins. 

2. MATERIAL AND METHODS 

2.1. Cell Culture 

The two patient-specific olfactory progenitor lines used 
in this study were obtained from adult olfactory epithe-
lium harvested from a 42-year-old female patient and a 
20-year-old male via endoscopic biopsy [37]. The tissues 
were cultured to allow the emergence and harvest of 
hONPs as previously described [36,52]. The hONPs were 
thawed from frozen stock that was maintained in liquid 
nitrogen and cultured in minimal essential medium (MEM) 
with 10% heat inactivated fetal bovine serum (FBS, 
GIBCO, Grand Island, NY) (10% OE) for one week. 
The hONPs were adapted to serum-free growth media 
via serial dilution of serum every day for 4 days until the 
cells were finally cultured in DFBNM (DMEM/F12 
supplemented with 1% B27 and 0.5% N2 and 100 μg/ml 
gentamycin (GIBCO, Grand Island, NY)) [52]. Parallel 
independent experiments were performed on hONP lines 
from the two different patient lines. Since equivalent 
results were achieved, data from only one line has been 
presented. 

2.2. Construction of Expression Plasmids 

The mouse Nurr1 cDNA was cloned into the pLNCX2 
expression vector (Clontech) between ClaI. Similarly, 
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the rat Pitx3 and mouse Lmx1a cDNA were inserted into 
pLNCX2 vector between ClaI. For the Nurr1 and Pitx3 
co-expression vector, Nurr1 cDNA was cloned into 
pIRES (Clontech) between XbaI and SalI, and pitx3 was 
inserted between EcoRIs. The pLNCX2 and pIRES ex-
pression vectors served as controls (Figure 1). All ex-
pression vectors were verified by extensive DNA se-
quencing. 

Openly accessible at  

2.3. Transfection and Selection 

All plasmid constructs were introduced into the hONPs 
by liposomal transfection. The cells were plated on glass 
coverslips in six-well plates (5 × 104 cells per 35 mm well) 
in DFBNM without antibiotics 1 day before transfection. 
HONPs were transfected with each plasmid (4 μg/well) 
for 24 hours according to the manufacture’s protocol (Li-
pofectamine 2000, Invitrogen, Carlsbad, California). One 
day after transfection, the cells were fed with 10% FBS 
in MEM and selected with G418 (400 μg/ml; Invitrogen, 
Carlsbad, California). The selection pressure was kept 
for up to 4 months to insure a purified stably transfected 
cell population. Immunocytochemistry and Western blot 
analysis were applied to detect several dopaminergic 
neuronal markers. After a four-month selection, the trans- 

fected hONPs were frozen in liquid nitrogen for addi-
tional four-six months of storage. After removal from cry-
ostorage and several days’ recovery in MEM with 10% 
FBS at 37˚C, the dopaminergic lineage restriction was 
probed with immunocytochemistry and Western blot analy-
sis. 

2.4. Treatment with Morphogens 

The hONPs were treated with Sonic hedgehog (Shh) 
in the presence or absence of retinoic acid (RA, 1 μM) 
and/or forskolin (FN, 5 μM) [52]. Highly purified Shh 
(kindly provided under a Material Transfer Agreement with 
Curis and Wyeth, Inc.) was applied to hONPs and com-
pared to a commercially available control sample obtained 
from Sigma to determine the extent to which purification of 
Shh can affect the expression of tyrosine hydroxylase (TH). 
The hONPs were plated on glass coverslips in six-well 
plates (5 × 104 cells/35 mm well) in DFBNM and treated 
with medium containing various concentrations and com-
binations of RA, FN, and Shh for 7 days (CO2 atmo- 
sphere at 5% and temperature of 37˚C). Treatment with 
Shh included several concentrations: 0.25 mg/ml 
(Shh0.25), 0.1 mg/ml (Shh0.1), 0.05 mg/ml (Shh0.05), 
0.025 mg/ml (Shh0.025) in the presence or absence of  

 

 
Figure 1. Construction of expression plasmids. 
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1 μM retinoic acid (RA1) and/or 5 μM forskolin (FN5). 
After treatment, the TH expression was determined at 1 - 
7 days in vitro by immunocytochemical analysis. Once 
the optimized environment for inducing dopaminergic 
neurons was determined, the medium containing the 
optimized combination was applied to stably transfected 
hONPs to further improve the yield of these neurons. 

2.5. Immunocytochemistry 

The hONPs (5 × 104 cells/well) were plated on 35 mm 
round glass coverslips in six-well plates (Becton, Dick-
inson and Co.) and incubated at 37˚C in 5% CO2/95% 
air for 24 hours and treated with RA, FN, and Shh or 
transfected and selected for different periods of time 
prior to fixation for immunofluorescence. 4, 6-diamidi- 
no-2-phenylindole dihydrochloride (DAPI) (1:1000, 2 
mg/ml, Molecular Probes, Eugene, OR) was applied in 
culture for 30 minutes at 37˚C for vital nuclear staining. 
The coverslips were rinsed with cytoskeletal buffer (CB) 
twice and fixed in 3% paraformaldehyde in CB (10 min-
utes). 0.2% Triton X-100 (10 minutes, Sigma) in tris buf- 
fered saline (TBS) was applied and cells were incubated 
(1 hour) in 3% bovine serum albumin (BSA) in TBS. Pri- 
mary antibodies were applied overnight (4˚C). After 30 
minutes washing (10 minutes each, 3 times) in TBS, the 
cells were incubated with secondary antibodies: Texas- 
red conjugated goat anti-rabbit immunoglobulin G (IgG), 
Texas-red-conjugated goat anti-mouse IgG, Cy2-conju- 
gated goat anti-mouse IgG and/or Cy2-conjugated goat 
anti-rabbit IgG (all diluted 1:600, Cy2, Jackson Immunol-
ogy Research Laboratories; Texas red, Molecular Probes). 
The coverslips were rinsed in TBS for 30 minutes (10 
minutes each, 3 times) and mounted on slides. The slides 
were examined with confocal microscopy. All experi-
ments were repeated a minimum of two times to ensure 
the specificity of staining; only one set of data has been 
presented since similar results were obtained. 

2.6. Western Blot Analysis 

Western blot analysis was used to further examine and 
confirm the immunofluorescence studies. Proteins from 
hONPs transfected with control vectors, as well as 
hONPs transfected with the vectors plus each combina-
tion of transcriptions factors (pLNCX2-Pitx3, pLNCX2- 
Nurr1, pLNCX2-Lmx1a, pIRES-Pitx3-Nurr1), cultured 
in DFBNM, selected in all groups were collected in cell 
lysis buffer (Sigma, St. Louis, MO). After 15 minutes of 
incubation on ice, samples were centrifuged for 30 min-
utes (4˚C) and the protein concentration of each super-
natant was determined. The protein samples (20 μg/well) 
were electrophoresed on 10% SDS-polyacrylamide gels 
along with standardized-molecular-size marker proteins 

in an adjacent lane and transferred from gel to nitrocel-
lulose paper. Nonspecific binding was blocked (1 hour) 
with 5% nonfat dry milk in TBS-Tween (TBST) buffer. 
Blots were incubated (4˚C overnight) in primary anti-
bodies (anti-TH, MAB; anti-actin, MAB). Blots were 
washed three times for 10 minutes in TBST, after which 
they were incubated (1 hour, room temperature) mono-
clonal horseradish peroxidase-labeled anti-mouse IgG 
(1:2000). ECL Western blotting detection reagents (A- 
mersham Biosciences) were used to identify bound an-
tibodies. Densitometry of the protein bands was carried 
out on a high performance chemiluminescence film (A- 
mersham Biosciences). Data was analyzed using the 
Image-J software programs supplied by the NIH official 
website (http://rsb.info.nih.gov/ij/). 

2.7. Dopamine Assay 

Stably transfected hONPs were plated into flasks (25 
cm2, Corning) at 105 per flask before they were adapt- ed 
to the absence of serum via serial dilution of serum 
every day for 4 days until the cells were finally cultured 
in DFBNM, which was collected daily after the serum 
was totally eliminated from the medium. The DFBNM 
collected from each restricted hONP line was then con-
centrated to 1/50 volume respectively by centrifugal filters 
(Amicon Ultra-15, Millipore). The differentiated hONPs 
were then collected and lysed (lysis buffer, Sigma). Do- 
pamine expression was analyzed quantitatively in the 
concentrated medium as well as in the cell lysates with a 
dopamine enzyme immunoassay kit (Dopamine EIA, 
Immuno Biological Laboratories, Inc.), according to the 
manufacture’s protocol. 

2.8. Neurotrophin Assay 

Pre- and post-transfected hONPs were plated into 
flasks (25 cm2, Corning) at 5 × 105 per flask and cultured 
in 10% OE media for two days before they were adapted 
to the absence of serum via serial dilution of serum e- 
very day until they were finally cultured in DFBNM. 
The differentiated hONPs were then collected and lysed 
(lysis buffer, Sigma). Neurotrophins were detected in the 
extracted protein with different enzyme-linked immu-
nosorbent assay (ELISA) kits (BDNF, Chemicon; CNTF, 
Quantikine; NT-3, Chemicon) respectively, according to 
the manufacture’s protocol. The ELISA absorbance (OD) 
was obtained with a microplate spectrophotometer (Spec- 
tra-max Plus), and the results were plotted and calcu-
lated with the compatible software (Softmax Pro). 

3. RESULTS 

Cryopreserved vials of the two representative hONP 

http://rsb.info.nih.gov/ij/
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lines were obtained from storage and grown for 1 - 2 
weeks prior to the start of these experiments to insure 
equivalent passage (4 - 8) and sufficient cell numbers for 
the following studies. 

3.1. Transfection of Olfactory-Derived  
Progenitors (hONPs) to Achieve  
Dopaminergic Lineage Restriction 

HONPs were obtained from previously frozen stock 
with low passage number (4 - 8) and maintained in 
MEM 10 medium during their recovery period. These 
mitotically active cells divided every 18 - 20 hour which 
typically required passage three times per week as previ- 
ously described. The heterogeneous nature of the hONP 
population prior to transfection was determined by im- 
munocytochemistry. No reactivity was observed for 
Pitx3, Nurr1, Lmx1a with pre-transfected hONPs and 
only a few (5 - 10%) of them were positive for the do- 
pamine precursor, TH, when treated conditionally [53]. 
Low passages (Passage 4 - 8) of hONPs from 2 different 
patient-specific cell lines were employed in parallel trans-
fection experiments. To examine the phenotypic expres-
sion of hONPs after transfection and selection, repre-
sentative cultures as well as their respective pre-trans- 
fection controls were evaluated. Non-transfected hONPs 
or those transfected with lipofectamine alone died within 
1 week after selection with 400 µg/ml G418. In contrast, 
30% of the transfected cells (both with the concerned 
genes and the control vectors) survived under the selec-
tion pressure. Transfection with control vectors, single 
genes, or Pitx3-Nurr1 combined resulted in no morpho- 
logic changes compared to the typical pretreated hONPs. 
However, the transfected hONPs divided more slowly,  

with a new doubling time of three to four days, which 
required a feeding schedule of only twice a week and 
necessitated passage every 9 - 10 days. Immunofluores-
cent analysis of the transfected populations demonstrated 
that hONPs were stably transfected and TH expressed.  
 Human olfactory derived hONPs were transfected 

by pIRES-Pitx3-Nurr1 to restrict them towards DA 
neurons. The vector alone was employed as a con-
trol. To obtain a purified population of restricted 
cells the transfected population was maintained in 
G418 for selection. Although only several weeks of 
selection produced relatively pure populations, an 
interval of four months was employed to insure sta-
bility and purity. HONPs remained TH positive after 
transfection of pIRES-Pitx3-Nurr1, whereas the trans- 
fection of control vectors exhibited no phenotypic 
changes, demonstrating that hONPs can be restricted 
towards dopaminergic neurons (Figure 2). 

 HONPs were transfected with pLNCX2-Nurr1, pL- 
NCX2-Pitx3, pLNCX2-Lmx1a or the vector alone 
as a control. The transfected cells were exposed to 
G-418 for selection for periods up to 4 months. HONPs 
were TH positive after transfection of pLNCX2-Nurr1 
and pLNCX2-Pitx3, whereas the transfection of con- 
trol vectors resulted in no phenotypic changes. There- 
fore pLNCX2-Nurr1 or pLNCX2-Pitx3 can be em- 
ployed to lineage restrict the hONPs towards dopa-
minergic neurons. In contrast, the hONPs trans- 
fected with pLNCX2-Lmx1a remained unreactive 
for TH, although positive of myc, which demonstra- 
ted the successful incorporation of the plasmid (Fig- 
ure 2). 

 

 a b d
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Figure 2. Immunocytochemical analysis. HONPs transfected with pIRES-Pitx3-Nurr1, pLNCX2- 
Pitx3 or pLNCX2-Nurr1 were tyrosine hydroxylase (TH) positive after 4 months selection with G418 
(c, d, f, g), while the lines transfected with pIRES or pLNCX2 were TH negative (b, e). HONPs 
transfected with pLNCX2-Lmx1a were Myc positive, demonstrating that the plasmid was transfected 
into the nucleus (h). 
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 Western blot analysis was employed to confirm quan-

titatively the immunocytochemical studies of the tran- 
sfected hONP populations. The following transfected 
lines were analyzed for TH expression: hONPs trans-
fected with pIRES-Pitx3-Nurr1, pLNC-X2-Nurr1, pL- 
NCX2-Ptx3 and pLN-CX2-Lmx1a all of which were 
TH positive, which indicated their potential to release 
dopamine. In contrast, the hONP populations’ trans-
fected with the control vectors (pIRES and pLNCX2) 
did not express TH. β-actin, a protein that is widely 
expressed in all mammalian and avian cells was used 
as a reference protein for the comparison of TH ex-
pression by the various lines. Image-J was applied for 
the data analysis. Each curve from B to M in Figure 3 
illustrates the density of bands evident on the western 
gel (Figure 3a), and the area that each curve was 
measured. The bars in picture N represent the ratio of 
TH expression and ACTIN expression in the cell line. 
HONPs transfected with pIRES-Pitx3- Nurr1 exhibited 
the highest ratio for the TH and ACTIN expression, 
while the cells transfected with the control vector 
(pLNCX2 or pIRES) had the least TH staining (Figure 
3(b-n)). These results demonstrate that individual tran-
scription factors have unique abilities in promoting the 
dopaminergic restriction of hONPs. 

3.2. Transfected hONPs Remain Restricted 
to Dopaminergic Lineage after Removal 
from Cryostorage 

After a 4-month selection, the dopaminergic lineage re- 
stricted cells were cryopreserved in liquid nitrogen for 
additional 4 - 6 months. Following their removal from cry- 
ostorage and several days’ recovery in MEM10 at pIRES- 
Pitx3-Nurr1 to restrict them towards DA neurons. The 
vector alone was employed as a 37˚C, all but one of the 
transfected hONP populations survived under the selec-
tion pressure of 400 µg/ml G418, demonstrating that 
these cells were stably transfected and retained their po-
tential for long term storage and clinical application. 
Immuno-cytochemistry and Western blot analysis was 
applied to these previously stored populations to exam-
ine their TH expression. The hONPs transfected with 
pLNCX2-Pitx3, pLNCX2-Nurr1 and pIRES-Pitx3-Nurr1 
remained healthy and TH positive under the pressure of 
selection, while the pLNCX2-Lmx1a transfected line did 
not (Figure 4). 

3.3. Lineage Restricted hONPs Produced 
and Released Dopamine 

After removal from the cryostorage, dopamine produc- 
tion was detected in the hONP lines which were stably 
transfected with concerned genes, while the cells tranfected  

 

Figure 3. a. Western blot analysis. b-g. Scanning densitometry 
demonstrates ACTIN-expression in a hONP line of pL-NCX2, 
pLNCX2-Pitx3, pLNCX2-Nurr1, pIRES and pIRES-Pitx3- 
Nurr1 respectively. h-m. Densitometry of TH-expression as 
shown in A. N. Histogram demonstrating the ratio of TH/ac- 
tion produced by each population. 
 

with control vectors and the non-transfected hONPs didn’t 
produce dopamine. The dopamine level of each sample 
was then divided by the concentration of protein in each 
specific hONP line to calculate the efficiency of dopa-
mine production. Among all the 4 gene transfected lines, 
hONPs transfected with pIRES-Pitx3-Nurr1 exhibited 
the most efficient dopamine formation (Figure 5(a)). 
Spent medium was collected 4 days after culturing the 
lineage restricted hONPs. This medium was then concen- 
trated to 1/50 volume respectively, and dopamine E. I. A. 
was applied to detect the dopamine release (extracellular 
levels). Data were calculated in the same manner as the 
intracellular dopamine analysis. Lower levels of dopa- 
mine were detected in the concentrated media compared 
to the corresponding analysis of the cell lysis. The grea- 
test level of dopamine release was detected in pIRES- 
Pitx3-Nurr1 transfected hONPs compared to the other 
restricted cell lines (Figure 5(b)). 
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Figure 4. Immunocytochemistry (a-g) and western blot analysis 
(i) demonstrating that hONPs transfected with pLNCX2-Pitx3, 
pLNCX2-Nurr1 and pIRES-Pitx3-Nurr1 remain healthy and TH 
positive following removal from cryostorage under selection 
pressure (d, f, g). In contrast, the Lncx2-Lmx1a transfected line 
no longer expressed TH (h). 
 

 
(a) 

 

 
(b) 

Figure 5. Histograms demonstrating the ratio of dopamine for-
mation (pg/100 µl) to total protein concentration (mg/ml) of cells 
transfected with pIRES-Pitx3-Nurr1, pLNCX2-Pitx3, pLNCX2- 
Nurr1, pLNCX2-Lmx1a, pIRES, pLNCX2 and non-transfected 
hONPs. HONPs transfected with pIRES-Pitx3-Nurr1 exhibited the 
highest levels of intracellular and extracellular dopamine produc- 
tion. Dopamine production and release were enhanced in hONPs 
treated with the morphogens. 

3.4. The Effect of Morphogens on Tyrosine 
Hydroxylase (TH) Expression,  
Dopamine Formation and Release 

HONPs were cultured in DFBNM along with RA (1 
µM), FN (5 µM) and either of two different sources (puri-
ties) of Shh for four days. Both Shh treatments resulted in 
greater expression than in those cultured solely in DFBNM. 
TH expression was greater in the cells that were treated 
with highly purified Shh than the commercial product 
obtained from SIGMA when applied for same period of 
time (Figure 6). 

HONPs treated with RA1FN5 and highly purified Shh 
expressed seemingly more intensive TH reactivity in the 
positive cells (Figure 7(a)). Therefore, the concentration 
of Shh was reduced to determine the lowest concentra-
tion of Shh that could drive the hONPs towards dopa-
minergic neurons. In contrast to the response when a 
high level of Shh was applied, the reduction of the Shh 
to 0.025 mg/ml applied with RA (1 µM) & FN (5 µM) 
did not produce an immediate response. The hONPs be- 
came TH positive only after 18 hours of treatment with 
highly purified Shh; however, they were healthy and 
maintained TH expression for longer periods. The ap-
plication of RA and FN promoted an even greater ex-
pression of TH (Figure 6 A). Therefore, the optimal con-
ditions for restricting the hONP lineage to dopaminergic 
neurons (under these defined conditions) was determined 
to be DFBNM supplemented with RA1FN5Shh0.025 (Fig-
ure 7(b)).  

Stably transfected hONPs were treated with a cock- 
tail of RA1FN5Shh0.025 to determine if a combination 
of genetic modification and morphogen exposure would 
increase intracellular and intercellular dopamine levels. 
Spent medium was collected four days after morphogenic 
treatment and concentrated to a 1/50 volume. The treated 
lineage restricted hONPs were also collected. Dopamine E. 
I. A. was applied to both cell lysis sample and concentrated 
medium. Dopamine formation efficiency was calculated as 
pre- viously described. HONPs transfected with pIRES- 
Pitx3-Nurr1 were the most efficient population with re-
spect to dopamine formation and release after morpho-
genic treatment (Figures 5(a)-(b)). Compared to intracel-
lular and extracellular dopamine levels of the lineage re-
stricted hONPs in the absence of morphogens, dopaminer-
gic expression was greatly enhanced in the stably trans-
fected hONPs in the presence of the combination of Shh, 
RA and FN (Figures 5(a)-(b)). These studies suggest that 
treatment with morphogens can play an important role in 
dopamine formation and release by the lineage restricted 

ONPs. h   
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(a)                            (b)                           (c) 

Figure 6. HONPs treated in DFBNM with a highly purified Shh(c) exhibited greater reactivity to tyrosine hydroxy-
lase (TH) than those treated with commercially available Shh (b) for 3 days in the presence of RA and FN. 

 

 

 
(a)                                         (b) 

Figure 7. (a) HONPs cultured in DFBNM supplemented with 0.025 mg/ml of Shh, in the presence or absence of reti-
noic acid (RA) (1 µM) and forskolin (FN)(5 µm) for days indicated; (b) HONPs were tyrosine hydroxylase (TH) posi-
tive following 7 days treatment with RA1FN5Shh. 

 
3.5. Stably Transfected and Pre-transfected 

hONPs Produce Neurotrophins (BDNF, 
CNTF and NT-3) at Equivalent Levels 

The non(pre)-transfected hONPs were found to pro-
duce neurotrophic factors such as BDNF (56.09 ± 10.24 
pg/ml), CNTF (18.72 ± 1.43 pg/ml) and NT-3 (24.87 ± 
6.53 pg/ml). The stably transfected lines were examined to 
determine if lineage restriction to dopaminergic neurons 
alters the synthetic capacity and activity of these neuro-
trophins; no significant differences in intracellular neuro-
trophin (BDNF, CNTF, NT-3) levels between transfected 
and non-transfected hONP lines were observed (P > 

0.01), indicating that transfection did not alter neurotro-
phin synthesis (Figure 8). 

4. DISCUSSION AND CONCLUSIONS 

Parkinson’s disease, as a neurodegenerative disease, is 
characterized by loss of specific dopaminergic neurons in 
substantia nigra [4]. Although a variety of pharmaco- 
logical agents have been employed in the treatment of 
PD their effects are transient. “Proof of Concept Studies” 
with embryonic adrenal medulla cells [54] although end- 
ing in failure demonstrated the potential of cell-based re- 
placement therapy. Recently substantial effort has been  
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Figure 8. Histogram demonstrating the neurotrophin levels in 
hONPs (pg/ml) transfected with pIRES-Pitx3-Nurr1, pLNCX2- 
Pitx3, pLNCX2-Nurr1, pLNCX2-Lmx1a, pIRES, pLNCX2 and 
non-transfected NSFCs. Lineage restriction did not alter neuro-
trophin production. 

 
devoted to the search for a suitable cell source for a cell 
replacement strategy for the treatment of PD. Many stud-
ies have focused on the use of embryonic stem cells; 
studies utilizing embryonic cells derived from mice or 
porcine were found to be functional in relieving PD like 
symptoms in PD animal models [33,55], and positive 
results obtained from human oriented ES cells further 
advanced the use and promise of stem cells as a potential 
source for cell therapy for PD [56-58]. However, these 
studies were all generally hampered by the significant 
side effects due to the transplantation of ES cells, such as 
dyskinesias and/or the formation of teratomas [35,56, 59]. 
Unfortunately, low cell viability following transplanta-
tion, tissue compatibility, a limited of source and ethical 
concerns further diminish the therapeutic utility of ES 
cells. In contrast, the use of adult human olfactory epi-
thelium derived progenitors, as a unique autologous cell 
source, which can be obtained with minimally invasive 
surgery can avoid these negative factors and also elimi-
nate the need for immunosuppression. The studies de-
scribed in this manuscript demonstrate that hONPs can 
be stably lineage restricted under an optimized paradigm, 
so that they produce and release dopamine, which makes 
them potential candidates for cell-based therapy for PD. 
Additionally, the genetic modification didn’t alter the 
capability of hONPs to produce and release key neuro-
trophic factors, which have the potential to support neu-
ronal survival, as well as rescue degenerating neurons. 
These factors can also provide permissive micro-envi- 
ronments that may induce endogenous stem cell gener- 
ation and differentiation [60-62].  

In the present study, several conditions have been uti- 
lized to optimize the environment for hONPs and facili-
tate their differentiation to dopaminergic neurons, includ- 
ing genetic modification and treatment with morpho- 
gens. Furthermore, hONPs have the unique potential to 
synthesize and release key neurotrophic molecules which 

can have beneficial effects on the survival of dopaminer-
gic neurons as well as the proliferation and differentia-
tion of endogenous stem cell populations. These will all 
be discussed individually below. 

4.1. Pitx3 and Nurr1 Induce the DA Neuron 
Maturation Synergistically 

The Pitx3 gene belongs to the Pitx family of transcrip-
tion factor genes and has been shown to be required for 
the expression of TH, the precursor of dopamine, both in 
vitro and in mice from E11.5 [40]. It has been reported 
that Pitx3 is crucial to the formation of SN and the spec- 
ification and/or the survival of the subpopulation of the 
DA neurons in striatum [63-65]. The earlier studies sug-
gest that Pitx3 increased TH promoter induction in 
mouse and rat cell lines, but not in human cell lines [63, 
66]. However, human embryonic stem cells were em-
ployed in experiments to demonstrate the regulation of 
TH expression by Pitx3 [67-69]. These studies suggested 
that pitx3 is a key transcriptional regulator of genes re-
quired specifically for the mesencephalic dopaminergic 
(mesDA) phenotype [69,70] and for TH expression [40, 
64]. Nurr1 is a member of the nuclear receptor super 
family of transcription factors that is expressed in both 
developing and mature dopaminergic neurons in the cen-
tral nervous system in mice [71]. Previous studies have 
shown that Nurr1 is essential to both survival and differ-
entiation of the ventral mesencephalic dopaminergic 
precursor neurons [34,72]. Nurr1 has also been reported 
to be essential in the expression of TH, which is required 
for DA synthesis; and for vesicular monoamine trans-
porter 2 (VM-AT2), which is related to DA storage; and 
dopamine transporter (DAT), which is crucial for DA 
re-uptake [72]. In addition, a recent study has shown that 
Nurr1 plays a previously unexpected role in protecting 
TH positive neurons from neurotoxicity [73]. Further-
more, Nurr1 is the only known transcription factor that is 
associated with the dopaminergic neurotransmitter iden-
tity in mesDA neurons [71]. Therefore, both Pitx3 and 
Nurr1 have been shown to be crucial to the formation of 
SN and the specification and/or the survival of the DA 
neurons in midbrain in rodents [39,74,75]. The results 
obtained in the present study indicate that overexpression 
of Pitx3 and/or Nurr1 promotes the expression of DA 
neuron marker, TH in human adult olfactory epithe-
lial-derived progenitors in vitro. HONP lines that were 
stably transfected with Pitx3 and/or Nurr1 and selected 
for 4 months, remained healthy and TH positive follow-
ing 6 months cryostorage in liquid nitrogen. Furthermore, 
the direct detection of dopamine production was also 
evaluated. Lysates of Pitx3 or Nurr1 transfected hONPs 
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were dopaminergic as determined by dopamine E.I.A. 
These results suggest that the transcription factors, Pitx3 
and Nurr1, not only function as a dopaminergic promot-
ers in chick, mouse, or human embryonic cells [41,68, 
71,76], but also can participate in dopamine production 
in adult human olfactory-derived progenitors. Based on 
previous studies which focused on the regulatory func-
tion of Pitx3 and Nurr1 in dopaminergic neuron promo-
tion [63,68,70,72,74,77] and the studies described in this 
manuscript, we hypothesized that Pitx3 and Nurr1 may 
collaborate to induce a higher efficiency of dopamine 
production in midbrain DA neuron maturation. Previ-
ously a synergistic effect between Pitx3 and Nurr1 on TH 
expression has been reported, which appeared to be spe-
cies dependent occurring in human but not in embryonic 
murine stem cells [66-78]. The current studies demon-
strate that the simultaneous transfection of Pitx3 and 
Nurr1 into the hONPs produced higher levels of TH ex-
pression and dopamine production than transfection of 
either of the individual genes. We evaluated the effect of 
transfection on the level of the precursor (TH) and final 
intracellular and extracellular dopamine levels to confirm 
and compare the efficiency of the different transfected 
hONP lines. Therefore, our data, in combination with 
published reports in rodents [79,80] and human embry-
onic stem cells [67,81], indicate that Pitx3 and Nurr1 
cooperatively induce the maturation of DA neurons. We 
extend the previous studies to show the feasibility of 
genetic modification of adult human olfactory-derived 
progenitors to promote the generation of DA neurons. 
These studies demonstrate that the co-expression of Pitx3 
and Nurr1 will enhance significantly the lineage restric-
tion of adult human progenitors toward dopaminergic 
neurons which can be employed in cell-replacement 
paradigms for the treatment of PD. 

4.2. Treatment of hONPs with Morphogens 
Enhances Intracellular and  
Extracellular Dopamine Levels 

Human adult epithelial derived progenitors have the 
potential to differentiate along several neural lineages in 
response to morphogenic signals in vitro [82]. For exam-
ple, 11.6 (±1.5) % of hONPs expressed TH following a 7 
day treatment of RA1FN5Shh (1 µM RA, 5 µM FN and 
15 nM Shh), indicating that a dopaminergic lineage can 
be driven by exposure to these morphogens [53]. Sonic 
hedgehog (Shh), (RA) and Forskolin (FN) have all been 
shown to be crucial developmental factors that regulate 
neuronal specification and differentiation [83-88]. Shh 
has been shown to be required for the generation of ven-
tral midbrain motor neurons [89,90] as well as dopa-
minergic neurons in rodents [56,58,75] and chick em-

bryos [59]. This study suggests that Shh increases the 
expression of TH and that the purity of Shh is an impor-
tant determinant of TH expression. RA regulates neu-
ronal differentiation in embryonic stem cells [91,92] and 
adult human neuronal progenitors [93, 94]. RA has sev-
eral pathways through which it can effect cellular differ-
entiation [95,96]. FN is an adenyl cyclase activator that 
increases intercellular levels of cAMP that can stimulate 
axonal elongation [85,86] and induce embryonic rat/mouse 
motor neuron survival [97,98]. Following the treatment 
of RA and FN, the progenitor nature of hONPs is dimin-
ished, as characterized by a loss of nestin expression, and 
the presence of more mature neuronal markers. In this 
study, a combination of highly purified Shh, RA and FN 
was applied to the lineage restricted hONPs. The intra-
cellular level of dopamine was demonstrated to be sig-
nificantly increased by this treatment. This result con-
firms and extends the published data by showing that 
these morphogens can increase TH expression by pro-
genitors obtained from adult humans [53]. Furthermore, 
following a 4 day treatment of RA1FN5-Shh, the dopa-
mine level of the spent conditioned medium was signifi-
cantly enhanced, indicating that the morphogens pro-
moted the release of dopamine, which is important for 
future studies transplanting lineage restricted hONPs into 
PD animal models. Among all 4 lineage restricted hONP 
lines, those cells transfected with pIRES-Pitx3-Nurr1 
produced and released the highest levels of dopamine in 
the presence of Shh, RA and FN. This result is consistent 
with the analysis of the lineage restricted cells in the ab-
sence of treatment with the morphogens. This data fur-
ther supports the conclusion that hONPs transfected with 
pIRES-Pitx3-Nurr1 are the most efficient line in dopa-
mine production studies to date, and therefore are likely 
candidates for engraftment into an animal model of PD. 
Shh is secreted by the notochord and floor plate at early 
stage of development [99], RA is detectable in the mid-
brain of chick and mice embryos [100], and FN is highly 
concentrated in the rat substantia nigra [101]. The local 
distribution of these morphogens in situ should influence 
the engrafted hONPs and may further support their sur-
vival and dopamine release following transplantation. 
The higher level of dopamine released following Shh, 
RA and FN treatment suggests their potential utility for 
cell-replacement therapy for PD. Previous studies on the 
non-human primate PD models, demonstrated that the 
transplanted responsive human embryonic progenitor 
cells were still capable of differentiation to DA pheno-
type within the micro-environment around the lesioned 
adult host SN, an unexpected finding was that the en-
graftment also up-regulated an endogenous progenitor 
population [12]. The results of our studies utilizing a 
paradigm that combines transfection and morphogen in-
duced lineage modulation highlight the potential therapeu-
tic utility of olfactory epithelial-derived neural progenitors 
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as an autologous cell source for cell-based replacement 
and regenerative strategies for patients with Parkinson’s 
disease. 

4.3. Lineage Restricted hONPs Retain Their 
Capability to Produce Neurotrophic 
Factors 

It’s been reported that neurotrophins such as BDNF, 
CNTF and NT-3 are crucial in the recovery of primate 
and rodent models of Parkinson’s disease [12,102]. 
BDNF is a member of the neurotrophin family which 
supports the maturation and survival of dopaminergic 
neurons in substantia nigra [44,103]. In the presence of 
BDNF, more TH positive cells can be found in cultures 
of ventral mecensephalic tissue than in the absence of the 
neurotrophin [103,104]. NT-3 belongs to the same family 
of neurotrophins as BDNF, and has been shown to play a 
protective role in the degeneration of adult central nora-
drenergic neurons in vivo [105,106]. CNTF has been 
reported to rescue the degenerating striatal neurons in 
primate and rodent models [45,107]. Furthermore, the 
absence of CNTF leads to the apoptosis of motor neurons 
in adult mice [46,108]. Collectively these studies strong-
ly suggest an important role for these neurotrophins in 
future therapeutic strategies for neurodegenerative dis-
eases, including PD, Alzheimer’s disease and Huntington 
disease. Therefore, a cell population that can produce 
neurotrophins could be an ideal for therapy for these dis-
eases. They can provide protective micro-environments in 
vivo and prevent, rescue and or replace neuronal degen-
eration. The pre-transfected hONPs were found to pro-
duce several neurotrophins including BDNF, NT-3, and 
even nerve growth factor (NGF) when in a serum en-
riched medium [10]. The stably transfected lines were 
examined to determine if lineage restriction to dopa-
minergic neurons or absence of serum alters the syn- 
thesis of these neurotrophins since they play a role in 
neuronal survival, differentiation and maturation. As 
shown in the results, the transfection of hONPs did not 
alter neurotrophin production. The post-transfected hONPs 
produce BDNF, NT-3 and CNTF at equivalent levels with 
the pre-transfected progenitors. Therefore, genetically 
modified hONPs can not only serve as replacements of 
the dead or dysfunctional dopaminergic neurons but also 
can provide protective micro-environments to help res-
cue dying or damaged neurons from further degeneration 
and to enhance the endogenous progenitor populations. 
The stably lineage restricted hONPs are unique popula-
tions with high potential for cell transplantation for ani-
mal models of Parkinson’s disease.  

The long term goal of this study is to develop restrict- 
ed hONP lines that will have therapeutic utility in cell 
replacement strategies for patients with PD. The in vivo 
viability and stability are important variables, especially 

considering the likelihood that with time the engrafted 
population may die and require replacement. Therefore, 
experiments were undertaken to determine the stability 
and viability of frozen stocks of transfected cells. HONPs 
survived under the pressure of selection after removal 
from cryostorage and retained their ability to express TH, 
as well as produce and release dopamine and neurotro-
phins, which further demonstrates the unique potential of 
these progenitors to perhaps serve as an autologous cell 
source for cell-based strategies for the long-term treat-
ment of Parkinson’s disease. 

Human adult olfactory epithelial-derived progenitors 
may provide a unique autologous cell population for cell- 
based therapy of Parkinson’s disease, because of their 
potential to become dopaminergic neurons which pro- 
duce and release dopamine and their capability to pro-
vide neurotrophic factor enriched micro-environments 
which support cell survival, protect cells from degenera-
tion and activate endogenous stem cell populations. In 
vivo studies are in progress to determine the ability of 
hONPs to diminish Parkinson like locomotory deficits in 
a rodent model. 
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