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Abstract 
The “3-faced construct validation method” is a routine for establishing the 
validity and reliability of an existing scale when adapted in a different cultural 
context from the context initially developed. This routine can also be used for 
the initial validation of a newly developed scale. This is essentially a construct 
validation procedure based on a sample-splitting. The sample is randomly 
split into three parts, 20% for EFA, 40% for an exploratory CFA and 40% for 
a cross-validating CFA. The cases per variable threshold is set above 5:1, pre-
ferably above 10:1 (minimum conditions) and the first approximately 20% 
subsample emerges (adequate conditions) to evaluate EFA and Bifactor EFA 
models. Then the cases per variable threshold is set above 10:1, preferably 
above 20:1 (minimum conditions) and the 40% subsample emerges (adequate 
conditions) to examine alternative CFA models (ICM-CFA, Bifactor CFA, 
ESEM and Bifactor ESEM models). The optimal model(s) is cross-validated 
by a second CFA in yet another 40% subsample (equal-power CFA sample) as 
a protection against overfitting (over-optimization) to safeguard model replica-
bility. Measurement invariance follows and is essentially another cross-check 
of the optimal model over the entire sample because the optimal model is 
used as the baseline model.  
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1. Introduction 

Each scientific field develops its own methods of measurement. In behavioral 
sciences, psychometrics is used for quantifying psychological phenomena 
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(DeVellis, 2017). However, the replicability of the measurement results is one of 
the most important criteria of scientific research (Rosenthal & Rosnow, 1984) in 
general and in psychometrics more particularly. In quantitative research in psy-
chology, questionnaires are used in the procedure of measurement (DeVellis, 
2017). A questionnaire (or psychological test) is a set of standardized self-report 
statements scored and aggregated to produce a composite score that is an indi-
cator of a phenomenon (Zumbo et al., 2002 quoted in Singh et al., 2016). How-
ever, when quantifying psychological phenomena, we often measure aspects of 
hypothetical constructs, only indirectly observable (Kline, 2009). Thus, ques-
tionnaires often measure only indirectly observable constructs. This is a chal-
lenge for replicability in behavioral sciences. The second challenge for replicabil-
ity is the fact that people are idiosyncratic (Thompson, 2013). Moreover, except 
replicability, it is related to the reliability and validity of measurement instru-
ments. Reliability is defined as the degree to which the scores of a measurement 
tool are free from random error (Kline, 2009). Validity is related to the sound-
ness of inferences emerging from the scores, i.e. to what extent scores of an in-
strument measure the construct indenting to measure and not measure a differ-
ent one, not intending to measure (Thompson & Vacha-Haase, 2000; Kline, 
2009). Reliability is a necessary, but not sufficient condition for validity (Kline, 
2013).  

A construct, as Nunnally and Bernstein (1994) define it, is a hypothesis, either 
complete or incomplete, representing a group of correlated behaviors while 
studying individual differences or/and similarities under by different experi-
mental conditions (p. 85, as reproduced by Kline, 2009). Crocker and Algina 
(1986) described a construct an “informed scientific imagination” as Sawilowsky 
(2007) quotes. A latent variable suggests that there is a relationship between a 
construct and the questionnaire items tapping it. As such it causes changes in 
the strength or quality of an item (or set of items) and the item(s) take on a cer-
tain value. When examining a set of items caused by the same latent variable, we 
can observe how the items are inter-related (DeVellis, 2017). An item is also 
called measured variable or indicator and has a unique factor, reflecting syste-
matic variance, not shared with the other measures being analyzed (Russell, 
2002; Singh et al., 2016). Hence, categories of similar items are termed latent va-
riables or factors. They are identified with factor analysis, i.e. a method for em-
pirically determining the number of constructs beneath an item set (DeVellis, 
2017). 

The purpose of the present study is to propose a routine for evaluating the 
construct validity of measurement instruments, validated in a different cultural 
context or newly developed using factor analysis. This algorithmic procedure is 
called “the 3 faced construct validation method.” 

2. Why Need a Method? 

In general, construct validity is the central focus of each measurement process 
(Kline, 2009) and an all-embracing principle of validity (Messick, 1995; Brown, 
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2015). Construct validity (Cronbach & Meehl, 1955) examines the theoretical 
relationship of a variable (like the scale score) to other variables. It is defined as 
the extent to which a measuring tool “reacts” the way the construct it purports to 
react when compared with other, well-known measures of different constructs 
(DeVellis, 2017). The construct validity incorporates the internal scale structure 
(Zinbarg, Yovel, Revelle, & McDonald, 2006; Revelle, 2018) or the correct mea-
surement of variables intended to be examined (Kline, 2009).  

However, it is impossible to directly estimate the relationship of an instru-
ment we intend to validate (either new or adapted from another language) and 
the latent variable. Instead, we do so indirectly, by examining the relationships 
between the instrument being validated and indicators of the latent variable 
(Devellis, 2017). Therefore, construct validity is measured only indirectly by in-
dicators (i.e. items). Crucially, there is no single, ultimate test of construct valid-
ity. Instead, it is structured and evidenced in multiple studies across time in 
measurement-based research (Kline, 2009). Thus, Kline (2016) explains, evi-
dencing construct validity requires multiple lines of evidence. The need to 
cross-validate instruments (questionnaires or ability tests) producing a score on 
the basis of measured variables (items) is vital to avoid capitalization on chance. 
To achieve this, whether their values are also observed in different samples is 
examined evidencing replicability of results (Kline, 2016).  

One of the methods to safeguard validity, reliability, and replicability of mea-
surement in psychometrics is cross-validation (Thompson, 1994; Thompson, 
2013). During cross-validation (Thompson, 1994; Hill, Thompson & Williams, 
1997), the sample is randomly split into two or more subsamples with the pur-
pose to repeat the intended analysis (in this case factor analysis) in each subsam-
ple (Byrne, 2012; Wang & Wang, 2012; Thompson, 2013; Brown, 2015; Schu-
macker & Lomax, 2015). Replicating a factor analytic solution in a different 
sample is generally considered the preferable method of demonstrating genera-
lizability (DeVellis, 2017). Similar methods to cross-validation are the jackknife 
and the bootstrapping (Thompson, 2013; Kline, 2013).  

In cross-validation, a sufficiently large sample is randomly split into two sub-
samples. The first sample is called the calibration sample, and the second the va-
lidation sample. The purpose of the cross-validating a factor analysis is to ex-
amine whether the parameter estimates of the calibration sample can replicate in 
the validation sample (Byrne, 2012, 2006; Byrne et al., 1989; Wang & Wang, 
2012). The generally suggested way to split a sample is by randomly dividing it 
into two equal parts. However, when the sample is too small to be halved, it can 
be split into two unequal parts. The larger subsample can be used for the more 
crucial process of item evaluation and scale construction and the smaller for 
cross-validation (DeVellis, 2017; Cudeck & Browne, 1983; Byrne et al., 1989). 
The process is equally applicable during scale validation. On sample A (the cali-
bration sample) the hypothesized factor structure is tested, as well as any post 
hoc analyses for achieving a well-fitting model. Once a viable solution is found, 
its validity is verified by testing it on sample B (the validation sample) as Byrne 
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(2012) describes. 
However, a word of caution is suggested in literature because cross-validation 

does not eliminate the non-replicability due to sample idiosyncrasies, neverthe-
less, the absence of cross-validation deems idiosyncrasy much more likely (Kar-
son, 2007). In other words, cross-validation is a necessary but insufficient re-
quirement to protect against sample idiosyncrasies. Additionally, two subsam-
ples are probably more similar than two entirely different samples. Despite that, 
replicating findings by splitting the sample provides valuable information about 
scale stability (DeVellis, 2017). 

The 3-faced construct validation method described in the following section is 
intended for validating a qualitative measurement instrument in a different cul-
tural context from the one the instrument was initially validated. It is in line with 
the cross-validation strategy but it contains a complete sequence of phases.  

3. Description of the 3-Faced Construct Validation Method 

The method is about validating a factor structure either of a new instrument or 
an instrument adaption in a different cultural context from the one of the initial 
validation. This research aspect is fundamental, especially for cross-cultural re-
search, where the instruments used are assumed to measure the same construct 
cross-culturally (Milfont & Fischer, 2010). The method is applied after the data 
collection has finished and does not cover the translation part of the cultural 
adaption process of an instrument. More specifically, the method is completed 
in the following phases:  

1) Preliminary phase. The data is screened for missing valued and outliers 
and the sample is randomly split into three parts. Three subsamples emerge. The 
first 20% subsample is used for an EFA, the second 40% subsample for a CFA 
and the third 40% subsample for a second CFA to validate the findings of the 
previous one in a sample of equal power.  

2) The Exploratory Factor Analysis Phase is used to establish a structure 
(Porter & Fabrigar, 2007).  

3) The first Confirmatory Factor Analysis Phase (CFA 1) is used confirm 
the EFA structure extracted in the previous phase (Brown, 2015) and to test al-
ternative models (Singh et al., 2016) with multiple different CFA methods. Once 
EFA analyses have facilitated to establish an empirical basis, more meticulous 
examination makes use of CFA to carry out more rigorous tests of the factor 
structure (Porter & Fabrigar, 2007), as it is generally suggested (Brown, 2015; 
Muthén & Muthén, 2009). 

4) The second “twin” Confirmatory Factor Analysis Phase (CFA 2) is 
where the optimal model or competing optimal models are cross-validated in a 
different CFA subsample of equal power to the CFA 1 subsample.  

5) The Measurement Invariance Phase. Finally, the optimal solution be-
comes the baseline model to examine measurement invariance across gender 
over the entire sample.  
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More specifically, during the preliminary phase, the sample is randomly split 
into three parts (20%, 40%, 40%). In all three emerging subsamples (20% for 
EFA, 40% for CFA 1, and 40% for CFA 2) the threshold for sample to variable 
ratio (N:p) is set at as follows: 1) at a minimum of 5:1 for EFA (Costello & Os-
borne, 2005; Singh et al., 2016), preferably 10:1, and 2) at a minimum of 10:1 for 
CFA (DeVellis, 2017), ideally 20:1 (Schumacker & Lomax, 2015). After splitting 
an EFA is carried-out in the 20% of the sample to establish a structure (Porter & 
Fabrigar, 2007). Then, in the next phase, an exploratory CFA (CFA 1) follows in 
the second part of the sample (40%) evaluating multiple models with different 
CFA methods. Next, the optimal model from the CFA 1 will be replicated in a 
different subsample of equal power (40%). This twin CFA (CFA 2) is designed to 
crosscheck the findings of CFA 1. A Multigroup CFA in the entire sample fina-
lizes the validation procedure to establish measurement invariance across gender 
using the optimal model emerging from CFA 2 as a baseline model. If either the 
CFA 2 or the measurement invariance fails to revalidate the optimal CFA 1 
model, then the second best model of the CFA 1 is crosschecked (see Table 1 for 
an overview of the method).  

During the process, multiple methods of exploratory and confirmatory factor 
analysis are used. In the EFA subsample, an Exploratory Factor Analysis and a 
Bifactor Exploratory Factor Analysis (Bifactor EFA) are carried out. In the CFA 
1 subsample of 40%, CFA methods evaluated include an Independent Cluster 
Model Confirmatory Factor Analysis (ICM-CFA), a Bifactor Confirmatory Fac-
tor Analysis (Bifactor CFA), Exploratory Structural Equation Modeling (ESEM), 
and a Bifactor Exploratory Structural Equation Modeling (Bifactor ESEM) and a 
traditional higher-order CFA when applicable. Except for multiple methods, 
testing multiple alternative factor solutions for the instrument is generally con-
sidered a good practice (Reise et al., 2007).  

 
Table 1. Overview of the 3-faced construct validation method. 

Analysis 

Preliminary phase 1 2 3 Finalizing 

Data is 
randomly split  

in 3 parts  
(20%-40%-40%) 

EFA CFA 1 
CFA 2 

in a sample  
of equal power 

Measurement  
Invariance  

across gender 

Construct  
Validity with the 

“3-faced construct 
validation method” 

Data screening &  
Univariate &  

Multivariate Normality 

Standard EFA 
Bifactor EFA 

ICM-CFA 
(Single factor, Multifactor) 

ESEM 
Classic Higher-order CFA 

Bifactor CFA Bifactor ESEM 

Cross-validation  
of optimal  

model of step 2 

Multi-group  
CFA to  

establish  
Measurement  

Invariance 

Subsample 
applied 

Planning the  
Implementation of 

“The 3-faced construct 
validation method” 

EFA SUB-SAMPLE = 20% CFA1 SUB-SAMPLE = 40% 
CFA2 SUB-SAMPLE  

= 40% 
Entire 
Sample 

Note. EFA = Exploratory Factor Analysis, ICM-CFA= Independent Cluster Model Confirmatory Factor Analysis, ESEM = Exploratory Structural Equation 
Modeling. 
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Next, the optimal CFA model that will emerge from the CFA 1 40% subsam-
ple will be cross-validated in a different subsample of equal power to that of CFA 
1, i.e. 40%. In this phase, the optimal CFA structure is evaluated further on a 
different subsample. If alternative competing optimal models emerged, then they 
all be cross-checked. Then, a multi-group CFA (MGCFA) follows over the entire 
sample (20% + 40% + 40%) using the optimal model of the CFA 2 as a baseline 
model, to test for strict measurement invariance across gender. For the EFA 
phase the cases-per-variable threshold is set above 5:1, preferably above 10:1 
(minimum requirements) to create an approximately 20% subsample or 1/5 
(adequate conditions). In this 1/5 part of the sample EFA and Bifactor EFA 
models are evaluated. Then for the first CFA phase the minimum conditions are 
the cases-per-variable threshold to be above 10:1, preferably above 20:1 to create 
the adequate conditions for the 40% subsample (2/5) to emerge. In this phase al-
ternative CFA models are examined, i.e., ICM-CFA, Bifactor CFA, ESEM and 
Bifactor ESEM models. For the second CFA phase the optimal model(s) is 
cross-validated by yet another CFA in a subsample of also 40%. That is an 
equal-power subsample of 2/5 to keep the minimum and required conditions the 
same to the ones of the first CFA. This phase is included as a protection against 
overfitting to safeguard the replicability of the optimal model deriving from the 
study (see the steps of the method in Table 1 and in Figure 1). 

Preliminary Phase 
Generally, applied research (CFA or other) without missing values is consi-

dered a luxury because missing data strategies, as a rule, mean loss of statistical  
 

 
Figure 1. Description of the basic phases of the 3-faced construct validation method. 
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power, biased parameter estimates, standard errors, and test statistics (Allison, 
2002, 2003; Enders, 2010; Little & Rubin, 2002; Schafer & Graham, 2002) as cited 
by Brown (2015). However, online digital test-batteries offer ways to overcome 
the problems inherent in missing data and they are freely available, like Google 
Forms, by Google®. One of them is to set the fields of the test battery as required 
(See the successful implementation of this method in Kyriazos et al., 2018a, 
2018b, 2018c). This can reduce or even eliminate the missing values problem 
(except longitudinal studies where respondents may be missing between differ-
ent research waves (see Brown, 2015). 

Data screening and sample size 
Data screening is an equally important first step because CFA and Structural 

Equation Modeling, in general, are methods based on correlations, therefore the 
range of the data values, missing data, outliers, or non-linearity can influence the 
results (Schumacker & Lomax, 2015). Outliers and influential cases may be de-
leted from the data (Muthen & Muthen, 2012). Additionally, sample size in fac-
tor analysis is a heavily debated issue because the replicability of a factor struc-
ture is at some extend dependable on the sample size of the analysis and as a 
rule, a factor solution emerging from a large sample is potentially more reliable 
than the one from a smaller sample (Devellis, 2017; MacCallum, Widaman, 
Zhang, & Hong, 1999). A priori definition of the sample size is suggested to 
achieve the desired level of statistical power in a CFA or EFA with a given in-
strument (McQuitty, 2004; Brown, 2015; Singh et al., 2016; Tabachnick & Fidell, 
2013).  

A priori or not, both the relative (i.e., to the number of variables analyzed) 
and the absolute number of cases in the sample is suggested to be considered in 
factor analysis (DeVellis, 2017; MacCallum et al., 1999) as well as additional pa-
rameters pertaining to SEM research in general like the study design (cross- 
sectional vs. longitudinal), model complexity, items reliability, response scale, 
distribution and parameter estimator (Brown, 2015; Kline, 2016). Many rules of 
thumb have been proposed about the minimum sample size requirements in 
factor analysis, e.g., N ≥ 50 (Pedhazur & Schmelkin, 1991), N ≥ 100 (Comrey & 
Lee, 1992), N ≥ 200 (Sivo et al., 2006; Garver & Menter, 1999; Hoelter, 1983; 
Hoe, 2008; MacCallum et al., 1999) or N ≥ 300 (Tabachnick & Fidell 2013). 
Comrey and Lee (1992, 1973) offer the following guidelines to factor analysis 
sample size: 100 as poor, 200 as fair, 300 as good, 500 as very good, and 1000 or 
more as excellent. Nevertheless, Kline (2016) reports a Monte Carlo study 
(Clark, Miller et al., 2013) elaborating on the difficulty with a “one-size-fits-all” 
approach to sampling size in factor analysis.  

Other suggestions include a minimum number of cases for each free model 
parameter or the “N:q rule” proposing at least 10 cases per free parameter, or the 
“N:p rule” suggesting a minimum of 5 to 10 cases per model indicator (Bentler & 
Chou, 1987; Ding, Velicer, & Harlow, 1995; Comrey & Lee, 1992; Gorsuch, 1983; 
Anderson & Gerbing, 1988; Hu, Bentler, & Kano, 1992), or even 20 cases 
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(Costello & Osborne, 2005; Schumacker & Lomax, 2015). However, as the sam-
ple gets larger, the ratio of cases per indicator can be lowered, therefore Tinsley 
and Tinsley (1987) proposed a ratio of 5 to 10 cases per item for N ≥ 300 and a 
progressively lower ratio for larger sample sizes (DeVellis, 2017).  

In brief, in the 3-faced construct validation method, a strategy to eliminate 
missing data is to use the digital forms to collect data with the fields of the test 
battery set as required. Data is then suggested to be screened for outliers. Re-
garding sample power, the “N:p rule” is used with a minimum of 5 cases per in-
dicator in the model for the EFA, ideally 10:1 and a minimum of 10 cases per in-
dicator in the model for CFA, ideally 20:1. Of course, more sophisticated me-
thods also exist to perform power analysis (McCall, 1982; Satorra & Saris 1985; 
Jaccard, Jaccard, & Wan, 1996), including bootstrapping and Monte Carlo, but 
they are beyond the scope of this work. “Although the relationship of a sample 
size to the validity of factor analytic solutions is more complex than these rules 
of thumb indicate, they will probably serve investigators well in most circums-
tances”, as DeVellis (2017: p. 175) concludes. 

Sample-Splitting 
Sample splitting is generally used in cross-validate modeling in SEM and is 

especially recommended for verifying a post hoc CFA model (Byrne, 2012; 
Brown, 2015; Wang & Wang, 2012; Kline, 2015) or when testing a new instru-
ment (DeVellis, 2017). A general suggestion is to halve the sample when the size 
is large enough to accommodate it (Byrne, 2012; Wang & Wang 2012) or to di-
vide it in two unequal parts when the size is smaller using the larger subsample 
for a calibration or construction sample and the second as validation sample 
(DeVellis, 2017). One additional recommended method of sample splitting is 
into one-third and two-thirds (Guadagnoli & Velicer 1988; MacCallum et al. 
1996). Singh et al. (2016) abide by this method and they suggest an EFA be car-
ried out in one-third data, and a CFA on two-thirds of the data as SEM requires 
large samples (Kline, 2016). The factor structure emerges as they suggest form 
the final list of domains and items (Singh et al., 2016). 

In the 3-faced construct validation method, the sample is randomly split into 
three subsamples, 20%, 40% and 40%. The first 20% subsample is used for an 
EFA, the second 40% subsample for a CFA and the third 40% subsample for an 
additional “twin” CFA, i.e. a CFA where the findings of the previous CFA are 
cross-checked in a sample of equal power. Caution is taken to keep the sample to 
model indicators ratio > 5 in the 20% EFA sample (minimum condition and 
adequate condition respectively) and >10 in the “twin” 40% CFA samples (>10 is 
again the minimum condition and 40% is the adequate condition). However, to 
end up inadequately powerful subsamples, the initial sample must be large 
enough and this is an issue addressed during the planning of the study. This is 
not feasible in special population studies and when studying certain the con-
structs, like flow (Csikszentmihalyi, 2000) that require special data collection 
processes (e.g. ESM; Csikszentmihalyi, Larson, & Prescott, 1977).  
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Note that sample sizes in absolute numbers are only a rough guide, to indi-
cated the logic pertaining the method, what is of greater importance when split-
ting a sample is to maintain the N:p ratios above the threshold of 5:1 for EFA 
and 10:1 for CFA. However, what to keep in mind is not the exact percentage to 
split a sample. Instead, what to keep in mind is that when the cases to indicators 
ratios are at the specified levels the minimum conditions are met. Then the sam-
ple can be divided into five parts and the adequate conditions will have been met 
too. One part can be used for the EFA and the four parts for the two CFAs (2 
parts for each). This would result in a sample x for EFA and 2x for each CFA as 
SEM requires large samples. 

Next, the assumption of normality is examined in all four samples emerging 
after splitting, i.e. Total, EFA (20%), CFA 1 (40%), CFA 2 (40%), see Table 2. 
The assumption of univariate normality is evaluated first using Kolmogo-
rov-Smirnov tests (Massey, 1951) on each of the indicators. Then, multivariate 
normality is examined by the following four tests: 1) Mardia’s multivariate kur-
tosis test (Mardia, 1970); 2) Mardia’s multivariate skewness test (Mardia, 1970); 
3) Henze-Zirkler’s consistent test (Henze & Zirkler, 1990), and 4) Door-
nik-Hansen omnibus test (Doornik & Hansen, 2008). A multivariate normal 
distribution denotes that the univariate and bivariate normality assumption is 
also not violated (Hayduk, 1987; Wang & Wang, 2012). See an overview of this 
phase in Figure 2.  

Phase 1: Establishing a factor structure with Exploratory Factor Analysis 
(EFA) 

Exploratory factor Analysis (Spearman, 1904; Spearman, 1927) adopts the 
premises of the common factor model (Thurstone, 1935, 1947). EFA is used to 
explore the dimensionality of a measurement instrument (e.g. questionnaire or 
ability test) by defining a minimum set of factors required to interpret the corre-
lations among a set of variables. It is exploratory because it only specifies the 
number of latent factors without defining an a priori structure on the linear rela-
tionships between the observed variables and the latent factors (Muthén &  
 

 
Figure 2. Description of the Preliminary Phase of the 3-faced construct validation me-
thod. 
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Table 2. Rules for splitting the sample in three pats in the 3-faced construct validation 
method. 

Subsample Sample Splitting Rule 

EFA (20%) 
Keep the N:p ratio at a minimum > 5:1 and preferably > 10:1  

(minimum conditions) then use about 20% for EFA  
(1/5; adequate conditions) 

Calibrating  
CFA 1 (40%) 

Keep the N:p ratio at a minimum > 10:1 and preferably > 20:1  
(minimum conditions)then use about 40% for CFA  

(2/5; adequate conditions) 

Validating 
CFA 2 (40%) 

Keep the N:p ratio at a minimum > 10:1 and preferably > 20:1 
(minimum conditions) then use about 40% for CFA  

(2/5; adequate conditions) 

 
Muthén, 2009a). This set of underlying variables discovered is the factor solu-
tion, which constitutes the construct being measured (Sawilowsky, 2007). Five 
basic questions emerge during the EFA process: 1) Is the data suitable for factor 
analysis? 2) How will the factors be extracted? 3) What criteria will assist in de-
termining factor extraction? 4) What rotational method will be used? 5) is the 
factor solution interpret table? (Williams et al., 2010). Therefore, it is considered 
an indeterminate solution because there are a plethora of available choices mak-
ing the method rather heuristic (Sawilowsky, 2007; Costello & Osborne, 2005; 
Williams, Brown, & Onsman, 2010; Brown, 2015; Thompson, 2004; Tabachnick 
and Fidell, 2013). Note that in this work EFA is differentiated from Principal 
Components Analysis (Costello & Osborne, 2005; Fabrigar & Wegener, 2012; 
Brown, 2015 to name a few).  

Conventionally, EFA is considered an exploratory method used in absence of 
a priori assumptions about factor structure and CFA methods are based on a 
priori assumptions about the factor structure of a scale (Williams et al., 2010; 
Fabrigar & Wegener, 2012; Kahn, 2006; Preacher, MacCallum et al., 2003; How-
ard et al., 2016). The fundamental difference between EFA and CFA is that in 
the former all cross-loadings are freely estimated while in CFA (more precisely 
in the Independent Cluster Model CFA or ICM-CFA; see Morin et al., 2014) by 
default all cross-loadings are constrained to be zero. The free estimation of 
cross-loadings renders EFA more explorative than CFA (Morin et al., 2013: p. 
396; Howard et al., 2016). On the other hand, a presumed advantage of CFA in 
comparison to EFA is the specific goodness of fit criteria with the calculation of 
model fit indices.  

Nonetheless, when EFA is carried out with estimators used also in CFA the 
same goodness of fit indicators can be calculated. Such estimators include the 
maximum likelihood parameter estimate (ML), or the Robust maximum like-
lihood estimation (MLR, Muthen & Muthen, 2012 or MLM; Bentler, 1995) that 
are robust to non-normality. Additionally, MLR is appropriate for medium to 
small samples (Bentler & Yuan, 1999; Muthen & Asparouhov, 2002; Wang & 
Wang, 2012) like those emerging after sample-splitting. The MLR estimator is a 
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corrected normal theory method with robust standard errors and corrected 
model test statistics (Wang & Wang, 2012; Savalei, 2014; Kline, 2016; Brown, 
2015). Actually, MLR (or ML or MLM) EFA is considered as a special case of 
SEM (Brown, 2015). Like in CFA and SEM, in MLR EFA goodness-of-fit infor-
mation is available to determine the appropriate number of factors (such as 
chi-square and the root mean square error of approximation, or RMSEA; Steiger 
& Lind, 1980).  

During the EFA phase of the of the 3-faced construct validation method, an 
MLR EFA is carried out in the first 20% subsample taking into account the 
above-mentioned properties of MLR. The factor rotation used is the oblique ro-
tation of GEOMIN (see Muthen & Muthen, 2012). As a rule, an oblique rotation 
is preferable in social sciences because it is considered a more realistic represen-
tation of factors interrelations. As Brown (2015) comments if the factors are ac-
tually uncorrelated, the oblique rotation will offer a model identical to the or-
thogonal rotation model. On the other hand, if the factors are interrelated, an 
oblique rotation will offer a more accurate representation of the magnitude of 
the factor relationships along with important information like redundant factors 
or a potential higher-order structure. Moreover, when EFA is used in cohort 
with a subsequent CFA, like in this case, oblique solutions are more likely inter-
pretable to CFA models than orthogonal solutions, because uncorrelated factors 
tend to have poor model fit (Brown, 2015). 

Additionally, MLR (or ML) EFA facilitates estimation of multiple models 
testing different numbers of factors to compare model fit, in tandem with other 
criteria (Brown, 2015) like theoretical background of the solution, cross-loadings, 
poorly defined factors and number of items per factor (Fabrigar et al. 1999; 
Gorsuch 1983; Russell 2002; Fabrigar & Wegener, 2012; Costello & Osborne, 
2005). Thus, multiple EFA models are generally tested in the MLR EFA subsam-
ple (20% of N with an N/p threshold of 5:1, preferably 10:1). MLR EFA is per-
formed to establish a factor structure (Porter & Fabrigar, 2007) testing alterna-
tive models with 1-3 or more factors. Second, an EFA Bifactor model (Jennrich 
& Bentler, 2011) is tested subsequently when applicable (m > 1; Muthen & Mu-
then, 2012). Reise et al. (2007) suggested that the evaluation of a Bifactor model 
is a good practice when establishing construct dimensionality (c.f. Hammer & 
Toland, 2016). See MLR EFA process in Figure 3. 

Specifically, Bifactor analysis is a form of confirmatory factor analysis originally 
introduced by Holzinger (1937). The bifactor model has a general factor and a 
set of specific factors (Brown, 2015). An advantage of EFA bi-factor analysis is that 
an a priori model is not necessary. The results of an EFA bifactor analysis, however, 
can be used as a basis for defining a CFA Bifactor model (Howard et al., 2016). 
The EFA Bifactor factor analysis (Jennrich & Bentler, 2011, 2012) in the 3-faced 
construct validation method is carried out using also MLR to estimate model 
parameters and a BI-GEOMIN factor rotation (Jennrich & Bentler, 2011, 2012), 
as a rule. The BI-GEOMIN is an oblique rotation where the specific factors are  
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Figure 3. MLR EFA Steps as described by Muthén & Muthén (2009b). 
 
correlated with both the general factor and with each other. If the orthogonal 
rotation is used, then the specific factors are uncorrelated both with the general 
factor and with each other (Muthen & Muthen, 2012). However, a word of cau-
tion is required because Bifactor models always tend to support unidimensional-
ity (Joshanloo, Jose, & Kielpikowski, 2017) and higher order factor structure 
based only on a Bifactor model is often regarded questionable (Joshanloo & Jo-
vanovic, 2017).  

MLR EFA model fit is evaluated by the following criteria (Hu & Bentler, 1999; 
Brown, 2015): RMSEA (≤.06, 90% CI ≤ .06), SRMR (≤.08), CFI (≥.95), TLI 
(≥.95), and the chi-square/df ratio less than 3 (Kline, 2016). See the EFA phase in 
Figure 4. 

Like already said, EFA is an exploratory process, therefore, EFA results are 
generally with additional CFAs on a different data set (Cudeck, MacCallum et 
al., 2007; Bollen, 2002; Brown, 2015; Schumacker & Lomax, 2015). CFA is the 
subsequent phase of the 3-faced construct validation method. 

Phase 2: Confirming the factor structure with Confirmatory Factor Anal-
ysis (CFA) 

CFA is integrated into the Structural Equation Modeling (SEM) framework. 
SEM comprises models in which regressions among continuous latent variables 
are estimated (Bollen, 1989; Browne & Arminger, 1995; Joreskog, Sorbom, & 

Magidson, 1979; Muthen & Muthen, 2012). Thus a CFA model construction fol-
lows the same steps as an SEM model: 1) Model specification. Theory and prior 
research play an important role in a CFA model specification because it is based 
on previous research and knowledge. 2) Model identification. In CFA a model is 
identified by constraining some parameters and freely estimating others. 3) 
Model estimation. Estimating the fit of the free parameters of the specified factor 
model. 4) Testing model fit 5) Model modification. Changes to a specified model 
are considered when the specified model is less than satisfactory (Kelloway, 
2015; Schumacker & Lomax, 2015).  

During this phase of the 3-faced construct validation method the factor struc-
ture established in the MLR EFA subsample (20% of N with a N:p threshold of 
5:1, preferably 10:1) it is confirmed with an CFA (40% of N with a N:p threshold 
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Figure 4. Description of the EFA Phase of the 3-faced construct validation method. 

 
of 10:1, preferably 20:1). This is accomplished by testing alternative models with 
multiple CFA methods. CFA methods used in the 3-faced construct validation 
method are the following: 1) Independent Cluster Model Confirmatory Factor 
Analysis (ICM-CFA), 2) Exploratory Structural Equation Modeling Analysis 
(ESEM), 3) Bifactor Confirmatory Factor Analysis (Bifactor CFA), and 4) Bifac-
tor Exploratory Structural Equation Modeling Analysis (Bifactor ESEM), 5) 
Higher order CFA (when applicable).  

In ICM-CFA is the basic Independent Clusters Model of Confirmatory Factor 
Analysis that posits all items have zero factor loadings on all other factors except 
the one they are intended to measure (McDonald, 1985; Morin et al., 2016; 
Howard et al., 2016). Even trivial cross-loadings when constrained to be zero 
results in inflated CFA factor correlations (Asparouhov & Muthén, 2009; Marsh 
et al. 2009, 2010). ESEM (Asparouhov & Muthén, 2009) is an integration of CFA 
and EFA. In EFA all cross-loadings are freely estimated and in ESEM a specific 
percentage of cross-loadings are allowed to be freely estimated (Muthen & Mi-
then, 2012). This potentially resolves the factor inflation problem inherent in 
ICM-CFA, especially pertinent in psychology research where constructs gener-
ally tend to be correlated (Marsh, Morin, Parker & Kaur, 2014). As a rule, ESEM 
potentially produces more accurate models in comparison to ICM-CFA (How-
ard, Gagne, Morin, Wang & Forest, 2016). Therefore, testing ESEM models 
(when m > 1) is generally regarded as a good practice when testing dimensional-
ity of an instrument.  

In the 3-faced construct validation method the CFA methods is suggested to 
test the higher order factor structure are the following: 1) Bifactor Models: Bi-
factor CFA, Bifactor ESEM; and 2) Second-order CFA. Bifactor analysis (Har-
man, 1976; Holzinger & Swineford, 1937) is another approach to higher-order 
factor analysis, specifying direct effects of the higher-order dimension (General 
factor) on the indicators (Specific factors), unlike the classical higher-order CFA 
method. The benefit of the exploratory Bifactor analysis method is that a specific 
a priori bi-factor model is not necessary. In Bifactor ESEM (c.f. Reise, 2012; 
Marsh et al., 2014) direct effects of the higher-order dimension are specified and 
additionally because ESEM (Asparouhov & Muthén, 2009) can potentially re-
solve misspecifications and inflated factor loadings, inherent in CFA method as 
a result of forcing secondary factor loadings to be equal to zero (Marsh et al., 
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2014). Concerning the theoretical construct behind the Bifactor higher order 
structure, bifactor models are most appropriate for unidimensional constructs, 
having at the same time smaller latent sub-factors (Brown, 2015). Actually, Reise 
et al. (2007) recommended testing a bifactor model when examining dimension-
ality. The traditional higher order factor analysis is typically carried out because 
occasionally first-order factors indicate narrow-scope constructs, interconnected 
with a higher and broader construct represented in factor analysis by one or 
more higher order factors (Cattell, 1978; Comrey, 1988; Gorsuch, 1983 cited in 
Wolff & Preising, 2005). Thus, higher-order CFA (most of the times 
second-order) is a theory-based solution with an additional, more parsimonious 
higher structure that represents the latent factor interrelationships established in 
the CFA (Brown, 2015; Wang & Wang, 2012).  

Alternative models evaluated in the 3-faced construct validation method are 
the following: 1) a Unidimensional model to test the assumption of maximum 
parsimony (Brown, 2015; Crawford & Henry, 2004); 2) Uncorrelated factors 
model; or/and 3) Correlated factors model(s) based on theory and previous em-
pirical research (Schumacker & Lomax, 2015); 4) Second-order factor models 
are tested if possible. Specifically, when first-order factors > 3, evaluating if the 
second-order factor improves the model fit when compared to the first-order 
solution is not possible because of under-identification of the higher order 
model (Wang & Wang, 2012); and 5) Bifactor models (CFA and ESEM) are 
tested if applicable, i.e. if m > 1 (Muthen & Muthen, 2012), suggested by Reise et 
al. (2007) to be a good practice (also by Hammer & Tolland, 2016). See all CFA 1 
methods tested in Table 3. 

Regarding model parametrization (see also Figure 5) in the 3-faced construct 
validation method MLR is generally suggested as a parameter estimator for all 
CFA models evaluated, like in EFA for reason. Model fit is estimated by the fol-
lowing criteria (Hu & Bentler, 1999; Brown, 2015): RMSEA (≤.06, 90% CI ≤ .06), 
SRMR (≤.08), CFI (≥.95), TLI (≥.95), and the chi-square/df ratio less than 3 
(Kline, 2016). There are abundant indicators of goodness-of-fit, both absolute 
and incremental (Singh et al., 2016), and researchers are generally urged eva-
luating model fit by taking into consideration multiple fit indicators to have 
more conservative model fit estimation (Bentler & Wu, 2002; Hair et al., 2010; 
Brown, 2015; Kline, 2016). A second CFA in a sample of equal power to the first 
CFA is the next phase of the 3-faced construct validation method. 
 
Table 3. CFA methods included in the 3-faced construct validation method and models 
tested per method. 

1) ICM-CFA models : Single-factor, Multifactor (Correlated/Uncorrelated) 

 ESEM models: Multifactor (m > 1) 

2) 
Bifactor CFA Models: Multifactor correlated (m > 1) 

Bifactor ESEM models: Multifactor correlated (m > 1) 

3) Second-order Models when applicable (m ≥ 4) 

Note. m = number of latent variables, EFA = Exploratory Factor Analysis, ICM-CFA = Independent Clus-
ter Model Confirmatory Factor Analysis, ESEM = Exploratory Structural Equation Modeling. 
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Figure 5. Description of the CFA 1 Phase and CFA2 Phase of the 3-faced construct validation method. 

 
Phase 3: Cross-checking the factor structure with a second Confirmatory 

Factor Analysis (CFA) 
In the realm of SEM, the cross-validation method of testing replicability (see 

the section “Why need a Method?”) is called cross-validation modeling (Wang & 
Wang, 2012). A cross-validation CFA is the 3rd phase of the 3-faced construct va-
lidation method (see Figure 5). During this phase the optimal model(s) emerg-
ing from the initial CFA of the previous phase (implemented on 40% of N with a 
N:p threshold of 10:1, preferably 20:1) are replicated on a new subsample that 
has the same sample power to the initial CFA subsample, i.e. in the 40% of N 
with a N:p threshold of 10:1, preferably 20:1). Cross-validation is a persuasive 
strategy for addressing the implications of post hoc modeling and the potential 
over-optimization inherently connected with post hoc model modification but 
also partial invariance (Byrne, 2012; Wang & Wang 2012).  

In this phase, the optimal models emerging from this phase are compared to 
each other. An additional model comparison is carried out using the following 
guidelines: 1) a likelihood ratio test, 2) information criteria and 3) modification 
indices. The models are considered superior they have: 1) a lower Akaike Infor-
mation Criterion (AIC), 2) a lower Bayesian information criterion (BIC) 3) If 
models significantly differ, the more complicated model is preferable, 4e) If 
models do not significantly differ, the less complicated model is preferable 
(Epskamp et al., 2017). To compare the fit of the optimal solutions with alterna-
tive choices to the ML estimator for non-normal data (like MLR) the MLR res-
caled version of the “likelihood ratio test” (2ΔLL; Satorra & Bentler, 2010) is 
calculated and if it is statistically significant, the equal factor variance hypothesis 
can be rejected (Wang & Wang, 2012). This essentially suggests that there is a fit 
difference between the optimal CFA models.  

It is generally suggested by the 3-faced construct validation method to 
cross-validate a group of optimal models with the comparable goodness of fit 
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and not just the best fitting solution because often a local optimum fitting model 
emerges, showing a divergence in fit during the two CFAs. Additionally, this is a 
protection against over-fitting due to post hoc model revision to achieve a better 
fit that most often is not replicable in the validation subsample. Overfitting— 
specifying unnecessary parameters to the model to improve fit—is generally re-
garded as a consequence of non-theory-driven specification searches daring 
model modification and capitalization on chance (Brown, 2015). This means 
that weak effects in the data-set are targeted emerging mainly from sampling er-
ror, thus are non-replicable in a different data-set (MacCallum, Roznowski, & 
Necowitz, 1992; MacCallum, 1986; Silvia & MacCallum, 1988; Byrne, 2012; 
Kline, 2016; Brown, 2015). Cross-validating a post-hoc model in a new subsample 
generally suggests that the likelihood of non-replicability is lower in comparison 
to a non-cross-validated sample but not minimal. In other words, cross-validation 
is a necessary but insufficient requirement to protect against non-replicability 
due to sample idiosyncrasies (Karson, 2007). Additionally, there is always the 
chance a good fitting model to be non-replicable in the second sample. Then the 
researcher should choose a different model that is more stable across all three 
subsamples (EFA, 20%, CFA 1 40% and CFA 2 40%) and not necessarily the 
model of the best fit. There are some examples for applying this method (Kyria-
zos et al., 2018a, 2018b, 2018c, 2018d) where such a case emerged (Kyriazos et al, 
2018e). 

Generally, the post hoc model fitting has been heavily debated in SEM and 
CFA literature regarding Type I errors (Byrne, 2012; Brown, 2015) and it is a 
strategy mainly recommended for minimizing implications resulting from post 
hoc model fitting (Wang & Wang, 2012). It is generally suggested that the final 
model of a post hoc analysis to be tested on a second (or more) independent 
sample(s) from the same population (see also Byrne, 2012; Byrne, 2006). Several 
other approaches were also proposed as a remedy (e.g. Green & Babyak, 1997; 
Green, Thompson, & Poirier, 2001; Chou & Bentler, 1990; Green, Thompson, & 
Poirier, 1999) as Byrne (2012) reviews. The last remedy to the problem of chance 
factors—as Byrne (2012) continues—is to cross-validate the final post hoc mod-
ified model in a different sample either new or subsample with sample-splitting 
(see also Thompson, 2000 and MacCallum and Austin, 2000).  

Byrne et al. (1989), as reported by Wang & Wang (2012), also raised certain 
practical issues regarding cross-validation. The most important of them is the 
accessibility to a sufficiently large sample to be split, and the possibility of failure 
of the cross-validation when multiple parameters are relaxed in the first sample 
(Wang & Wang 2012). Some other experts also questioned the method (Cliff, 
1983; Cudeck & Browne, 1983) while others (Byrne et al., 1989, Byrne, 2012, 
Byrne, 2006) suggest that as long as the researcher keeps in mind the exploratory 
nature of the CFA cross-validation analysis, the cross-validation process is useful 
(Byrne, 2011; MacCallum, Roznowski, Mar, & Reith, 1994; MacCallum, We-
gener, Uchino, & Fabrigar, 1993). Above all, CFA researchers are aware of the 
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exploratory nature of the post hoc procedures if not theoretically substantiated 
(Byrne, 2012).  

Finalizing: Measurement invariance of the cross-validated optimal CFA 
model  

In the final phase of the 3-faced construct validation method measurement 
invariance of the instrument is examined across gender in the entire sample 
(100% of N). Generally, measurement invariance examines if an instrument ex-
hibits the same psychometric properties across heterogeneous groups (Chen, 
2007) or across time (Brown, 2015). When doing multiple-group confirmatory 
factor analysis, this assumption can be tested directly (Timmons, 2010). 

To test for measurement invariance across gender groups in the 3-faced con-
struct validation method the optimal model, successfully cross-validated in the 
second CFA, is used as a baseline model. First, gender invariance of the success-
fully cross-validated model is tested separately in each gender group, to establish 
a baseline model. This model should show an equally good fit for both gender 
groups. Then, this baseline solution is tested in both gender groups simulta-
neously and if the fit is adequate configural invariance is supported (Horn, 
McArdle, & Mason, 1983). The chi-square, RMSEA, CFI, and other fit indexes 
are used to determine whether the combined model has a good model fit to 
support configural invariance. Next, factor loadings, indicator intercepts, and 
indicator residuals are consecutively constrained to equality. The ΔCFI and 
ΔRMSEA for the constrained models are evaluated to indicate weak, strong and 
strict invariance respectively the ultimate test of measurement invariance (Wang 
& Wang, 2012). The criteria used are the ΔCFI ≤ −.01, and ΔRMSEA ≤ .015 for 
N > 300 (Chen, 2007: p. 501). Suggested criteria in the literature are also defined 
by Cheung & Rensvold (2002). 

Alternatively, if the sample is not sufficient (e.g. N = 150) measurement inva-
riance can be omitted and population heterogeneity and measurement inva-
riance can be evaluated for latent means and item intercepts with the Multiple 
Indicators Multiple Causes method (MIMIC) controlling for the effects of gend-
er or age. Multiple Indicators Multiple Causes Modeling (MIMIC) or CFA with 
covariates is an alternative method for examining invariance of indicators and 
latent means in multiple groups, by regressing them onto covariates indicating 
group membership (Muthén & Muthén, 2009a). Crucially, MIMIC models are 
more appropriate for small samples (even of N = 150) than multiple-group CFA 
(Brown, 2015: pp. 273-274). Initially, a viable measurement model is necessary, 
collapsing across specified groups (i.e., a typical CFA model). For this purpose, 
in the 3-faced construct validation method the optimal model that was success-
fully cross-validated in the second CFA is used in the full sample (100% of N). 
Then, as a rule, the covariates of gender and age are added to examine their di-
rect effects on the factor(s) and selected indicators of the model, i.e. the regres-
sion of a factor indicator on a covariate in order to study population heterogene-
ity and measurement non-invariance respectively (Muthen & Muthen, 2012; 
Brown, 2015). Unlike multiple-groups CFA, MIMIC models test only if there is 
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invariance in the indicator intercepts and factor means, assuming that all other 
measurements and structural levels of invariance (i.e., equal factor loadings, er-
ror variances/covariances, factor variances/covariances) are supported same 
across covariates (Brown, 2015). 

Remember that to establish measurement invariance in the 3-faced construct 
validation method the optimal model that was successfully cross-checked in the 
second CFA (40% of the sample) is tested over the entire sample to become a 
baseline model, thus, in essence, this is yet another cross-validation of the op-
timal model emerged from the whole process. Note also that measurement inva-
riance can be evaluated in higher levels, like variance and covariance invariance 
(Widaman & Reise, 1997). However, configural, factor loading, indicator inter-
cepts, and indicator residuals invariance are the most invariance tests carried out 
in the majority of the studies (Chen, 2007). 

4. Method Summary and Applicability 

To establish the construct validity of an instrument designed for a different cul-
tural context we developed a multiphase cross-validation procedure called the 
“3-faced construct validation method” (see method phases in Figure 6). Note 
that this method does not cover the translation phase but the subsequent stages. 
The method is based on sample-splitting. Sample-splitting (Guadagnoli & Velic-
er, 1988; MacCallum, Browne, & Sugawara, 1996) is generally regarded as a 
cross-validation method because factor analysis findings are replicated in a dif-
ferent subsample (Byrne, 2012; Brown, 2015; Schumacker & Lomax, 2015; Singh 
et al., 2016; DeVellis, 2017). In the “3-faced construct validation method” the  

 

 
Figure 6. The 3-faced construct validation method. 
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sample is randomly split into three parts (20%, 40%, and 40%) keeping the N:p 
ratio threshold for the EFA to 5:1, preferably 10:1 and for CFA to 10:1, preferably 
20:1. The first 20% is used for MLR EFA. Multiple structures are tested along 
with a Bifactor EFA model. Regarding sample power, in all three samples cau-
tion is needed to be far beyond the suggested threshold of 5 to10 cases for each 
observed variable (Singh et al., 2016) and even the stricter 20 cases for each ob-
served variable (Schumacker & Lomax, 2015). 

The second 40% is used for an explorative CFA (CFA 1) to test a minimum of 
the following alternative models: a single-factor ICM-CFA, a multifactor 
ICM-CFA with correlated and uncorrelated factors and their ESEM counter-
parts. Other theory-driven models to be tested include a Bifactor CFA model, a 
Bifactor ESEM model and a Higher-order CFA (if applicable). Next, the third 
40% is used for a crosscheck CFA (CFA 2). This second CFA is intended to veri-
fy the optimal model (or competing optimal models) emerged in the CFA 1 in a 
different subsample of equal power to the CFA 1 subsample (both 40%). If the 
CFA 2 fails to revalidate the optimal CFA 1 model, then the second best model is 
crosschecked etc. Measurement invariance using the cross-validated model as a 
baseline model is the final phase of the method. Note that, actually, the lesson to 
take home is not the exact percentages to split a sample but if the cases to indi-
cators ratios are above the specified levels these are the minimum conditions to 
carry out the method. Thus, the sample can be divided into five parts and these 
are the adequate conditions to carry out the method. One part can be used for 
the EFA and the four parts for the two CFAs (2 parts for each). This would result 
in a sample x for EFA and 2x for each CFA as SEM requires large samples. If the 
sample is not adequate to be split in three and the structure of the validated in-
strument is known then the sample can be halved to carry out two CFAs as a 
protection against overfitting. However, the rules setting the minimum and 
adequate conditions must be followed.  For an unknown structure EFA must be 
carried out in the first halve and a CFA must follow in the second halve, however 
in this case the solution is not protected against ovefitting. The study of a known 
structure must be designed in a way that at least two CFAs can be carried out af-
ter halving the sample. 

The validation procedure is also suggested to include the following, in line 
with the general empirical method adopted for evaluating the psychometric 
properties of measurement instruments: 1) Reliability analysis using Cronbach’s 
alpha, Omega Total coefficient and AVE-based construct validity, 2) Correlation 
Analysis to Examine Convergent and Discriminant Validity, 3) Normative Data, 
4) Item response theory (IRT). The entire sample is suggested to be used for the 
above analyses, but alpha could be also calculated for the subsamples too if de-
sired (DeVellis, 2017). 

More specifically, reliability and validity are evaluated in the entire sample 
using the following measures; 1) Cronbach’s alpha (α; Cronbach, 1951) to ex-
amine internal consistency of the responses. Alpha values above .70 are generally 
acceptable (Hair et al., 2010), and above .80 adequate (Kline, 2000; Nunnally & 
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Berstein, 1994); 2) Omega Total coefficient (ω total; McDonald, 1999; Werts, 
Linn, & Jöreskog, 1974). Omega corresponds either to variance accounted by all 
factors or by each latent factor separately (Brunner et al., 2012). For omega a, 
value of .70 or greater is acceptable (Hair et al., 2010); 3) Average Variance Ex-
tracted (AVE; Fornell & Larcker, 1981) to evaluate convergent validity. Malhotra 
& Dash (2011) comment that ω alone is weak, potentially allowing an error va-
riance as high as 50%. Therefore, AVE in combination with ω coefficient offers a 
more conservative estimation of convergent validity (Malhotra & Dash, 2011). 
The threshold for AVE is .50 (Fornell & Larcker, 1981; Hair et al., 2010).  

Regarding normative data, it is included along with the means and ranges of 
the instrument dimensions. Means are not informative of individual scores, 
given the non-normality of the data (Crawford & Henry, 2004). Therefore, 
scores are converted to percentiles. Finally, Item response theory (IRT) is carried 
out during the construction, analysis, scoring, and comparison of measurement 
instruments (questionnaires or ability tests) intended to measure an unobserva-
ble characteristics of the respondents (Binary response models: 1PL, 2PL, 3PL; 
Categorical response models: GRM, NRM, PCM, RSM; Multiple IRT models 
combined: Hybrid). 

5. Conclusion 

In conclusion, the “3-faced construct validation method” is a routine indented 
for establishing the validity and reliability of an existing scale when it is adapted 
in a different cultural context (not including the translation part). However, the 
routine can also be used for the initial validation of a newly developed instru-
ment or for testing the measurement model in a SEM study. Empirical applica-
tions of the method were carried out by Kyriazos et al. (2018a, 2018b, 2018c, 
2018d, 2018e).  

Sample-splitting (Guadagnoli & Velicer, 1988; MacCallum, Browne & Suga-
wara, 1996) is generally an acknowledged cross-validation method (Byrne, 2012; 
Brown, 2015). Similar approaches to the “3-faced construct validation method” 
were also proposed by Brown (2015), by Singh et al. (2016), and by Muthén & 
Muthén (2009a). Cross-validation is also used in SEM measurement models (see 
Byrne, 2012) or in logistic regression to cross-validate the results (Lomax & 
Hahs-Vaughn, 2013). 

The addition of the “3-faced construct validation method” in the empirical 
research of psychometrics regarding the adaption of measurement instruments 
in a different cultural context than the one they were initially developed is: 1) 
The rule of keeping the MLR EFA and Bifactor EFA N:p ratio above a minimum 
of 5 cases per variable and preferably 10 using 20% of the sample 2) The use of 
the rest 80% of the sample to carry out two “twin” CFAs, i.e. two CFAs in two 
subsamples of equal power 40% each (minimum requirements and adequate re-
quirements respectively). The rule here is to keep the CFA N: p ratio above a 
minimum of 10 cases per variable and preferably 20 using 40% of the sample for 
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each CFA. 3) The use of multiple methods in the first exploratory CFA and mul-
tiple models (ICM-CFA, ESEM, Bifactor CFA, Bifactor ESEM, and “traditional” 
Higher-order CFA when applicable. What to keep in mind is not the exact per-
centage to split a sample. Again it should be emphasized that the central message 
conveyed is if the cases to indicators ratios are above at the specified levels 
(minimum conditions) then the sample can be divided into five parts (adequate 
conditions). One part can be used for the EFA and the four parts for the two 
CFAs (2 parts for each). This would result in a sample x for EFA and 2x for each 
CFA as SEM requires large samples. The method is a protection against overfit-
ting but it requires careful planning and a large sample. 
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