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Abstract 
The measurements of ionospheric TEC (total electron content) are conducted 
at a low latitude Indian station Surat (21.16˚N, 72.78˚E Geog.), which lies un-
der the northern crest of the equatorial anomaly in Indian region. The data 
obtained are for a period of five years from low to high solar activity (2010- 
2014) using GPS (Global Positioning System) receiver. In this study, we report 
the diurnal and seasonal variation of GPS-TEC, dependence of GPS-TEC with 
solar activity, geomagnetic condition and EEJ strength. From the seasonal 
analysis, it is found that greater values of the GPS-TEC are observed during 
equinox season followed by winter and summer. The appearance (in the year 
2011 and 2014) and disappearance (in the year 2010 and 2012) of “winter 
anomaly” have been observed at the station. From the correlation of GPS-TEC 
with different solar indices, i.e. solar EUV flux, F10.7 cm solar radio flux and 
Zurich sunspot number (SSN), it is concluded that the solar index EUV flux is 
a better controller of GPS-TEC, compared to F10.7 cm and SSN. Further, it is 
observed that there is no effect of rising solar activity on correlation. Moreo-
ver, the percentage variability of GPS-TEC and the standard deviation of 
GPS-TEC obtained for quiet and disturbed days show that dependence of 
GPS-TEC on geomagnetic condition is seasonal. Also, there is a positive cor-
relation observed between GPS-TEC and EEJ strength. 
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1. Introduction 

The partially ionized region of the upper atmosphere called the earth’s ionos-
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phere, reaches altitudes ranging above 60 km from the surface of the earth. The 
ionospheric plasma density in the ionosphere exhibits significant variations with 
time (sunspot cycle, seasonal, diurnal, latitude, longitude, solar and geomagnetic 
activities), which can result in change of special vital ionospheric parameters 
such as total electron content (TEC). TEC is expressed in units of TECU 
(1TECU = 1016 electrons per square meter), which is the altitude integral para-
meter of electron density, can be defined as of the total numeral of electrons 
from satellite to receiver path in a single square meter cross-section area. The 
main contribution to the maximum TEC in the ionosphere is at the F-region 
density that mainly affects the radio wave propagation [1] [2]. In the equatorial 
low latitude ionosphere at F-region, the ionization density distribution is cha-
racterized by a trough at the equator and dual crests on either side of the equa-
tor, nearly at about ±17˚ magnetic latitudes are called as the crests of EIA. Due 
to the complexity in dynamic processes involved in ionization of the equatorial 
low latitude ionosphere at F-region, the morphology of this region becomes sig-
nificant to study.  

The Global positioning system (GPS) signal propagating through the ionos-
phere is advanced in phase and delayed in time. This time delay being a function 
of electron density when measured by using dual frequency receiver can com-
pute the TEC. So, the GPS receiver is one of the most practicable tools for TEC 
study [3] [4]. The ionospheric delay constitutes the major source of error for a 
single frequency GNSS operation. The sensitivity of the ionospheric range delay 
to TEC for the primary GPS signal is 0.162 m/TECU [5]. The TEC in the upper 
atmosphere plays a crucial role in the determination of the range delays by the 
electromagnetic signals while traversing through the ionosphere [6]. According 
to Chowdhary et al. [7] the development and the discrepancy of the EIA in elec-
tron density are reflected in TEC as the F layer forms the largest part of TEC. So, 
it is important to study of TEC.  

Apart from various locations in globe several researchers have been investi-
gated morphological features of TEC such as the diurnal, monthly, seasonal, la-
titudinal and solar activity variation using various techniques, e.g. in Africa, [8]- 
[13], in South America, [14] [15] [16] [17] [18] over China [19] [20], Huo et al. 
[21] and Perevalova et al. [22] over North America, Zakharenkova et al. [23] 
over Japan; Venkatesh et al. [24] [25] [26] over Brazil and many more. Ionos-
pheric TEC variations have been investigated in the Indian region, using this 
data and other separate TEC measurements at Surat [27], Agra [28] and other 
different stations, namely Trivandrum, Waltair, Raipur and Delhi [6]. 

The GPS-TEC data for the Surat station (located under the northern crest of 
the equatorial ionization anomaly in Indian sector) have been analyzed earlier in 
the year 2009 at low solar activity period [27]. However, the analysis of high so-
lar activity has never been performed for this station. Further, we obtained cor-
relation coefficient between GPS-TEC and solar indices, especially to the inten-
sity of the ascending phase of the 24th solar cycle being subdued. 
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2. Data Analysis 

Since 2008, the dual frequency NovAtel GSV4004B GPS ionospheric scintillation 
and TEC monitor (GISTM) receiver continuously records the GPS data at the 
Department of Applied Physics (APD), SardarVallabhbhai National Institute of 
Technology (S.V.N.I.T), at Surat station (21.16˚N, 72.78˚E, Geog.) in India. The 
GSV4004B GPS receiver tracks up to 11 satellites at a time, which are at different 
elevation angles [29]. The data is collected at every minute, which do not include 
the 50-Hz sampled raw data, but the reduced TEC and S4 index and other para-
meters are included. To extract TEC from the GPS observation file, the pseudo-
range measurements on L1 (1575.42 MHz) and L2 (1227.60 MHz) frequencies 
have been considered.  The ionospheric delay can be expressed in terms of the 
signal carrier frequency as follows: 

( ) ( ) ( )240.3TECion c cf fδ =                   (1) 

where, ( )ion cfδ  is the signal propagation delay at a given carrier frequency. 
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where; ΔP1,2 = Difference between time delays measured by the L1 and L2, K= 
40.3 m3∙s−1, f1 = Frequency of the L1 wave, f2 = Second frequency (L2 wave). 

In the above Equation (2), there is a bias error correction, which is different 
for different satellite-receiver pairs. [30] [31] [32] [33] reported that if accurate 
estimates of the ionospheric TEC are to be obtained, the differential instrumen-
tal biases must be removed. In the present study, the receiver part of the bias is 
corrected by taking the value supplied by the manufacturer by calibrating the 
receiver against Wide Area augmentation system (WAAS). The satellite bias er-
ror corrections are different for different satellite-receiver pairs. The magnitudes 
of these biases per PRN, in nanoseconds were used in TEC calculations. The bi-
ases are calculated by the International GNSS Service (IGS). Calculation details, 
analysis, and results are available at (http://aiuws.unibe.ch/spec/dcb.php). These 
values are frequently updated. The detailed explanation is given in [34] [35] [36] 
[37]. The slant TEC measurements made are the sum of the real slant TEC, the 
GPS satellite differential delay bS (satellite bias) and the receiver differential de-
lay, bR (receiver bias). Except when at the zenith, the GPS satellite transmits the 
signal to the reference station through the ionosphere at some oblique angle. To 
remove the effect of the increased path length due to obliqueness, the STEC 
needs to be multiplied by a slant factor, S(E). 

Therefore, the vertical TEC can be expressed as: 
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Rx = Mean earth radius, 6371 km, hm = altitude of the IPP, χ = elevation angle 
and ( )90χ χ′ = −�  [4] [38].  

The ionosphere puncture point (IPP) is where the GPS signals travel through 
the maximum electron density layer of the ionosphere. The mean ionospheric 
height of 350 Km is used for the determination of IPP locations, which is found 
to be valid for elevation > 50˚ in a low latitude sector [39]. In the present study, 
TEC data collected from the low solar activity to high solar activity periods be-
tween January-2010 to February-2015 at the observing station are being used. 
The data for the months of August-2013, November-2013, December-2013, 
January-2014 and February-2014 were unavailable due to some technical issues. 
The analysis is limited to geomagnetic quiet conditions.  

Rastogi and Klobuchar [40] showed that the difference between the corres-
ponding ∆H values at the two stations gives the electrojet contribution. For this, 
we use the hourly values of ∆H at Tirunelveli (Code: TIR, 8.7˚N, 77.8˚E, Goeg.) 
and ∆H at Alibag (Code: ABG 18.6˚N, 72.8˚E, Goeg.) to characterize the strength 
of EEJ on each day as given by the relationship, EEJ strength = ∆HTIR − ∆HABG 
[41] [42] [43] [44]. It is to note that ∆H is the normalized value of horizontal 
component and is obtained by removing night time (18:00 LT to 23:00 LT) mean 
values of H. To calculate the EEJ strength we have first chosen magnetically 
quiet days to avoid any disturbances caused due to geomagnetic conditions. 
Further, the mean of night time data are considered as zero level. Hourly values 
of Tirunelveli station (∆H) is then subtracted from its zero level, this gives 
∆HTIR. Similarly, ∆HABG is obtained and the difference ∆HTIR − ∆HABG is calcula- 
ted to obtain EEJ strength. Here, to obtain EEJ strength, one-hour magnetic field 
data from ground based magnetometers is used in IAGA2002 format which is 
provided by the Indian Institute of Geomagnetism, Mumbai, India. The strength 
of the EIA is normally controlled by the equatorial electrojet (EEJ) strength, 
which shows significant temporal, day-to-day- seasonal, solar cycle and longitu-
dinal variation reported by different researchers [26] [39] [45]. 

The daily solar indices (EUV flux, F10.7 cm and SSN) of solar variability, Zu-
rich sunspot number (SSN) and solar flux F10.7 data are obtained from 
(http://www.ngdc.noaa.gov) and solar EUV flux (SFU) data are obtained from 
(http://lasp.colorado.edu/lisird/whi_ref_spectra/) for the period 2010-2014. 

3. Results and Discussion 

To study the GPS-TEC variation with local time, season, solar activity and geo-
magnetic condition, we have used a data base from January 2010 to December 
2014 situated under the northern crest of the equatorial anomaly region, Surat. 
The results are discussed below. 

3.1. Diurnal Variation of GPS-TEC  

For Surat station the diurnal variation of hourly mean GPS-TEC is obtained, 
such that there is a gradual decrease in GPS-TEC between 00:00 to 05:00 IST 

http://www.ngdc.noaa.gov/
http://lasp.colorado.edu/lisird/whi_ref_spectra/
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(IST = local time (LT) = UT + 5:30 hrs) pre-dawn to sun up period, reaching a 
minimum between 05:00 to 06:00 IST over the Indian sector and steadily in-
crease with the time of day attaining a maximum in the noon to afternoon and a 
gradual decrease after sunset. The observations of diurnal variation in GPS-TEC 
show that the time at which GPS-TEC reaches the diurnal peak vary from month 
to month and day to day. In general, the diurnal GPS-TEC attained their peak 
values mostly between 13:00 and 16:00 IST and the minimum in the GPS-TEC 
flat during most of the night time hours; i.e. from 22:00 to 06:00 during both low 
and high solar activity phase. 

One very important noticeable feature that is the day-to-day uncertainty in 
the variation of GPS-TEC, particularly during the middle of the day to pre-dawn 
hours, which is of serious worry in forecasting, as well as in navigation system. 
This uncertainty in the day-to-day variation, seasonal variation in TEC [6] [39] 
[46] [47] may be attributed to: 1) the changes in the activity of the Sun itself and 
to the connected changes in the intensity of the incoming radiations; 2) the ze-
nith angle (χ) at which they impinge on the Earth’s upper atmosphere, in addi-
tion to the changes which take place in the Earth’s magnetic field; 3) the equa-
torial electrojet (EEJ) strength, added to the effects due to the dynamics of the 
EIA and 4) the meridional neutral winds. The diurnal variation of GPS-TEC 
may also be due to the motion of the ionized particles across the geomagnetic 
fields by tidal winds [48]. Recently, Jonah et al. [49] studied GPS-TEC variation 
during high and low solar activity phase over the South American sector. They 
reported that a day-to-day uncertainty in the variation of GPS-TEC contains a 
component driven by planetary waves improved by tides as they propagate up-
ward. A strong vertical coupling through the increasing propagating waves can 
also give rise to day-to-day oscillation in GPS-TEC. Their study also illustrates 
that apart from solar radiation effect, variations in the meridional wind or zonal 
winds also play an important role corresponding to the changes in GPS-TEC. 

3.2. Seasonal Variation of GPS-TEC 

To study the seasonal variation of GPS-TEC for different years (2010-2014), 
each year has been classified into three seasons, i.e. equinoxes (March, April, 
September and October), summer (May, June, July and August) and winter 
(November, December of current year) and (January, February of successive 
year). 

Hourly mean of diurnal GPS-TEC for four months at a particular hour were 
obtained to derive the seasonal mean for all these three seasons, Figure 1(a) 
represents variation during different seasons recorded at Surat for a period of 
March 2010 to February 2011. Similarly, Figure 1(b) 2011 Figure 1(c) 2012 
Figure 1(d) 2013 and Figure 1(e) 2014 respectively. In general it is seen from 
Figures 1(a)-(e) that the greater values of the GPS-TEC were observed in equi-
noctial months for all five years, followed by winter in the year 2011 and 2014 
also in summer for the year 2010 and 2012. The highest value of GPS-TEC is 
recorded for equinoctial months in the year 2014 (~130 TECU), 2012 (~91 TECU),  
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Figure 1. Plots of seasonal variation of GPS-TEC for the years (a) 2010 (b) 2011 (c) 2012 
(d) 2013 (e) 2014 from normal quiet period under the northern crest of EIA at Surat. 
 
2011 (~90 TECU), 2013 (~81 TECU) and 2010 (~60 TECU) is shown in Figure 
2. 

From Figure 1 we can see that the forenoon rate of ionization in equinox 
season is faster than that in winter and summer season. The plot in Figure 1 and 
Figure 2 states that the amplitude of the diurnal maximum is higher in the 
equinoctial months, which may be due to higher thermospheric [O/N2] ratio and 
EEJ strength over the Surat station. It is normally accepted that the thermos-
pheric neutral composition has a direct control on the seasonal variation of 
GPS-TEC [44] [50]. Oryema et al. [51] and the references therein reported that, 
during the daytime in an equinoctial season, the sun is overhead the equator and 
temperature level at the equator are hotter than at the poles, therefore from the 
equator meridional wind flows towards the pole. This flow of meridional wind  
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Figure 2. Plots of seasonal maximum GPS-TEC for the years 2010-2014 from normal 
quiet period under the northern crest of EIA at Surat. 
 
changes the neutral composition and [O/N2] increases at low and equatorial la-
titude regions. In equinox, this increase will be maximum. At 350 km height (F2 
layer), N2 dissociation is the most significant method which removes ambient 
electrons. Hence, the decrease in thermospheric atomic/molecular [O/N2] ratio 
will outcome in greater electron density and therefore in equinox TEC will be 
highest [44] [52] [53] [54]. 

Compared to other seasons, the summer GPS-TEC is lowest for the year 2011 
(~64 TECU), 2013 (~38 TECU) and 2014 (~89 TECU). However, for the year 
2010 (~45 TECU) and 2012 (~61 TECU) lowest GPS-TEC is observed during the 
winter months. Further, the higher GPS-TEC in the winter than in the summer 
for the year 2011 and 2014 at low latitudes over Surat station shows “winter 
anomaly” (or seasonal anomaly). The most motivating aspects of GPS-TEC ob-
servations at low latitudes, that have been studied by a number of researchers, is 
the presence of winter anomaly in the anomaly crest region [27] [39] [43] [55] 
[56] [57] [58] [59]; while other researchers have also studied the disappearance 
of “winter anomaly” [44] [47] [60]-[66]. The “winter anomaly’’ defined as the 
winter electron density remains greater than the summer electron density [67]. 
The winter anomaly is caused by the increase in the thermospheric atomic/mo- 
lecular [O/N2] ratio from the southern and northern hemisphere reported by a 
number of authors [50] [57] [68] [69] [70] [71]. Thus, the appearance of winter 
anomaly in EIA crest strength has been attributed to an energy input discrepan-
cy between S-N hemisphere [70]; change in season by a neutral gas composition 
[43] [57]; chemical recombination and solar radiation [67]; solar zenith angle 
[50] [59]; and trans-equatorial summer to winter neutral wind [72]. According 
to, Karia and Pathak [27] the meridional winds may contribute to the seasonal 
variations of GPS-TEC, particularly at which the thermospheric wind effects are 
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mainly strong. Research by Kumar et al. [59] reported the presence of winter 
anomaly in the EIA crest throughout the period 2005-2009 only, excluding dur-
ing the deep solar minimum year 2007-2008. However, they further attributed 
that this may be due to a combined effect of the magnetic field geometry and so-
lar zenith angle. The disappearance of the winter anomaly around the crest of 
the EIA is credited to the increase in altitude of the F peak ionization in the 
summer season and greater E×B drift velocity, although thermospheric [O/N2] 
ratio is higher in winter season [70]. Thus, the disappearance of winter anomaly 
in EIA crest may be attributed to a mechanical effect of the equator-ward neutral 
winds [66].  

March 2014 to February 2015 is a high solar activity period. For the high solar 
activity period the nighttime resurgence of the anomaly (occasioning a second-
ary peak in GPS-TEC) associated to the evening prereversal enhancement is ob-
served at low latitude station Surat as shown in Figure 1(e). This type of similar 
results observed for high solar activity period 2001 over South American Sector 
by Jonah et al. [49]. 

In order to check the reliability of data of one GPS station (Surat), we ana-
lyzed the GPS-TEC data obtained from three different stations (Bangalore, Hy-
derabad and Lucknow) available from the IGS network in RINEX format. The 
results are presented in Figure 3. It can be seen that the seasonal trends of TEC 
observed at these three stations are similar to those at Surat. Also the disappear-
ance of winter anomaly is observed at all three stations for the year 2012 as ob-
served at Surat station. 

3.3. GPS-TEC Variation with Solar Activity 

The main source of insolation on the earth is solar energy, in the form of radia-
tion and charged particles. The earth’s upper atmosphere takes in those solar 
radiations derived from heating, ionization and dissociation. The earth’s ionos-
phere is constructed by the ionizing effect of solar extreme ultraviolet rays. In 
general, the upper atmosphere of the earth, solar radiations is measured in ex-
pression of solar indices, i.e. 1) The solar EUV flux (0.1 nm - 50 nm): The daily 
average of full solar disk EUV flux recorded in the 0.1 - 50 nm spectral band and 
measured at 1˚AU (astronomical unit). The solar EUV flux data, represented by 
units of 1010 photons cm−2∙s−1, has been used from the Solar EUV Monitor (SEM) 
on-board the Solar and Heliospheric Observatory (SOHO) satellite. 2) F10.7 cm 
solar radio flux (2800 MHz): The Solar flux is a compute of the intensity of solar 
radio emission at the reciprocal of the period of 2800 MHz also known as 10.7 
cm flux (the wavelength of the radio signals at 2800 MHz) commonly measured 
in solar flux unit (1 s.f.u. = 1022W∙m−2∙Hz−1) and is proportional to sunspot activ-
ity, and 3) Zurich sunspot number (SSN). Figure 4 shows yearly mean of differ-
ent solar indices, i.e. a) solar EUV flux, b) F10.7 cm solar radio flux and c) Zu-
rich sunspot number (SSN) with respect to GPS-TEC. Pattern of all three solar 
indices with GPS-TEC in low and moderate in the solar activity year 2010 and 
2011, also high solar activity year 2013 and 2014 trend matches well except for 
the year 2012.  
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Figure 3. Plots of seasonal variation of GPS-TEC for the different Indian stations (Ban-
galore, Hyderabad, Surat and Lucknow) for the year 2012. 
 

 
Figure 4. Trend of GPS-TEC of different years with different solar index (a) EUV flux 
(photons cm−2∙s−1) (b) F10.7 cm (s.f.u.) and (c) Zurich sunspot number (SSN). 
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In an effort to know which solar index represents the ionospheric GPS-TEC 
well at Surat, we obtain the correlation between TEC obtain at Surat and all the 
solar indices is shown as Figure 5. The left column shows the correlation be-
tween daily average GPS-TEC with EUV flux values (photons cm−2∙s−1) and the 
correlation between daily average GPS-TEC with respective F10.7 cm (s.f.u.) 
values is shows in the middle column for the year 2010 to 2014. The GPS-TEC 
correlation coefficient (r) with EUV flux value for the year 2010 to be (r = 0.405) 
followed by the year 2011 (r = 0.847), 2012 (r = 0.409), 2013 (r = −0.164) and 
2014 (r = 0.600). The GPS-TEC correlation coefficient (r) with solar radio flux 
F10.7 cm have been observed for the year 2010 (r = 0.183) and for the year 2011 
(r = 0.649), 2012 (r = 0.193), 2013 (r = −0.113) and 2014 (r = 0.350) respectively. 
The GPS-TEC correlation coefficient (r) with a Zurich sunspot number (SSN) 
value in the right column for the year 2010 found to be (r = 0.192) and for the 
year 2011 (r = 0.69), 2012 (r = 0.276), 2013 (r = −0.114) and 2014 (r = 0.314) re-
spectively. The positive and negative correlation coefficient (r) with different so-
lar indices results also reported by other researchers (Table 1). Research of, Opio 
et al. [13] studied a longitudinal range (27˚E - 40˚E) taking all the latitudes of  

 

 
Figure 5. Correlations between GPS-TEC versus three different solar index (Left column) EUV flux (photons cm−2∙s−1) (Middle 
column) F10.7 cm (s.f.u.) and (Right column) Zurich sunspot number (SSN) from the normal quiet period 2010-2014. 
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Table 1. Literature review of correlation studies of TEC with different solar parameters. 

No. Report 
Ionospheric  
parameter 

Solar indices Best correlation Period 

1 Dabas et al. [73] IEC Solar EUV flux; S10.7cm flux and SSN IEC with EUV flux 1977-1980 

2 Gupta and Singh [74] IEC F10.7 solar flux IEC with F10.7 flux 1975-80 and 1986-89 

3 Chkraborty and Hajra [75] TEC F10.7 solar flux TEC with F10.7 flux 1979-90 

4 Kumar and Singh [81] TEC SSN; F10.7 solar flux TEC with SSN (=−0.03) 2007-2008 

5. Galav et al. [63] TEC F10.7 solar flux TEC with F10.7 flux (=0.74) 2005-2009 

6. Chauhan et al. [28] TEC EUV flux, F10.7 solar flux and SSN TEC with F10.7 flux 2006-2009 

7. Chakrabarty et al. [90] TEC F10.7 solar flux TEC with F10.7 flux (=0.98) 2005-2009 

8. Opio et al. [13] TEC F10.7 solar flux TEC with F10.7 flux (=0.75) 2011 

9. Rama Rao et al. [6] TEC EUV flux, F10.7 solar flux and SSN TEC with F10.7 flux 2004–2005 

10. Liu et al. [77] TEC EUV flux and F10.7 solar flux TEC with EUVflux 1998–2008 

11. Shimeis et al. [91] TEC SSN TEC with SSN (=0.9) 2002-2012 

12. Wu et al. [78] TEC F10.7 solar flux TEC with F10.7 flux (=−0.09) 1996-1997 

13. Zhao et al. [80] TEC F10.7 solar flux TEC with F10.7 flux (positive) 1996–2004 

14. Liu et al. [76] TEC F10.7 solar flux and SSN TEC with SSN (=0.26) 2006 

15. Wu et al. [79] TEC F10.7 solar flux TEC with F10.7 flux (=0.87) 1994–2003 

 
the African sector using GPS-TEC data over hrao station and reported a high 
positive coefficient r of (r = 0.75) for the year 2011. They found that the Sep-
tember–October equinox registered larger TEC values of 85 TECU with a high 
daily TEC variability compared to the March - April equinox for the year 2011. 
They attributed to the sun’s radiation intensity in the two equinoxes calculated 
by the solar flux, whereby in the year 2011 the solar flux F10.7 cm registered a 
value of about 170 sfu in spring equinox than fall equinox with a value of about 
130 sfu. Our results for the year 2011 are in agreement with them.  

Mostly researchers [6] [13] [28] [58] [63] [73]-[81] have focused on the corre-
lation between TEC and F10.7 solar flux. Only a few researchers have focused on 
the correlation between TEC and Solar EUV flux [6] [28] [73] [77]. According to 
Prasad et al. [58] the F10.7 index originates mainly at high-temperature transi-
tion region of the solar atmosphere, but the solar EUV flux originates in the ir-
regular layer above the Photosphere (“Chromospheres”) and to some minor ex-
tent in the transition region and corona. At higher solar activity periods the 
F10.7 cm flux undergoes stronger fluctuations. During these periods the EUV 
emissions from higher excited atoms in the solar atmosphere correlate with 
GPS-TEC. 

Table 2 represents the correlation of mean GPS-TEC with all three solar in-
dices during the three seasons, i.e. winter, equinox and summer for the period of 
March 2010 to February 2011. In Table 2 bold fonts represents a greater value of 
a correlation with respective season of the year, similarly for the year 2011, 2012, 
2013 and 2014 respectively. For each season, the data of four months are 
grouped together. The electron density in the equatorial and low latitudes de- 
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Table 2. The seasonal correlation of mean GPS-TEC with all three solar indices EUV flux 
(photons cm−2∙s−1) F10.7 cm (s.f.u.) and Zurich sunspot number (SSN) from normal quiet 
period 2010-2014. 

 
Correlation of seasonal mean EIA with seasonal mean 

YEAR 2010 2011 2012 2013 2014 

EUV → TEC      

Winter 0.658 0.939 0.282 No data 0.422 

Equinox 0.332 0.448 0.657 0.193 0.613 

Summer 0.407 0.763 0.343 −0.282 0.432 

F10.7 → TEC      

Winter 0.35 0.938 0.073 No data 0.266 

Equinox 0.434 0.127 0.601 0.013 0.139 

Summer 0.351 0.392 0.078 −0.253 0.363 

SSN → TEC      

Winter 0.371 0.918 0.232 No data 0.447 

Equinox -0.018 0.19 0.305 −0.019 0.258 

Summer 0.055 0.28 0.322 −0.254 0.431 

 
pends, on the ionization due to solar radiation and growth of electron density 
due to transport [58]. For the day-time period, a major part of the electron den-
sity at equator is caused by the solar radiation whereas under the northern crest 
of the EIA location the contribution of plasma is transported because of the 
fountain effect adds to that created due to solar radiations which are less power-
ful compared to those at the equator as a result of the solar zenith angle changes. 
This possibly would be one of the reason for the experimental less correlations 
between the GPS-TEC and solar indices parameters at a low latitude station un-
der the northern crest of the equatorial ionization anomaly (EIA) region in the 
Indian sector. 

It can be seen that value of correlation coefficient (r) for EUV flux and F10.7 
cm flux is positive for all season except for the summer 2013. The correlation of 
GPS-TEC and SSN is found to be low as compared to those of EUV flux and 
F10.7 cm in all seasons. In general correlation coefficient of GPS-TEC with EUV 
is observed to be better for all season compare to F10.7 and SSN. The daytime 
maximum GPS-TEC for all day observation are plotted against the correspond-
ing EUV flux which shows the linear positive correlation (r = 0.63) during the 
period 2010-2014 (see Figure 6). Recently, Bhuyan and Hazarika [64] have stu-
died the ascending half of the solar cycle 24 from 2009 to 2012 over Dibrugarh 
(27.5˚N, 94.9˚E Geog.) and found a linear positive correlation (r = 0.56) between 
diurnal maximum GPS-TEC against corresponding solar EUV flux. A research 
of Chen et al. [82] shows that the relationship between the solar EUV flux and 
F10.7 cm flux during the deep solar minimum years (2007-2009) is different 
from the previous solar minimum years, the lessening in two parameters being 
5% in F10.7 cm flux and 15% in 0.1 - 50 nm EUV irradiation compared to  
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Figure 6. Mass plot for the daily GPS-TEC against corresponding daily EUV flux from 
January 2010 to December 2014. The solid line is the linear regression trough the data 
points. 
 
the previous solar minimum. The main reason that controls TEC variations and 
the variability of thermospheric electron density, composition and temperature 
of neutral atmosphere is the solar EUV radiation [83] [84]. To obtain the corre-
lation between the decomposed TEC A6 and measured solar index EUV flux and 
F10.7 cm flux, Yadav et al. [85] found good correlation between decomposed 
TEC A6 and EUV flux. In general, for the seasonal and annual variation of 
GPS-TEC with different solar indices at EIA crest region over Surat; India, the 
solar index EUV flux is a better indicator of GPS-TEC, compare to F10.7 cm and 
SSN for low to high solar activity period (2010-2014).  

3.4. Dependence of GPS-TEC with Geomagnetic Condition 

To study the effect of geomagnetic activity on the GPS-TEC, we derived variabil-
ity of GPS-TEC, for five quiet and five disturbed days in each month for year 
2010-2014 taken from the website  
http://www.ga.gov.au/oracle/geomag/iqd_form.jsp. There is considerable day- 
to-day variability about the monthly mean, characterized by the standard devia-
tion σ (GPS-TEC). The absolute standard deviation is important in practical ap-
plications [86], for our purposes, we prefer to express it as a percentage of the 
mean value of GPS-TEC, as described [86].  

( ) ( ) ( ) ( )GPS-TEC GPS-TEC GPS-TEC %σ∑ =             (4) 

The mean values of percentage variability of GPS-TEC (∑ GPS-TEC) for low 
to high solar activity year 2010 to 2014 situated under the northern crest of the 
equatorial anomaly region, over Surat station, are shown in Table 3. The differ-
ences between two equinox months March and April, and between September 
and October, are mostly due to the transitions between summer and winter, 
which was earlier reported by Rishbeth and Mendillo [86]. 

http://www.ga.gov.au/oracle/geomag/iqd_form.jsp
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Table 3. The mean values of percentage variability of GPS-TEC (∑ GPS-TEC %) for low 
to high solar activity year 2010 to 2014 during geomagnetically quiet and disturbed days. 

Year 
2010 2011 2012 2013 2014 

Q-Days D-Days Q-Days D-Days Q-Days D-Days Q-Days D-Days Q-Days D-Days 

MAR, 65.877, 64.245, 63.246, 60.558, 61.055, 62.048, 59.143, 62.252, 58.34, 58.305, 

APR 66.49 74.927 65.977 64.276 64.875 59.369 56.367 48.996 57.135 58.142 

SEP, 64.701, 65.717, 71.127, 71.044, 64.604, 73.289, 60.076, 61.589, 65.676, 64.232, 

OCT 64.44 67.869 71.046 69.546 63.581 69.906 64.244 57.874 61.871 58.573 

JUN, 56.88, 59.219, 58.285, 58.731, 54.645, 49.606, 50.759, 49.896, 51.404, 52.44, 

JUL 56.154 57.136 61.517 58.217 61.652 55.744 51.386 52.174 53.406 50.532 

DEC- 65.28, 62.498, 62.888, 61.315, 52.938, 60.574, No No 48.468, 52.086, 

JAN 64.275 73.759 62.701 79.675 63.134 68.625 Data Data 55.141 57.616 

 
Percentage variability of GPS-TEC (∑ GPS-TEC), during the disturbed days 

and quiet days is found to be highest in an equinox season in comparison to that 
in the winter and summer season (except for the year 2010, which is associated 
with the low solar activity year). Moreover, for both quiet and disturbed condi-
tions we plotted the standard deviation of GPS-TEC against the years 2010-2014 
as shown in Figure 7. It is observed that the standard deviation of GPS-TEC is 
high and it increases with an increase in solar activity (2010-2014) as seen in 
Figure 7. This could be attributed to the increase in input of energy to the io-
nosphere from the Sun in high solar activity. 

3.5. Dependence of GPS-TEC on EEJ Strength 

The characteristic of the equatorial electrojet (EEJ) strength plays a very impor-
tant role in the electron density distribution over equatorial and low latitudes 
[26] [87] [88]. The EEJ states to an enhanced eastward electric current in the E 
region because of a strong vertical polarization electric field developed into a la-
titude band of ±3˚ about the dip equator [89]. Rastogi and Klobuchar [40] found 
dependence of TEC on the equatorial Electrojet by using ATS-6 TEC measure-
ments from the Indian region. 

Figure 8 in left column illustrates a comparison of the measured monthly 
peak values of the GPS-TEC for 2010–2014 with equatorial electrojet (EEJ) 
strength. The overall trends of TEC obtained from GPS and equatorial electrojet 
(EEJ) strength are similar in different months of the years of study. It is observed 
that starting from the year 2010 peak value of GPS-TEC and the peak value of 
EEJ was maximum during equinox months and minimum during the summer 
months. Similar results were also found for other years 2011 to 2014. Rama Rao 
et al. [6] [39] and Venkatesh et al. [26] reported that the EEJ shows a clear sea-
sonal behavior with stronger electrojet strength during equinoctial months over 
Indian equatorial and low latitude sectors. Kumar et al. [81] found the EIA crest 
in TEC is maximum in equinox months constitute due to EEJ strength. The re-
search of Rama Rao et al. [39] reported that the positions of the EIA crest and its  
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Figure 7. Standard deviation of GPS-TEC during geomagnetically quiet and disturbed 
days for each month of the year 2010, 2011, 2012, 2013 and 2014 (The data for the 
months of August 2013, November 2013 to February 2014 were not available due to tech-
nical issues). 

 

 
Figure 8. Plot of comparison of the measured monthly peak values of the GPS-TEC with equatorial electrojet (EEJ) strength in left 
column and the statistical relation of monthly peak values of GPS-TEC with equatorial electrojet (EEJ) strength in right column 
for 2010-2014. 
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peak value in TEC increases with the increase in EEJ strengths. This observation 
at Surat station indicates is in good agreement with previous researchers re-
ported. 

Further, in order to observe the relation between GPS-TEC and EEJ strength 
we have obtained the correlation coefficient. Figure 8 in the right column, 
represents the statistical relation of monthly peak values of TEC with equatorial 
electrojet (EEJ) strength. For each plot in Figure 8 in the right column the cor-
relation coefficients (r) were determined and the corresponding fitting is shown 
by the straight line. The scattered points around the straight line may be due to 
other factors (local electric fields, neutral winds) contributing to the control of 
EEJ strength on the day-to-day variation of GPS-TEC. We found a positive cor-
relation coefficient for the year 2010 (r = 0.73), 2011 (r = 0.60), 2012 (r = 0.76), 
2013 (r = 0.80) and 2014 (r = 0.84). The correlation between EIA crest TEC and 
EEJ strength, Venkatesh et al. [26] found (r = 0.53) over the Brazilian region; 
Rama Rao et al. [39] found (r = 0.62), Bagiya et al. [44] found (r = 0.71) and 
Venkatesh et al. [26] found (r = 0.51) in the Indian region stations. Our results 
agree with this study showing the positive relation between GPS-TEC and EEJ 
strength. However, it is to be noted that, Venkatesh et al. [26] have found a cor-
relation coefficient of (r = 0.5) for both Brazilian and Indian sector stations 
spread over the entire EIA region. The averaging effect might have dampened 
the correlation whereas we have focused only on the anomaly crest region where 
we found better correlation. 

4. Summary 

In this study ionospheric GPS-TEC is investigated during the ascending phase of 
the 24th solar cycle (2010-2014) for a low latitude station under the northern 
crest of the equatorial ionization anomaly region in the Indian station Surat 
(21.16˚N, 72.78˚E Geog.). The major findings of the study are as follows: 
 The diurnal variation of GPS-TEC demonstrates a gradual increase of total 

electron content with sunrise around 05:00 and 06:00 IST (IST = local time = 
UT + 05:30 hrs); peaks up around local afternoon between 13:00 and 16:00 
IST, and a gradual decrease after sunset. The diurnal variation amplitude of 
the GPS-TEC curve varies with evident positions of the Sun over a station.  

 While investigating the seasonal variation of GPS-TEC over the region illu-
strates grater GPS-TEC is highest during the equinox season for the all the 
years 2010-2014, followed by summer and winter for the year 2010 and 2012. 
However, winter anomaly was observed for the year 2011 and 2014 (see Fig-
ure 1 and Figure 2) this could be attributed to the fact that atomic and mole-
cular ratio [O/N2] which is greater during high solar activity periods in the 
northern hemisphere. The disappearance of the winter anomaly for the year 
(2010) may be attributed to low solar activity when the F10.7 solar radio flux 
is a smaller amount than the threshold level of 90 - 100 solar flux units (1 s.f.u. 
= 1022 Wm−2∙Hz−1). However, for the year (2012) its disappearance may due to 
higher EEJ strength value during summer months compare to winter months 
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(see in Figure 8). 
 From the correlation of seasonal and annual variation of GPS-TEC with dif-

ferent solar indices at EIA region over the given location, it can be concluded 
that the solar index EUV flux is a better controller of GPS-TEC, compared to 
F10.7 cm and SSN for low to high solar activity period (2010-2014). 

 The overall trends of TEC obtained from GPS and equatorial electrojet (EEJ) 
strength are similar in all the months of the years 2010-2014. The correlation 
between GPS-TEC and EEJ strength, showed a positive correlation for the 
year 2010 (r = 0.73), 2011 (r = 0.60), 2012 (r = 0.76) 2013 (r = 0.80) and 2014 
(r = 0.84) (see in Figure 8). 
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